

Christiane Floyd Heinz Ztillighoven
Reinhard Budde Reinhard Keil-Slawik
(Editors)

Software Development
and
Reality Construction

With 20 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Christiane Floyd
Technische Universitat Berlin, Institut fiir Angewandte Informatik, Sekr. S - 6,
FranklinstraBe 28/29,1000 Berlin 10, Fed. Rep. of Germany

Heinz Zullighoven
GMD, Institut flir Systemtechnik (F2), Postfach 1240,
W-S20S Sankt Augustin 1, Fed. Rep. of Germany

Reinhard Budde
GMD, Institut flir Systemtechnik (F2), Postfach 1240,
W-S20S Sankt Augustin 1, Fed. Rep. of Germany

Reinhard Keil-Slawik
Technische Universitat Berlin, Institut flir Angewandte Informatik, Sekr. S - 6,
FranklinstraBe 28/29,1000 Berlin 10, Fed. Rep. of Germany

Illustrations by Claudia Weiler-Kuhn

CR Classification (1991): D.2, H.l, H.5, K.4, K.6

ISBN-13: 978-3-642-76819-4 e-ISBN-13: 978-3-642-76817-0
DOl: 10.1007/978-3-642-76817-0

Library of Congress Cataloging-in-Publication Data. Software development and reality construction/Ch Floyd ...
[et al.], eds. p. cm. Includes bibliographical referenc~s and index.
1. Computer software-Development. 2. Human--{Oomputer interac-
tion. I. Floyd, Christiane. QA76.76.D47S633 1992 005.1-dc20 91-43082

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German
Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Softcover reprint of the hardcover I st edition 1992

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Typesetting: Camera ready by author

45/3140-543210- Printed on acid-free paper

Preface

The present book is based on the conference Software Development and Reality
Construction held at SchloB Eringerfeld in Germany, September 25 - 30, 1988.
This was organized by the Technical University of Berlin (TUB) in cooperation
with the German National Research Center for Computer Science (GMD), Sankt
Augustin, and sponsored by the Volkswagen Foundation whose financial support
we gratefully acknowledge. The conference was an interdisciplinary scientific and
cultural event aimed at promoting discussion on the nature of computer science
as a scientific discipline and on the theoretical foundations and systemic practice
required for human-oriented system design.

In keeping with the conversational style of the conference, the book comprises
a series of individual contributions, arranged so as to form a coherent whole.
Some authors reflect on their practice in computer science and system design.
Others start from approaches developed in the humanities and the social sciences
for understanding human learning and creativity, individual and cooperative
work, and the interrelation between technology and organizations. Thus, each
contribution makes its specific point and can be read on its own merit. But,
at the same time, it takes its place as a chapter in the book, along with all
the other contributions, to give what seemed to us a meaningful overall line of
argumentation. This required careful editorial coordination, and we are grateful
to all the authors for bearing with us throughout the slow genesis of the book and
for complying with our requests for extensive revision of some of the manuscripts.

The way the book evolved also made great demands on everyone engaged
in its production. We are especially indebted to the following persons whose
commitment and excellent work enabled the book to be brought to a successful
conclusion:

Claudia Weiler-Kuhn, our illustrator, who was willing to devote her time and
attention to understanding our abstract ways of thinking;

Philip Bacon, who translated or polished up many of the texts written by
non-native authors;

Daniela Wegge, who compiled a significant portion of the bibliography;
Doris Fahndrich, who coordinated production of the book. She created the

technical environment based on L\TEX and eventually assumed sole responsibility
for the layout of the text as a whole. The extraordinary care and patience she
showed here have greatly contributed to the overall quality of the book.

Finally, we would like to thank Hans Wossner of the Springer Verlag who
went to considerable lengths to accommodate our rather unconventional ideas
concerning the book's design.

Christiane Floyd, Reinhard Keil-Slawik
Technische Universitat Berlin (TUB)

Reinhard Budde, Heinz Ziillighoven
Gesellschaft fUr Mathematik und Datenverarbeitung (GMD)

Berlin and Sankt Augustin, August 1991

Table of Contents

Prologue

1 Thinking About Computer Science

1.1 Human Questions in Computer Science
Christiane Floyd

1.2 Learning from our Errors
Donald E. Knuth

2 Living Computer Science

2.1 The Technical and the Human Side of Computer Science

1

11

15

28

31

Klaus-Peter Lohr. 35

2.2 Hermeneutics and Path
Joseph A. Goguen

2.3 Computing: Yet Another Reality Construction
Rodney M. Burstall .

2.4 How Many Choices Do We Make? How Many Are Difficult?

39

45

Kristen Nygaard . 52

2.5 From Scientific Practice to Epistemological Discovery
Douglas T. Ross . 60

3 On Reality Construction

3.1 Self-Organization and Software Development
Heinz von Foerster and Christiane Floyd

3.2 Software Development as Reality Construction
Christiane Floyd

3.3 The Idea that Reality is Socially Constructed

71

75

86

Bo Dahlbom 101

VIII

4 Learning to Know

4.1 Scientific Expertise as a Social Process
Klaus A mann.

4.2 How to Communicate Proofs or Programs

Table of Contents

........ 127

........... 131

Dirk Siefkes. .. 140

4.3 Making Errors, Making Sense, Making Use
John M. Carroll .. 155

4.4 Artifacts in Software Design
Reinhard K eil-Slawik. .. 168

5 Computer Science and Beyond 189

5.1 The Denial of Error
Joseph A. Goguen ...

5.2 Towards a New Understanding of Data Modelling

. 193

Heinz K. Klein and Kalle Lyytinen. 203

5.3 A Reappraisal of Information Science
Pentti Kerola and Jouni Simila. 220

6 Understanding the Computer Through Metaphors 229

6.1 Perspectives and Metaphors for Human-Computer Interaction
Susanne Maaft and Horst Oberquelle 233

6.2 Software Tools in a Programming Workshop
Reinhard Budde and Heinz Ziillighoven 252

6.3 Soft Engines - Mass-Produced Software for Working People?
Wolfgang Coy 269

6.4 Artificial Intelligence: A Hermeneutic Defense
Thomas F. Gordon. 280

7 Designing for People . 291

7.1 Shared Responsibility: A Field of Tension
Gro Bjerknes .

7.2 A Subject-Oriented Approach to Information Systems

.... 295

Markku 1. Nurminen. 302

Table of Contents IX

7.3 Anticipating Reality Construction
Fanny-Michaela Reisin 312

7.4 On Controllability
Wolfgang Dzida 326

7.5 Work Design for Human Development
Walter Volpert . 336

8 Epistemological Approaches to Informatics 349

8.1 Truth and Meaning Beyond Formalism
Joseph A. Goguen . 353

8.2 Informatics and Hermeneutics
Rafael Capurro

8.3 Language and Software, or: FritzI's Quest

............ 363

Dafydd Gibbon 376

8.4 Activity Theory as a Foundation for Design
Arne Raeithel. 391

8.5 ReHections on the Essence of Information
Klaus Fuchs-Kittowski . 416

Epilogue . 433

Bibliography 445

List of Authors 471

Prologue

Prologue 3

Proscenium

A stage. The curtain is down. Christiane emerges from behind the curtain. She is
carrying this book in her hand.

Christiane
This is a book about human questions in computer science. Questions such
as: What are we actually doing in our work? What assumptions do we rely
on? What claims can we really meet? How do we view human beings in
relation to computers? What is the impact of the computer in use? How can
we promote quality? What kind of social changes do we bring about? To
what extent is information technology conducive to human development?
The authors of this book share the conviction that a deeper understanding of
these issues is essential for guiding responsible action in science and design.
In working on this book, we have proceeded from the assumption that there
can be no single theoretical framework providing answers to the set of the
questions raised above. All of us approach them from our own perspectives,
shaped by our experience in life, by our work and through our interaction
with others. We realize that even the way we select and formulate our ques
tions reflects our particular perspective, while you, the reader, proceed from
yours. We would like to encourage you to pursue your own questions and to
promote discussions in your own personal context.

Heinz (joins her.)
This is a book about our parts in a play. A play in which there are many
actors. A play about science and software development. Let us take a look
behind the scenes to see the way this play is staged and the effects and
illusions that are created during its performance.
And you, the reader of our book, shall not only be the spectator - cut off
from the action by an imaginary "fourth wall" and embarking on this book
as if merely watching our play. Instead, it is our intention to involve you in
the development of the book and show you how the play evolved.

It all began with Christiane and me giving a joint seminar.

4 Prologue

The Small Bang

The curtain rises. January 1987. A seminar room at the Technical University of
Berlin. Students sitting at tables. One of them is standing and appears to be speak

ing to the rest. Christiane and Heinz sit down at a table in the corner.

Christiane
It was a seminar on Evolutionary Methods of Software Development. But
we wanted to go beyond the traditional approaches. Thus it came about
that one of the students was giving a paper on constructivist ideas. While
listening - not very attentively - we wrote little notes to each other exploring
the possibility of organizing a conference on the epistemological foundations
of software development.
To be precise, I wrote a note to Heinz asking if he and his colleague Reinhard
Budde would organize such a conference.

Heinz
I should never have ventured on a project of this sort without the support
of myoid friend Reinhard. Luckily, he agreed to join in.

Christiane
As for me, it was clear from the start that I would ask my close colleague
Reinhard Keil-Slawik to join us, too.

Heinz
And he also agreed. So we were now a nucleus of four people who wanted
to organize this conference. As later became apparent, this configuration
was not without its problems. We worked at geographically different loca
tions and our respective degrees of acquaintance varied. This caused tensions
which we had to learn to cope with.

They both get up and walk to the edge of the stage. The curtain falls.

Reinhard B. (enters from the wing.)
This is a book about the computer. The computer is the main object of
our work. But what are we actually doing when we work with a computer?
What does it mean to develop programs for other people and use them on
a computer? What sort of interplay is there between human existence and
computers? These are the questions we wished to raise at the conference and
in this book. We realized that here computer science as a discipline was being
asked about the way it sees itself. But a project of this sort was not feasible,
we felt, without help from representatives of the humanities, who are much
more experienced in such questions. After all, had any computer scientist
made a coherent attempt to tackle these issues? Who would be prepared to
do so in the context of such a conference?

Reinhard K.-S. (enters from the wing.)
This is a book about people. Formalisms and programs are meaningless with
out the people who develop and use them. But how can we arrive at a notion
of quality for computer programs that is geared to human values? And to the

Prologue 5

meaningful embedding of artifacts in human activity? Are humans merely
the unreliable component in the overall system - a component that needs
to be eliminated? Are not error and repeated attempts to succeed rather an
inexhaustible source of learning and inspiration? It was these learning pro
cesses and their relation to human values that we wished to develop at the
conference and in this book. But, in our attempt to do so, we became aware
of a field of tension opening up before us: To what extent should the com
puter claim our attention here? Or should we confine ourselves to looking at
the people working with it?

Christiane
We each had our own particular background to contribute to the project. I
had always been keenly interested in philosophy and was looking for ways
of integrating my work in computer science with deeper personal concerns
of mine. My attempt to understand software development as a process gave
rise to epistemological questions I felt the need to pursue.

Heinz
Having been a student of the humanities, it was quite natural for me to draw
on these disciplines in my endeavour to establish adequate foundations for
computer science. I had become aware of the importance of experiment and
communication in software development while engaged in work on prototyp
ing with Reinhard.

Reinhard B.
While studying physics, I had learned to be on my guard against a na·ive
notion of experiment in which - irrespective of the measuring process - ob
jective data are collected from an objective reality. I now wished to tackle
the questionable view of software design in which - irrespective of the de
sign process - objective data are transformed without this affecting their
meaning.

Reinhard K.-S.
An important aspect of my work has always been the endeavour to establish
foundations for a human-oriented design of information technology. I see this
as both a scientific problem and as the goal of my political work and practical
projects I am engaged in outside the university.

Christiane
To begin with, the only way of circumscribing the theme of the conference
was to draw up a catalogue of questions with which to approach potential
participants.

Heinz
We were faced with the problem of establishing contact with people likely to
be sensitive to these questions of ours. The best way to do this, it seemed,
was through personal connections. First of all, we had to win the support
of other committed participants so as to form an extended nucleus around
which a yet larger group might crystallize.

Christiane
This extended nucleus comprised the coordinators, many of whom also be
came authors of this book. They helped to illuminate the theme of the con-

6 Prologue

ference from different perspectives in computer science and to find other
prospective participants in their own professional environments.

Heinz
It was mainly our friends in Europe whom we approached. They were, after
all, within easy reach, and that meant less organizational problems.

Reinhard K.-S.
Our aim, however, was to organize a truly international conference. It was
to be small, but at the same time to offer a considerable degree of variety.

Reinhard B.
It was important to us to address the questions we had raised by reflecting
on our everyday work.

Christiane
And it was our explicit aim to take account of different schools of thought
and philosophical traditions.

Heinz
A particular problem was finding responsive participants in the United States.
So Christiane's sabbatical, which she was planning to spend over there, came
at a very opportune time.

Christiane
A research scholarship on the "Epistemological Foundations of Software De
velopment" enabled me to go to California and delve once again into a re
search environment I was already acquainted with.

Heinz
The rest of us agreed to press ahead with the organizational preparations
for the conference.

California Dreaming and German Chaos

The curtain rises. February 1988. A comfortable room in Palo Alto. In front of the
window a gigantic Californian oak. Christiane lounging on a sofa. Next to her a
telephone. On each side of the stage a telephone booth; one is labelled Berlin, the
other Bonn. In the Berlin booth stands Reinhard K.-S.; in the Bonn booth, Heinz

and Reinhard B.

Christiane
I had the rare opportunity to shape these six months of basic research in ac
cordance with my evolving needs and interests. While getting re-accustomed
to the golden light of California and the gentle slope of the coastal hills, I
became a visiting scholar at Stanford and Berkeley. I was thus able to take
part in the academic life of both universities.
In the course of discussions with specialists from diverse fields - whose reac
tion to the conference was very positive - I saw individual topics of interest
gradually fitting together to form a whole, like p~eces in a mosaic. I began
to perceive what the topics of the conference would be.
Even more important, though, was how the conference was to be conducted.
This became clear to me in my encounter with the cyberneticist Heinz von

Prologue 7

Foerster, who helped me understand the dialogical, self-organizing nature of
the processes involved and encouraged me to find novel ways of facilitating
them.

Reinhard K.-S.
Meanwhile, the organization in Germany was making only sluggish progress.
From her lofty station of euphoric serenity, Christiane was forever mentioning
new names in our weekly telephone calls. And each name brought with it
more ideas and suggestions for shaping the conference. But with each new
addition, other names disappeared from the list.

Reinhard B.
As this wave of constantly changing names washed over us, we found our
selves beset with difficulties on every side. There was no indication that the
conference was settling down on a stable course. The question of its financ
ing was still open. The coordinators were growing uneasy because there was
scarcely a single concrete idea in sight about the form the conference was to
take.

Reinhard K.-S.
So I tried to mediate between Bonn and Palo Alto without ever really un
derstanding what the problems were all about.

Heinz
We began to seriously question the feasibility of the whole project. Finally,
I talked at length to Christiane on the phone. I told her that Reinhard and
I were contemplating opting out of the whole thing.

Christiane
This conversation had a shock-effect on me. I realized that the idea I could
withdraw from the organizational preparation of the conference for six months
just like that had been quite illusory. As if self-organization meant that a
project like ours would organize itself! No, what we needed was to organize
ourselves! And each of us was indispensable for establishing and upholding
this joint venture of ours.

Heinz
It cost Christiane a great deal of effort to persuade Reinhard and me to hold
on until she returned from California.

All walk to the edge of the stage. The curtain falls.

Reinhard K.-S.
Then there began for all of us a period of very intensive work during which
we managed to re-establish ourselves as a group and consolidate the confer
ence in terms of its scientific programme, its participants, its financing and
organization.

Christiane
We had long since realized that this was to be no ordinary conference. We
now began to focus more and more consciously on the concordance between
form and content. The key to the whole thing was to see the conference as a
network of potential dialogues growing out of the preparatory process, borne
by all the participants, and enriching one another on a mutual basis.

8 Prologue

Heinz
We wanted to stage a conference at which people with differing interests,
views and professional specialties could meet, talk and spend time together.
Conversations rather than speakers monologizing up front; changing roles
rather than rigid rituals.

Reinhard B.
But how could we encourage scientists to take up issues evidently impinging
on their work, yet not belonging to their professional specialties? How were
we to promote conversations between such diverse participants?

Heinz
Then it dawned on us that, to communicate, we have more than one means
of expression at our disposal.

Once upon a time in Cafe Einstein

The curtain rises. Summer 1988. Cate Einstein - a restaurant with a garden shaded
by apple trees. The four protagonists sit down at a table with the members of the

organizing committee.

Heinz
To begin with, we talked about music and dance. Art and culture as living
forms of expression and as a potential means of communication among the
participants.

Christiane
We wanted the participants to feel at ease. The first meal we had together
was particularly important for me. I spent hours over the seating order,
working out how best to help the participants get to know one another.

Reinhard K.-S.
And then there was the play. To be truthful, I was in doubt about whether
this sort of thing would work. To open the conference, we staged a play,
together with the coordinators and some of the participants, on the themes
of the conference - and that without a fixed script, without much experi
ence, and without the whole troupe having had the opportunity to rehearse
together!

Christiane
Right up to the last moment, I was terrified of the risks involved. But I
wanted to do away with the traditional conference opening.

Heinz
There we were then, sitting in this cafe with its curious mixture of Vienna
charm and Berlin gruffness - just the right atmosphere for concocting this
play of ours. And so we sketched out a sequence of scenes in episodic form,
based on a fictitious case study of software development, casting conference
participants in the various roles. The different threads of the action were
drawn together in a series of intermezzi featuring a narrator Alice who grad
ually emancipates herself in the course of the play.

Prologue 9

Reinhard B.
Sketches, pantomime, speaking choirs and puppet plays were to help make
up for the actors' lack of professionality. Furry mice and icons had to be
provided for a graphic user interface; props and scenery had to be organized.

Reinhard K.-S.
Once the basic idea of the play was born, other ideas and suggestions kept
on rolling in. A conference as a fair of ideas for all those participating.

Heinz
The conference itself as a carefully staged event.

The four protagonists walk to the edge of the stage.

Christiane
And that's how the play, and the play within the play, was organized. The
stage was erected, the foundation of what was plannable laid, and now ev
erything was set for variety and creativity to unfold.

Reinhard B.
The framework was built ready for the self-organizing stability to materialize.
It provided the form for insights to emerge.

Reinhard K.-S.
We rehearsed the brief episodes that were designed to spin and keep alive
the communication web between the conference participants. We set out to
transform the ideas into a sequence of events that led from the conference
to this book.

Christiane
And these events cannot be separated from the people who initiated and
sustained them. These were, first of all, the coordinators who prepared the
conference in terms of its scientific programme.

Exeunt. Enter, crossing the stage in single file: Thomas Christaller, Wolfgang
Dzida, Heinz K. Klein, Werner Langenheder, Klaus-Peter Lohr, Kalle Lyytinen,
Susanne Maap, Bernd Mahr, Lars Mathiassen, Horst Oberquelle, Arne Raeithel,

Dirk Siefkes.

Reinhard B. (walks downstage.)
And then there were our friends who helped us in organizing the conference.

Exit. Enter, crossing the stage in single file: Michael Castner, Guido Gryczan,
Christine Harms, Karlheinz Kautz, Karin Kuhlenkamp, Rainer Mantz, Karl-Heinz

Sylla.

Heinz (walks downstage.)
We have already pointed out that art, culture and sport were not merely part
of a peripheral programme at the conference. But words can scarcely do jus
tice to the variety and impressiveness of the cultural offerings by professional
artistes and conference participants.

10 Prologue

Exit. Enter, crossing the stage in single file: the Australian didjeridoo-player M at
thew McGrath, the dancer Bob Rease €§ Company, Thomas Christaller and his

Aikido Partner J. Exeler, Dieter Hermes and his bands Blo' Job and Fair Share,

the magician Brunetti, the pantomime artist Geza Melczer-Lukacs €§ Company,
the pianist Norbert Finke, Don Knuth with his pile of organ music and Markku
Nurminen with his flute, Jan Witt with his Homunculus slides, and Heinz-Otto

Peitgen with a case full of beautiful fractals

Reinhard K.-S. (walks downstage.)
And, finally, it was the participants as a whole who made the conference
such a unique event.

Walks to the centre of the stage where the following persons congregate:
Klaus Amann, Brigitte Bartsch-Sporl, Gro Bjerknes, Reinhard Budde, Rodney M.
Burstall, Rafael Capurro, John M. Carroll, Michael Castner, Thomas Christaller,
Wolfgang Coy, Klaus Dassler, Bo Dahlbom, Wolfgang Dzida, Christiane Floyd,
Heinz von Foerster, Klaus Fuchs-Kittowski, Dafydd Gibbon, Joseph A. Goguen,

Thomas F. Gordon, Guido Gryczan, Volker Hammer, Christine Harms, Bernd
Hellingrath, Wolfgang Hesse, Johannes Joemann, Karl Kautz, Pentti Kerola, Heinz
K. J{lein, Donald E. Knuth, Wolfgang Kupper, Karin Kuhlenkamp, Kari Kuutti,
Gernot B. Langle, Werner Langenheder, Klaus-Peter Lohr, Alfred Lothar Luft,
Kalle Lyytinen, Susanne Maafl, Bernd Mahr, Rainer Mantz, Lars Mathiassen,
Bengt Nordstrom, Markku I. Nurminen, Kristen Nygaard, Horst Oberquelle, Er
hard Oeser, Peter Padawitz, Jurgen Pasch, Gordon Pask, Carl Adam Petri, Arne
Raeithel, Anton J. van Reeken, Fanny-Michaela Reisin, Douglas T. Ross, Dirk
Siefkes, Jan Stage, Risto Suitiala, Edda Sveinsdottir, Karl-Heinz Sylla, Walter
Volpert, Jan Witt, Gerhard Wohland, Heinz Zullighoven.

They wave to the audience. The curtain falls.

Christiane (enters from the wing.)
The book cannot be a substitute for the experience of the conference. But it
allows the variety of themes addressed there to be treated in a more mature
form. And the book is intended to carry further the spirit of the conference.

Heinz (enters from the wing.)
The management, the people behind the scenes and the actors have now
been introduced and are ready to go. The book can begin.

Exeunt. The curtain rises.

Part 1

Thinking About Computer
Science

1 Thinking About Computer Science 13

Christiane
We think about computer science against the background of our scientific
tradition. This can be traced back to the Greek philosophers whose ideas
have shaped Western thought.

Heinz
Right up to the development of the computer - which is why we have sent
it to "The School of Athens". Our illustration is based on the Renaissance
painting of the same name by Raphael.

Reinhard B.
During the Renaissance, there was a turning back to Antiquity for inspira
tion, and of this modern scientific thinking was born. Not long afterwards
rationalism and empiricism emerged as schools of thought.

Reinhard K.-S.
The painting is magnificent. But it depicts an idealized world. A world of
the elite. Without contradictions. Without needs. Without any relation to
life.

Reinhard B.
The Ancient Greeks' view of the world was contemplative. It was not until
modern times that technology acquired its fundamental importance. The
natural sciences were geared to mastery and control.

Heinz
Science felt that its only commitment was to a dispassionate truth, and tech
nology was associated with the supposedly objective progress of humanity.

Reinhard K.-S.
Dispassionateness, objectivity, belief in progress - these claims still exist to
day, though only as ideals. They do, admittedly, help us to shake off existing
constraints, but science and technology are invariably tied to the prevailing
interests.

Christiane
In the illustration, the computer has taken the place of a thinker. Just as
computer science takes its place in the rationalist tradition, which originated
in the School of Athens with Socrates, Plato and Aristotle.

Heinz '
It was there that rules for thinking were first sought and the separation
of mind and body postulated. In computer science, the attempt to view
thinking as rule-governed and to automate it is evident at every turn.

Reinhard B.
And with it the illusion that human thought can be divorced from bodily
experience and social relatedness.

Reinhard K.-S.
But also rooted in Greek philosophy is dialogical thinking. This was charac
terized by discourse - something which has been widely lost at our univer
sities.

14 1 Thinking About Computer Science

Heinz
These dialogues, though, were little more than monologues held by the
teacher, the student being confined to the rather minor role of giving cues.

Christiane
With this book of ours, we wish to promote a different sort of dialogue. And
this part with its two widely differing chapters is meant to help to initiate
this dialogue.

Heinz
In the first of these chapters, Christiane gives a thematic introduction, which
we as co-editors all largely endorse. She raises fundamental questions that
are taken up and developed in different ways in subsequent chapters.

Reinhard B.
These questions concern the relationship between humans and computers,
the understanding of software development as a human activitiy and the
integration of computers in human action. They point to the necessity of
questioning the traditional view computer science takes of itself.

Reinhard K.-S.
And Christiane relates basic assumptions, concepts and open questions in
computer science to ongoing discussions in the philosophy of science.

Christiane
The second chapter is Don Knuth's account of the errors he made while de
signing 'lEX. We have placed it in the introductory part because we consider
the willingness to reflect on our own practice to be a magic key to a deeper
understanding of the issues underlying our work.

Heinz
Acknowledging our errors means rejecting the myth of rule-governed thought
postulated by the rationalist school.

Reinhard K.-S.
The rationalists see errors as deviations from the rule which must be avoided.

Reinhard B.
But what do we mean here by errors? Is it possible to make errors with
respect to a system that is still under development? Who decides what is
to be considered a correct system, and what an error? Is it an error to
have made a non-optimal design decision? Is the traditional category "error"
appropriate when considering construction processes?

Reinhard K.-S.
For us, error situations are events we learn from. They help us to identify
our limits and deepen our insights. In this sense, errors do not relate to a
predefined rule; rather, it is the "error" itself that helps us to realize what
we are actually seeking to achieve.

Christiane
The idea, then, that concepts have a fixed meaning proves illusory. We ob
viously have to reconstruct traditional concepts so as to make them fit our
concerns.

1.1 Human Questions in Computer Science
Christiane Floyd

In this introduction to our book, my aim is to provide a common platform for
the chapters that follow. I will outline the main issues at stake, as I see them, in
order to motivate the variety of themes taken up later on, and to show how they
are connected. In contrast to subsequent chapters, I will not give comprehensive
references to background literature here, but confine myself to bringing out a
few seminal publications, which were inspirational to many authors of this book.
I will start by commenting on the motto "Software Development and Reality
Construction" which was coined as a suggestive phrase to indicate the range of
questions relevant to us.

1.1.1 Software development and reality construction

We focus on software, since we consider it to be pivotal in the intertwining of
computer technology and the human world. Through software we tailor comput
ers to meet specific purposes, through software we model mental processes to
be simulated on the computer, through software we establish the conditions and
constraints for people working with computer based systems. Software is a prod
uct with unique attributes, and its development calls for new ways of working
together that we do not yet fully understand.

Software is tied up with our thinking in a particularly intimate way. We meet
fascinating challenges in building formal models and setting up artificial worlds.
We struggle to find sophisticated ways for delegating some of our mental faculties
to the computer. We come up against our limits in dealing with complexity. We
are faced with our own proneness to errors. We see our assumptions, values, and
relations to others mirrored in our technical work. We model and make rules for
ourselves and for others to follow. Through software we control the computer
and, indirectly, strive to control the human context where the computer is used.

Software development is meant here in a very general sense, with no restric
tion to any particular class of programs or development setting. Some contribu
tions are based on the experiences of researchers working as individuals, others
refer to routine production in industry. Most contributions in this book deal with
software used by people as part of their work. Such software embodies knowledge
from an area of human expertise, and serves to enact information processes on
the computer, thereby replacing traditional ways of handling information, and
allowing more elaborate processes to be carried out by people with the help of
the software.

Thus, even though our focus is on software development, we are also con
cerned with software use, where the computer appears as an artifact in vari
ous human contexts. In fact, we consider software development and use to be

16 Christiane Floyd

inherently related, so that one domain cannot be adequately considered with
out taking the other into account. The term software development suggests the
evolutionary nature of this process, which typically involves cycles of design,
implementation, evaluation and revision.

The phrase reality construction has been chosen so as to evoke the spirit of
recent discussions in the humanities, where it has become a vehicle for focussing
attention on our active role in constituting what we hold for real. Thus, in applied
epistemology, reality construction refers to cognitive processes, in which we bring
forth what we perceive and know. In developmental psychology, it relates to the
gradual formation of conceptual schemata shaping the cognitive faculties of the
growing child. In sociology, this phrase refers to social processes instrumental
in establishing and transforming social reality. In the philosophy of science, it
concerns processes of intellectual inquiry leading to scientific insight.

The phrase seems provocative to many, as it takes issue with the notion of
reality dominant in European thinking. The latin root for this term, "res", means
"things" or "affairs". It suggests that what is "real" is given in terms of things or
affairs, which exist "out there" independently from us. This is compatible with
the rationalistic tradition in epistemology, which views cognition as matching
the things or affairs constituting reality as faithfully as possible in the mind.
It is also connected to the basic postulate of modern science stating that the
properties of the observer should not enter into what is observed.

For example, a software developer analyzing an organization with a view
to proposing a software system to support its information processes, is often
encouraged to start from the "real world" , conceived in terms of the entities and
actions constitutive of the information flow in the existing organization. These
are supposed to be "given", while the software developer's task is to analyze,
to abstract and to elaborate a correct model that can be manipulated by the
computer. While this may be difficult to do, the task itself - discovering the
correct description - is supposed to be clearly defined and independent of the
software developer as an individual. Also, his or her responsibility in carrying out
this task is restricted to matching the real world in the model with the greatest
possible care.

This picture changes drastically, when we acknowledge our active role in
bringing about what we hold for real, which is the key to constructivist thinking.
The emphasis now is on the observer constituting the way he or she sees reality
and inventing a suitable description. Thus, the software developer is portrayed
as making choices in an open situation, where there is more than one possibility.
When developing the product software, we make choices in selecting the aspects
we consider relevant for modelling, in making available modes of interaction with
the computer, in determining the software system's architecture, in the way we
use the technical resources for implementing the system. Moreover, we make
choices in anticipating how the computer will be embedded in its use context
and in creating facilities and constraints for users and other concerned parties.
And lastly, we make choices in how we conduct the development process itself.

Only a small part of these choices do we make explicitly, more often they are
implied by the course of actions we take and, perhaps, even come about by our

1.1 Human Questions in Computer Science 17

lack of awareness for potential alternatives or our unwillingness for coping with
them and making conscious choices. Also, our choices are constrained by our
interaction with others. When seen in these terms, the task of the software de
veloper clearly involves reference to the individual software developer. Through
our choices, we constitute the process of development, the product, and the pos
sibilities for its use. In paying attention to our making choices, there is, at the
same time, also an emphasis on our responsibility for seeing possibilities and
making choices. Thus, the ethical dimension of our activities is always present
and included in the discussion.

In constructivist thinking, the ontological question of what is is placed in
relation to the epistemological question of what we can know in a poignant way.
Only what we can know is accessible to us, and it is accessible in those terms in
which we know it. The seemingly safe ground of the given reality reveals itself
as built up in processes of our own making.

Constructivist authors vary in what concretely they mean by reality construc
tion and in the degree to which they regard reality construction as primordial.
The use of the term construction, though established, is also misleading. It seems
to suggest an unwanted arbitrariness for individual experience and action, and
to deny our embedding in the world around us. However, our individual reality
construction is interacting with that of others, building up on those before us
and grounded in the endless recursion of human (co-)evolution.

Cognition, then, may be viewed as bringing forth concepts and insights jit
ting our experience and viable for obtaining our aims in open situations where
we interpret our needs. It is shaped by our perspective and unfolds against a
background or meaning horizon coloured by our tradition, our interests and our
life experience. The main points of current controversial discussion concern the
relation of my own reality construction to yours and that of others, and the inter
leavement between our scope for reality construction and the so-called objective
world of nature shaped by socio-cultural evolution.

In this book, we do not aim to contribute to the ongoing discussion of con
structivist thinking. Neither do we wish to single out a particular constructivist
position as the proper one. Individual authors clarify how they relate to construc
tivist thinking, and which shades of meaning associated with this term they value
or reject. In fact, several of them are explicitly rooted in other schools ofthought
ranging from Hermeneutics to Marxism, and accept constructivist thinking only
to the extent that it corroborates or enriches their own world-view.

However, constructivist thinking is applied here in one way or another to
several interleaved domains of interest:

• to the process of software development which lends itself to being understood
as design in constructivist terms,

• to the technical result of software development, the execution of programs
which may be characterized as constructed reality,

• to the social outcome of software development, the human reality of the use
situation resulting from the application of computer programs in a given
context,

18 Christiane Floyd

• to the emergence of scientific insight in computer science and other disci
plines dealing with questions of design,

• to various epistemological approaches providing insights for understanding
software development and use,

• to social reality in general, shaped and transformed increasingly by the de
velopment and use of computer based systems.

Moreover, the way the whole book is made reflects important elements of con
structivist thinking, exemplifying, as it does, the use of key notions such as
perspectivity, process-/product-complementarity and self-organization.

The remaining sections of this introduction serve to elaborate the set of
questions concerning software development and computer science that provided
the motivation for working on this book.

1.1.2 Reality and human cognition

Whether or not an "objective reality" exists is unanswerable and, according to
some, uninteresting. There is, however, increasing evidence that "objective cog
nition" of the world is impossible, since human cognition is inherently selective
and embedded in the processes of biological and social evolution.

Current arguments in biology, neurophysiology, epistemology and the social
sciences suggest a view of human cognition, according to which some of its most
important facets are:

• It is profoundly affected by human perception as developed in biological
evolution.

• It is geared to human needs arising in situations, and therefore action
oriented and interest-governed.

• It is shaped by the history and experience of the individual, the community
and the species.

• It is mediated by the language, methods, procedures and tools we use.
• It leads to deeper insights by merging different perspectives.

Understanding human cognition affects computer science in various ways: it helps
us draw the line between aspects of intelligent behaviour that can be modelled
in the form of computer programs and the full human cognitive experience; it
provides a basis for understanding the cognitive processes arising both in the
development and in the use of computer programs; it urges us to think about
the potential impact of the computer as a thinking tool in human cognition;
and lastly, it leads us to an increasing awareness of what it means to pursue
computer science as a scientific endeavour.

1.1.3 Cognitive interest underlying scientific endeavour

In recent years, there has been a growing concern about the assumptions and
the world-view underlying, in particular, the natural sciences as we know them,

1.1 Human Questions in Computer Science 19

and extending from there to a considerable extent into the humanities, the social
sciences and into everyday thinking.

The traditional way of thinking in science rests on dichotomies contrasting,
for example, man and nature, mind and matter, facts and values. It assumes the
existence of an objective reality, which can be studied by an observer without the
observer affecting the result of the observation. Its primary concern is to discover
truth, all questions related to values and human needs being regarded as outside
the realm of scientific inquiry. It emphasizes analytical thinking, experiments
and proofs as basic elements of scientific methodology. Scientific interest serves
to further the domination of man over nature and over fellow human beings.

In contrast, a new understanding of science is currently gaining ground, which
is sometimes characterized as a new paradigm. Motivated by recent developments
both in the physical and biological sciences, it suggests new ways of overcom
ing the traditional dichotomies, and emphasizes the unity of human beings and
nature. It embodies an awareness of how the observer constructs reality by the
act of observation, how the questions we ask influence the answers we get and
how we interpret them. It transcends the reductionistic view of the established
paradigm by offering systemic ways of practice and extends the ethos of estab
lishing truth by that of promoting life. And it replaces the quest for domination
and control by that for preservation and nurture.

If this new understanding of science becomes accepted as a basis for tech
nological development in our society, it may contribute bringing about changes
which seem urgently needed.

Computer science is firmly rooted in the established scientific paradigm, as
is evidenced by its theoretical teachings as well as its professional practice. In
view of the shortcomings of this approach, it is faced, like many other sciences,
with the demand for richer ways of thinking.

1.1.4 Computer science as a scientific discipline

To date, computer science has failed to make explicit its underlying assumptions.
They can, however, to some extent be inferred from the emergence of computer
science in its historical context and from the way in which theory formation is
interleaved with practical experience in technological development.

Computer science originated, on the one hand, from the need to carry out
complex computations during the Second World War; and, on the other hand,
from the invention of a machine, the digital computer, capable of carrying out
such computations. As a consequence, it has emerged from the beginning as both
"computing" science and "computer" science. That means, it views itself as a
formal and an engineering science, relying strongly on the traditional scientific
paradigm as outlined above.

Moreover, the computer has quickly become a widely used metaphor for
understanding human cognition both within and outside of computer science.
Equating human beings with computers in important ways is explicit in the
claims raised to date by researchers in artificial intelligence. It is also implied by

20 Christiane Floyd

traditional approaches in fields like software engineering, requirements engineer
ing or human-computer interaction, where methods tend to assume a machine
like behaviour on the part of both software developers and users. In view of the
increasingly subtle interrelation between people and computer programs, these
assumptions need to be re-examined.

An important aspect of computer science is that it deals with creating reality:
the technical reality of the programs executed on the computer, and the condi
tions for the human reality which unfolds around the computer in use. There
fore, the conceptual categories "true" and "false" it relies on are not sufficient
in themselves. We have to go beyond them by finding categories for expressing
the felicity of our choices, for distinguishing "more or less desirable" as we pro
ceed in making distinctions and decisions in communal design processes. This is
essential for dealing with quality in software development and use.

The need to relate the technical reality of computing to the human reality of
our own thinking and interacting is also reflected in the basic concepts used in
computer science. We find specific patterns of conceptual confusion here, which
can be traced to pervasive problems:

• The need to clarify both similarities and differences in phenomena pertaining
to human beings and computers, as in "intelligence", "information", "com
munication" , or "dialogue";

• the need to reflect the complementarity of ongoing processes and their out
come or products as in "design", "error" or "quality";

• the need to differentiate between entities emerging in evolutionary processes
and formal artifacts created to meet specific purposes as in "language" or
"system" .

Common usage, however, tends to equate the different shades of meaning con
trasted here. Since our choice of basic concepts strongly affects the claims we
make about computer science and its possible achievements, our conceptual con
fusion has already spread far beyond computer science into everyday thinking
with unpredictable effects.

Lastly, it must be noted that, to a considerable extent, computer science
creates and modifies its own object of investigation. Computer scientists them
selves develop formal models and description techniques for technical systems
developed by computer scientists; they also develop ways of thinking about and
evaluating the systems thus derived, which in turn lead to new developments.

Thus, while the fundamental assumptions underlying scientific work are ques
tioned only to a limited extent by computer scientists, it may be argued that
computer science motivates such questions in a particularly challenging manner.

1.1.5 Human beings versus computers

The driving force behind computer science was the rapid advance of information
technology, accompanied by a public willingness to attribute far-reaching powers
to the computer. From the beginning, this development has given rise to ques
tions about the relationship between human beings and computers in terms of

1.1 Human Questions in Computer Science 21

their capabilities and their desirable interaction. These questions remain unset
tled to this day and have a strong bearing on our thinking and public decision
making. They come up in different ways:

• Intellectually: Are human beings in their cognitive faculties similar to com
puters?

• Technologically: Can computers, in principle, be likened to human beings?
• Morally: How should computers be allowed to interfere with human affairs?

There is no scope here for treating these questions in depth. Yet, I find it indis
pensable to bring them in the open, since the stand we take on them profoundly
affects the issues raised in this book. Also, we need to see them as intertwined,
wherever decisions concerning the development and introduction of information
technology are made. Our understanding of the relationship between human be
ings and computers necessarily influences what we think of as desirable ways
for the use of computers. Thus, while these questions may remain the topic of
interesting academic speculations for some time to come, they are of basic impor
tance in social reality construction here and now, and have a decisive influence
in shaping tomorrow's computerized world.

Equating human beings and computers is in line with recurrent attempts
in the history of European thinking to use machine models for understanding
human beings, and is reflected even in the colloquial use of language today.
At the same time, it has emerged in a cultural background, where machine
metaphors are applied at different levels to prescribe the desired behaviour for
individuals, groups, or social bodies such as large organizations, and portray
predictable routine performance as a mould for individuals to cast themselves
onto. Computability has almost become a modern moral category, a vehicle for
discussing the validity of decisions for action in human terms.

Equating human beings and computers rests on singling out the human fac
ulties for rational thinking and functional behaviour, considering them on their
own, and abstracting from their connection with other modes of experience. The
fundamental assumption here is that human cognitive faculties can be meaning
fully discussed without taking account of our embodied and social nature con
stituted in the process of co-evolution of all living beings. There are important
socio-cultural roots for this idea in the whole of Western civilization, leading up
to a historical situation in the past decades, which made the discussion about the
relationship between human beings and the newly invented computers, urgent
and significant.

The craving for rationality as a basis for conducting human affairs, inherited
from Greek philosophy, was formulated into a programme for human progress in
the Age of Reason. However, the hope for the fulfilment of this programme was
profoundly shaken in the twentieth century. On the personal level, the discoveries
of psychoanalysis have confronted us with disturbing limitations in controlling
our own rational behaviour. On the political level, the violent social upheavals
and the horrors of warfare and totalitarian regimes have infringed upon the lives
of vast numbers of people and shaped the thinking of a whole age. Thus, faith

22 Christiane Floyd

in human rationality has declined, and the computer appeared as a desperately
needed rational authority beyond human passion and error.

Moreover, in an age of fear and international confrontation, the computer
provided the basis for a key technology enabling the policy of deterrence. It
helped accomplish prestigious space missions and promised the illusion of global
protection. While the striving for control is intrinsic in modern science and tech
nology, the computer comes in as a quasi-intelligent and quasi-autonomous agent
allowing us to exercise control on an unprecedented scale. It can be programmed
to handle formerly unimaginable complexity and to function in settings where
humans could not survive. Thus, in an age where the possibility for international
understanding seemed forever blocked, the computer was taken as a technological
guarantee for safety.

The computer has even acquired a mythical significance for many people lost
in a disenchanted world. Beliefs in a future governed by machine-implemented
rationality, in beings originally created by us but later developing on their own,
thrive on myths taken from antique sagas and the ancient religions. They are
reflected, in particular, in the roles cast out for mankind in connection with
computers. Here, Man no longer sees himself in the image of God, but, on one
hand substitutes for God as the creator of intelligent living machines, on the
other hand likens himself to Machines taken as models for desirable behaviour.
According to some, intelligent machines would even eventually take over, set up
constraints for humans and treat them as the inferior beings they supposedly
are, forever unable to attain their own perfection.

We might be tempted to relegate such ideas to the realm of science fiction.
But we find their trace in scientific papers and official research programmes dis
cussing progress in information technology as desirable in its own right with no
reference to human concerns. Thus, while upholding the unshaken belief in sci
entific and technological progress, the established stand on the relation between
people and computers tends to be coloured by a pessimistic view of human af
fairs, and lends itself to the development of technology in a direction that is
potentially destructive to the future of human life on earth.

Unlimited beliefs in the computer have found their critics early on, but it
takes time for their voice to gain ground in scientific discussion and in public
decision making. Their seminal work has helped many of us shape our think
ing and formulate our own positions. The most articulate critics were Hubert
Dreyfus who, in his book "What Computers Can't Do"!, furnished a profound
philosophical critique of the claims raised by Artificial Intelligence, and Joseph
Weizenbaum who, in "Computer Power and Human Reason,,2, voiced an urgent
moral appeal to the scientific community to examine its role in developing a
potentially destructive technology.

Dreyfus drew on the whole history of philosophy and on arguments taken
from biology, psychology and linguistics for pointing out what he saw as unal
terable differences between human thinking and the rule-governed symbol ma-

1 [Dreyfus, 1979]
2 [Weizenbaum, 1977]

1.1 Human Questions in Computer Science 23

nipulation carried out by computer programs. As a result of his detailed analysis
he outlined the limits for the potential capabilities of computer programs based
on the symbol-manipulation paradigm of traditional Artificial Intelligence. While
his argumentation was extremely rich and subtle, his conclusions were met with
a mixture of applause and skepticism. In particular, his statement that fund a
mental limitations of computer-implemented intelligence could, in principle, not
be overcome, was rejected by some as pertaining only to the technology we know
at present, and being speculative with respect to future developments. Later on,
Dreyfus, in collaboration with his brother elaborated a practice-oriented account
of his view of human expertise geared towards supporting public decision-making
about the application of current computers in support of human skills in our
society3.

In contrast, Weizenbaum took no issue with the claims purported by leading
researchers about what computers could do, but addressed the moral issues
inherent in an unlimited development and use of computing technology. Speaking
like a prophet, he outlined in no uncertain terms the possibility of technology
induced doom and drew the attention of scientists and programmers to their
role in contributing to the dehumanization of our social lives brought about by
computer technology. Starting from his own experience with the program Eliza
he had developed, he showed how easy it was for claims equating human beings
and computers to gain social reality by people being willing to attribute human
like qualities to computers. On a large scale this would enable mechanisms of
surveillance and control to be computer-implemented and even induce us to
entrust vital decisions such as the use of weapon systems to computers with
unprecedented destructive potential for our whole civilization.

I see these two books as sharing a common perspective on the world of com
puting, focussing on advanced research in Artificial Intelligence, and expressing
messages complementary to one another. While they provide important inspira
tions for the issues at stake in the present book, their focus is far away from the
everyday world of developing and using computer programs in ordinary settings.

1.1.6 Programming as a human activity

Our understanding of the activity of programming influences the way in which
we carry it out, the priorities we set and the methodological support we seek.
Thus, it also shapes the results we obtain. In computer science, however, the
nature of programming as a human activity has so far received little attention.

In traditional programming methodology, the activity of programming is por
trayed as solving given problems. Programs are studied as mathematical objects
with intricate formal properties, divorced from the human context of their de
velopment and use. Methods are seen as rule systems for finding a solution,
starting from an abstract specification and matching it by a correct program
derived in steps of refinement and transformation. Large scale software develop-

3 [Dreyfus and Dreyfus, 1986]

24 Christiane Floyd

ment is treated as the production of a set of programs designed to meet fixed
requirements, proceeding in a sequence of separable stages.

Many software developers, educated in traditional programming methodol
ogy, experience a painful clash between trying to adhere to their teachings and
what actually seems sensible to do. Even less are they prepared for the social role
they find themselves in. Computer programs emerge as the outcome of complex
human processes of cognition, communication and negotiation, which serve to es
tablish the problem to be dealt with and to anticipate the meaningful embedding
of the computer system in its intended use context.

Programming as a human activity takes place in diverse settings. Distinct
professional traditions have evolved around problem classes typical for certain
application areas. Skill in programming is defined in terms of mastering specific
languages, methods and technical environments. Programming involves dealing
with people in a variety of roles giving information, making demands and setting
constraints. It rests on the software developers' ability to invent relevant ways of
using computer technology in the actual situation. It implies constructing formal
artifacts to be embedded in the unique application context at hand.

In discussing programming as a human activity, the starting point for sev
eral contributions in this book is Peter Naur's view of programming as theory
building4 • Theory building here refers to ongoing human processes of increasing
our understanding for an area of concern. Theory is what enables us to cope in
telligently with questions and problems as they arise. In software development,
theory building pertains to the global task of finding ways in which computer
technology can meaningfully be applied to meet the customer's demands. Theory
building, in this sense, happens as a continuous process. It is enfolded in the to
tality of activities involved in communicating with the customer, in establishing
the requirements, in selecting the technology to be used, and in designing, imple
menting, using and evaluating the software. Thus, theory building is inherently
tied up with the people carrying out software development, be they individuals
or teams. Naur draws some radical conclusions. There can be no right method for
theory building, as each process unfolds in a unique way. The "life" and "death"
of a program depends on the availability of its developers, who alone possess
the theory enabling them to make meaningful modifications and enhancements.
The role of a software developer is primarily that of a consultant advising the
customer.

While N aur provides a stimulating and provocative view of the conceptual
and technical aspects of our work as software developers, he says little about its
social quality. He leaves open, how we can build a theory shared by a community,
even less does he account for how we become instrumental in bringing about a
transformed social reality for all people affected by computer based systems.

Kristen Nygaard, by contrast, has studied programming as a social activity5.

He sees software development as a cognitive activity shaped by perspectives.
Perspectives provide view-points, from which we structure the cognitive pro-

4 [Naur, 1985b], see also [Naur, 1991].
5 [Nygaard, 1986]

1.1 Human Questions in Computer Science 25

cesses we are involved in. Perspectives, in Nygaard's sense, make us understand
the development situation in social terms (as harmony or conflict between the
participants); they stand for conceptual repertoires used as a basis for software
development (for example object-oriented programming); and for anticipating
the use situation (for example the "systems perspective" versus the "tool per
spective"). The concept of perspective, as elaborated concretely by Nygaard,
is not easy to work with. On one hand it subsumes many different phenomena
under the notion of perspectivity, on the other hand it takes no account of the
implicit perspectivity always present in subjective authenticity. However, the
idea of perspectivity, illustrated by him in its many forms, is undoubtedly basic
for illuminating design with others and for others.

The views of N aur and Nygaard are related to many efforts reported in
this book. They imply a shift of emphasis from regarding software development
as problem solving and production to viewing it as design. Design relates the
human reality where the computer is to be embedded to the technical reality
of the emerging computer program. It is a constructive process, carried out by
the people involved in a unique way. It is constituted by their perspectivity and
their interaction, by their understanding of the development situation and their
anticipation of the use reality. In design we make choices. We create worlds for
ourselves or for others to inhabit.

1.1. 7 Computer programs in the human world

Traditional computer science does not concern itself with the application of infor
mation technology in the human world. This is revealed both in how it views its
own scope, and in the approaches admitted into scientific discussion. In particu
lar, the treatment of software development concentrates on development divorced
from use. This provides no scientific platform for considering how programs as
artifacts can meaningfully be embedded in human activity - although practising
computer professionals act as designers for such artifacts.

Thus, the design of computer artifacts tends to be techno-centred: the com
puter as an artifact is perceived from the developer's perspective and the users
are controlled by computer-implemented rules set up by the developers. Human
competence on the part of the users is reduced to their ability for operating
programs correctly, everything else being an error, and outside the scope of con
sideration for designers.

Software developers get little guidance for understanding the use-situation,
where people are carrying out their work with the help of the computer. There
fore, they have no basis for evaluating whether the results of their design appear
felicitous there. An adequate consideration of the embedding of computer pro
grams in the human world does indeed require us to go scientifically beyond the
formal and mathematical methods provided for in traditional computer science,
and to open ourselves to approaches from the humanities.

The approaches developed there for understanding human learning and com
munication, individual and cooperative work, and the interrelation between tech
nology and organizations, provide a starting point for dealing with the problems

26 Christiane Floyd

at stake here. However, these approaches mostly have been developed with no
specific concern for computing. Therefore, we face the task of selecting suitable
approaches and tailoring them to the needs of our discipline. As the intertwine
ment between computer technology and the human world takes place in a variety
of contexts, elaborating an adequate understanding for it becomes an extremely
challenging task.

In studying the connection between the development and use of computer
artifacts, we need to take the following aspects into account:

• the social granularity, i.e., are we interested in individuals working with the
computer, in groups communicating or cooperating via the computer, in
organizations being transformed by the introduction of computer technoloy
or in its effect on even larger social agglomerates?

• the complementarity between theoretical understanding and methodical sup
port for practice, i.e., are we looking for descriptive or prescriptive ap
proaches, and how can these two be combined to infer a suitable orientation
for design from a deeper understanding of the use-situation?

• the type of human activity to be supported by computer technology, i.e., how
can we understand the interleavement of computerized and other work-steps,
what kind of pre-understanding is relevant, what metaphors for the computer
can best express human meaning for its use in the context at hand?

These problems can be understood and evaluated quite differently in terms of
various philosophical schools. For example, the widely discussed book "Under
standing Computers and Cognition" by Terry Winograd and Fernando Flores6

focusses on the embedding of computers in organizations which are viewed as
networks of conversations. Winograd and Flores analyze the assumptions un
derlying conventional computer science in terms of the rationalistic tradition in
philosophy, whose fundamental influence they demonstrate in how we think of
language, of decision making, of human learning and cognition. In order to tran
scend the limitations of the rational tradition, they incorporate elements from
three schools of thought:

• Hermeneutics, in a somewhat adapted version of Heidegger's philosophy,
• Constructivism, as expressed specifically in the new biology of Maturana,
• Language Philosophy, as found in the speech act theory of Austin and Searle.

By combining these and tailoring them to the problem of design, they elaborate a
platform for understanding conversational processes and the role of the computer
artifact in supporting them.

Many authors in the present book take off from Winograd and Flores in
one way or another. We share with them the concern for providing an adequate
foundation and orientation for design. However, our scope and approach differ
from theirs in many ways. The most important difference, in my opinion, is that
we do not aim at building up one coherent platform for treating all questions
relating to design. Instead, individual contributions deal with different levels of

6 [Winograd and Flores, 1986]

1.1 Human Questions in Computer Science 27

social granularity, focus on certain types of human activity to be supported and
bring out the relevance of distinct philosophical schools for illuminating specific
aspects. This is a conscious choice on our part, as it serves to show the variety
of relevant perspectives, whose elements can be combined in manifold ways for
coordinating our understanding of design as needed in different contexts.

1.1.8 Towards a foundation for practice

In closing this introduction, I would like to point out that there is no com
puter science independent from us. Computer science is what we make it. Every
professional is instrumental in bringing forth computer science. While we are
constrained in whatever situation we work, we also have the scope and the op
tion for making choices. Through our choices we shape our own understanding,
we set priorities in our scientific work, we produce the technology that reflects
our design, and we create conditions for ourselves and others who inhabit a
computerized world.

The computer science we know to a large extent still sees itself as a formal
and engineering science only, and disregards the fundamental human questions
raised here. Though the term "Informatics" is widely used in Europe, it does
not yet imply a conscious strive towards a more encompassing approach. While
the traditional self-understanding may have been appropriate at the time when
computer science originated, it does not provide a sufficient basis for viable
decisions on developing and using computer technology today. The authors of
this book would like to contribute to providing more adequate foundations for
practice in science and design.

One key to such deeper understanding is the willingness to reflect on our own
practice. Therefore, some of us open up and show how we see our own work, our
professional role and our personal motivation. We acknowledge the full human
reality of our lives as the basis for scientific work.

However, understanding does not take place in individuals alone. It is shaped
by our involvement with others, by the mutuality of complementary view-points
allowed into discussion and by reaching insights through dealing with differences
and conflicts. Also, we tailor our insights so as to meet our needs and express our
values. For this reason, this book offers a variety of view-points in contributions
by different authors, some of whom make their values explicit, and not all of
whom agree. Thus, the reader is invited to form his or her own opinion.

We should not expect definitive answers to our questions here, but learn to
raise them together in more relevant ways, as they apply to individual situations.
We need this conversational foundation for working together towards designing
computer technology with a view to promoting human development.

Acknowledgements

This chapter draws to some extent on an earlier version, used as a thematic introduction
for the conference at SchloB Eringedeld. I would like to thank my former co-authors
Werner Langenheder and Dirk Siefkes for their contribution and my co-editors Reinhard
Budde, Reinhard Keil-Slawik and Heinz Ziillighoven for helpful discussions.

1.2 Learning from our Errors
Donald E. Knuth

I've always believed that one of the best ways to learn is by a process of trial and
error. Indeed, one of my favorite poems is the following 'grook' by Piet Rein:

The road to wisdom?
Well, it's plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

Furthermore, I've often recommended 1 that people keep records of their mis
takes, so that such a learning process will be enhanced.

During the past 12 years I had a golden opportunity to practice what I
preached, as I was developing and maintaining the TEX- software system. I kept
track of all changes made to TEX-, including the corrections made when the
program was originally being debugged. Afterwards I decided that my error log
was so instructive, I should not keep it a secret - although it was, of course,
quite embarrassing. It seemed to me that the presentation of a true-to-life list
of errors might be the best way to help other people learn the lessons that my
experiences with TEX- have taught me. So I prepared a long paper2 containing a
complete listing of the errors I had noted down.

Of course no single project can be expected to illuminate all the aspects of
software development. But the error log of TEX- seems to provide useful data
for understanding the problems of crafting a medium-size piece of software. It's
hard to teach students the concept of "scale" - the enormous difference between
textbook examples and larger systems - but I think that a reasonable appreci
ation of the complexity of a medium-size project can be acquired by spending
about two hours reading through a complete log such as the one in my paper.

My error log begins with all the corrections I made while debugging the
first version of TEX-, which was a program consisting of approximately 4600
statements in an Algol-like language. The log ends with all the changes I made
as TEX- was becoming a stable system, as TEX- began to have more than a million
users on more than a hundred varieties of computers. By studying the log you can
see all the stages in the evolution of TEX- as new features replaced or extended

1 [Knuth, 1968, p. 189]
2 [Knuth, 1989]

1.2 Learning from our Errors 29

old ones - except that I did not record the changes I made when I rewrote the
original program ''fEX78' and prepared the final one, ''fEX82'.3

Altogether the error log contains 867 entries so far. I've tried to analyze this
data and to introduce some structure by assigning each of the errors to one of
15 categories:

Algorithmic Anomaly
Blunder, Botch
Cleanup for Consistency
Datastructure Debacle

A
B
C
D
E Efficiency Enhancement
F Forgotten Function
G Generalization, Growth
I Interactive Improvement
L Language Liability
M Mismatch between Modules
P
Q
R
S
T

Promotion of Portability
Quest for Quality
Reinforced Robustness
Surprising Scenario
Trivial Typo

Categories A, B, D, F, L, M, R, S, T are bugs, which definitely needed to be
removed from the code; categories C, E, G, I, P, Q are enhancements, which
improved 'fEX but were not obligatory. I consider both bugs and enhancements
to be errors, for if I had designed a perfect system in the beginning I would not
have made any of these changes and my error log would have been empty.

The most important lessons I learned can be summarized in the following
theses, which my paper defends and explains in detail:

(1) 'fEX would have been a complete failure if! had merely specified it and not
participated fully in its initial implementation. The process of implementation
constantly led me to unanticipated questions and to new insights about how the
original specifications could be improved.

(2) 'fEX would have been much less successful if! had not used it extensively
myself. In fact, when 'fEX was new I thought of 100 ways to improve it as I was
typesetting 700 pages over a period of several months, at a nearly constant rate
of one enhancement per 7 pages typed. (On the other hand, the new ideas ceased
when I went on to type hundreds of additional pages; 700 was enough! I got most
of the later suggestions from other people, and I was able to appreciate them
because of my own experiences.)

(3) 'fEX would have been much less successful if I had not put considerable
effort into writing a user manual for it myself. The process of explaining the
language gave me views of the system that I never would have perceived if I had
merely designed it, implemented it, and used it.

3 Those changes were summarized briefly in another publication for early users
[Beeton, 1983].

30 Donald E. Knuth

(4) 'lEX would have been much less successful ifI had not scrapped the first
system and written another system from scratch, after having the benefit of
several years' hindsight.

(5) 'lEX would have been much less successful if I had not had the voluntary
assistance of dozens of people who regularly gave me feedback on how to improve
everything. The network of volunteers eventually became worldwide, perhaps
because I decided that 'lEX should be in the public domain.

(6) I recommend that everybody keep an error log such as the one I kept for
'lEX. The amount of extra time required is negligible (less than 1%), and the
resulting records help us to understand ourselves and our fallible natures.

(7) The methodology of structured programming reduced my debugging time
to about 20% of what it was under my habits of the 60s. Furthermore, structured
programming gave me enough confidence in my code that I did not feel the need
to test anything for six months, until the entire system was in place and ready for
testing. Therefore I saved considerable time by not having to do any unnecessary
prototyping.

(8) Although certain features of programming languages can justly be consid
ered harmful, we should not expect that eliminating such features will eliminate
our tendency to err. For example, 12 of my errors can be ascribed to misuse of
goto statements4 ; but that accounts for only 1.4% of the total, and I also made
mistakes when using while, case, if-then-else, etc.

(9) 'lEX proved to be highly reliable and portable because it was subjected
to a "torture test," which is quite different from anything a sane user would
write but which really tries hard to make the system fail. We should strive en
ergetically to find faults in our own work, even though it is much easier to find
assurances that things are OK.

My experiences agree well with Peter N aur's hypothesis5 that programming is
"theory building," and they strongly support his conclusion that programmers
should be accorded high professional status. But I do not share Naur's unproved
assertion that "reestablishing the theory of a program merely from the documen
tation is strictly impossible." On the contrary, I believe that improved methods
of documentation6 are able to communicate everything necessary for the main
tenance and modification of programs. I think it's fair to claim that more than
100 people, perhaps more than 1000, now understand the "theory" of the 'lEX
program after merely reading its documentation 7. For I have seen numerous ex
amples of electronic communications in which many people have demonstrated
such knowledge by making excellent special-purpose extensions to the existing
code and by giving highly appropriate advice to users.

Therefore I now look forward to making further errors in my next project.
The preparation of this paper was supported in part by National Science Foundation
grant CCR-86-10181.

4 [Knuth, 1974]
[, [Naur, 1985b]
6 Which I have called "literate programming"[Knuth, 1984, Bentley, 1986].
7 [Knuth, 1986]

Part 2

Living Computer Science

2 Living Computer Science 33

Christiane
The traditional pursuit of science is such that the scientist, as a human being,
remains invisible. The observer stays in the background; the results of his
work are to the fore.

Reinhard K.-S.
The only thing that counts is the ostensibly objective result, which is meas
ured in terms of dispassionate truth. We have come to realize that science is
also a social process.

Reinhard B.
But the scientific establishment denies this and drives many scientists into
seclusion.

Christiane
And, for the computer scientist, this seclusion is frequently reinforced by
exclusive concentration on the computer when designing systems.

Heinz
This mastery of the computer is precisely what is marvelled at by the public.
A feeling of wonder in the face of technology is nothing new. The illustration
portrays a sage of the Athens School inside an ancient Chinese planetarium.
Even in Antiquity, astronomers and astrologers were marvelled at.

Christiane
But the very fact of their being marvelled at makes it difficult for scientists
to open themselves and point out their limitations and needs ...

Reinhard K.-S .
. . . and convey to us an idea of the personal strivings and motivations un
derlying their professional work.

Reinhard B.
We are aware of the gap between living reality and what we are doing in
computer science. We are building our own ivory tower, as it were - designed
to contain that which is controllable, formal and, at the same time, new and
fascinating.

Heinz
But, beyond this technical fascination, it is human beings that are constantly
bringing themselves face to face with us. They are looking for ways of making
themselves understood.

Reinhard K.-S.
Take, for example, the interplay between teaching and learning. For the
student, it is only the lived truthfulness of the teacher that guarantees the
veracity of the results obtained.

Christiane
This is exemplified in the contribution of Peter Lohr who writes about his
poignant sense of the division between technical and human concerns in
computer science; about his enthusiasm as a scientist and his malaise about
the way computerization threatens to alienate human life. Some would not
hesitate to devise an algorithm for consoling a crying child.

34 2 Living Computer Science

Reinhard B.
By emphasizing the human element he is adressing an issue that is of signif
icance to many computer scientists. But truthfulness is not only essential in
our dealings with students, but also in our own professional work.

Christiane
Joseph Goguen introduces himself as a practising Buddhist. He draws par
allels between Hermeneutics and ancient Buddhist teachings, showing how
the resulting insights can be directly applied to the study of scientific texts.
Interpretation is regarded here as a path to be followed by practice.

Heinz
What I find striking is that some of the theoreticians among the scientists
are the very people who identify themselves with a spiritual orientation.

Christiane
Rod Burstall, too, writes as a practising Buddhist. He sees the individual's
personally emergent view of reality as "reality construction" and shows how
working at the computer - with its one-sided emphasis on mastery and
control - influences the reality of relations between human beings.

Reinhard K.-S.
These two contributions are of a predominantly introspective nature. But
there is a certain tension between spritiual and social concerns that cause us
to turn our attention to external matters.

Christiane
In his autobiographical account, Kristen Nygaard highlights the intertwine
ment of research interests and social concerns in his scientific work. His
commitment to workers' interests has led to new technical approaches as
well as to trend-setting legislation for computer-supported work.

Heinz
What we see here is one way of integrating scientific concerns into life as
a whole. But, depending on the individual personality, this integration may
take place in a variety of ways.

Christiane
Douglas Ross sees his life as the gradual emergence of an overall view of
nature, to which he gives the name PLEX. And he sees this process of epis
temological discovery as incorporating both his scientific work and his private
life. PLEX constitutes for him a universal frame of reference, but one which
he finds difficult to convey to others.

Reinhard B.
Unfortunately, only male views are represented here. We tried in vain to
secure a contribution from a woman other than our co-editor.

Christiane
I think, we should bring in our female experiences of living computer science.
We might be able to help give science and technology a new orientation. An
orientation not towards mastery and control, but towards common life and
survival on this planet.

2.1 The Technical and the Human Side of
Computer Science
Klaus-Peter L8hr

A scientific discipline, like any other field of human activity, is shaped by various
factors such as individual achievements and discoveries, social context, economic
pressure and, last not least, fashion and trends. For most disciplines, it is not too
hard to give a comprehensive description of their essence, for instance, "computer
science deals with principles and practice of construction, programming and
application of digital computers". A deeper understanding, however, has to cover
origins, history, folklore and so on, and cannot be gained without taking into
account all the aforementioned influential factors.

The complexity of the issue asks for a scientific approach or, at least, scien
tists would ask for it, and the computing profession has indeed come under the
scrutiny of social scientists. While their efforts are certainly necessary and yield
valuable insights, we may suspect that, on the one hand, the social scientist lacks
technical insight into the subject; on the other hand, there is a bit of a vicious
circle in every self-referential activity: can a scientific approach be adequate for
understanding a scientific discipline?

I am not able to give final answers to such questions. I contend, however,
that we would understand computer science much better if we would just listen
to what the scientists say about themselves, their motivations, their ambitions,
their perceived constraints and their opinions on the interdependence of the
technical and the human side of their profession.

Unfortunately, though, there is not much to listen to. Computer scientists are
basically engineers, often with a strong mathematical inclination. Their disposi
tion towards analytical thinking, abstraction, formalisms et cetera is reinforced
during their studies. The curricula are devoid of non-technical subjects; the hu
man side of computer science is confined to optimization issues such as program
ming productivity and human-computer interaction. Students are not trained to
meditate on their science from a broader perspective and are not encouraged to
take up a stance about social responsibility and professional ethics.

Note that this situation may be regarded as only a symptom of a deeper
problem - the often-deplored split between the "two cultures" (sciences and
humanities). This is a vast issue which I do not intend to get lost in here.

I do intend, however, to give some personal reflections on the technical versus
the human side of our profession. Like most of my fellow scientists, I am no expert
on this subject either. I studied mathematics because I enjoyed it at high school.
Our curriculum had no connection at all with the humanities. After having fin
ished my university degree I worked with computers and found mathematics
more and more boring because I could not accommodate to the wide gap be
tween mathematics and reality. Computers and programming seemed to be "the

36 Klaus-Peter Lohr

real stuff". In particular, I considered programming at the hardware/software
interface to be the most 'real' programming. So I got attracted to operating sys
tems - only to recognize that I was again far from reality. After having worked
as a computer scientist in the operating systems field for several years I realized
that systems programming was software development after all, and also became
interested in programming languages and software engineering.

This kind of motivation may be typical for quite a few so-called systems peo
ple in computer science and computer engineering. They want to build some
thing. Often they are not genuinely interested in applications and run the risk
to do "l'art pour l'art" . For example, computer engineers have built all kinds of
parallel computers over the years, only to find out that they didn't have sound
principles for programming them. This sort of confusion is not untypical for com
puter science (although encountered in other disciplines as well). Its roots lie in
the personal motivation of people who simply enjoy solving difficult problems
and building interesting artifacts.

Everybody knows that a wide variety of problems can be solved automati
cally with the aid of computers. The computer scientist also knows that it is of
vital importance to apply the automation principle to information technology
itself. The evolution of operating systems from heavy reliance on operators to
wards complete autonomy is a point in case. Programming languages are another
example. Early assembly languages or early Fortran were claimed to be "auto
matic programming systems" (there even was a programming language called
"Autocoder"). This may sound silly today, but made some sense when many pro
grammers were using machine code and introducing symbolic locations relieved
them of the burden of managing memory addresses.

Today, the shift from imperative to declarative programming represents an
other important automation step. This has already been noticed by keen vendors
who advertise systems that they claim make the dream of automatic program
ming come true. I saw a system that "automatically generates programs from
specifications" - it was just a compiler for a functional programming language.
We all know that the notion of automatic programming should be confined to
mean generating programs from non-executable specifications; but of course a
functional program does many things 'automatically' that the imperative pro
grammer has to do manually.

Now everybody will agree that progressing from assembly languages to declar
ative languages is indeed 'progress' (whatever connotations any of us may asso
ciate with this word). Software engineers are happy with this kind of progress,
and we will see more of it in the years to come (for example, automatic support
for configuration and version management, or for program transformation). But
what about automation outside computer science, that is, the computerization
of society?

As an example, would you call the ISDN 'progress'? It is obvious that ISDN
unifies and simplifies communication techniques and has substantial economic
benefits. But do we really need it? Does it bring progress in the sense of a
better quality of life? If not, do the technical and economic benefits outweigh

2.1 The Technical and the Human Side of Computer Science 37

the dangers of an infrastructure that is more prone to abuse than our present
non-integrated systems?

An even more thought-provoking example is transmission of moving images.
Do we need this for a better quality of life? Or will it just bring about the
ultimate TV society?

The computer scientist is not prepared to answer such questions. He (prob
ably 'he' rather than 'she') is not even prepared to ask them. He has a strong
bias towards computerized solutions - for all kinds of problems. This is not just
because he likes building computerized systems but also because he feels that
automation is good for his job - so why not for all jobs?

In conference talks in the seventies, the majority of overhead transparencies
were drawn by hand. Only once in a while we were bored by those polished
advertising things from industry. In the meantime, we made progress - we got
the Mac. Now, where have all these entertaining personal transparencies gone?

People are noticing, though, that perfect slides are boring. Recently, I saw a
desktop-published slide with a sort of 'shaky' font which gave the impression of
handwriting (at least for a second). Think about it. It reminds me of the robot
to help the elderly which will probably be designed to have some 'human touch'.

The enormous versatility of computers can often obscure the fact that a
computerized solution is just not adequate, especially if people are involved.
It would then be penny-wise but pound-foolish to make the computer system
more 'human' or to improve the man-machine interface. Note that the inability
to judge adequacy is caused by lack of sensibility and education, not morality.
There are well-meaning computer professionals who want to save the world with
computers; I feel uneasy about them. My point is that computer scientists should
learn, during their studies, the art of self-confinement, a judgement of computer
adequacy, a feeling for "convivial tools" (as Ivan Illich has called it) and "small
systems" (a term adapted from Eric Schumacher by Dirk Siefkes1.).

One might argue that this is a rather idealistic view. In reality, information
technology means big money and international competition. Research and de
velopment are heavily influenced by the huge funding programs we know from
Europe, the US and Japan (with the special military twist of the Americans).
This funding is geared towards competitiveness in information technology, with
the underlying assumption "the more high-tech, the better" .

I am not denying that economic and political factors do shape computer
science. But I maintain that scientists have a potential to make the human side
of computer science much more visible than it is today - and education is the
main requirement for this.

Don't think that I am enthusiastic about education. I remember a recent
oral examination where the subject of algorithmic problem solving came up. I
do treat this subject at length in my introductory courses, emphasizing that
many problems are not amenable to algorithmization, and giving examples. In
order to provoke a statement about the nature and limitations of algorithms I
asked the student: "Do you know an algorithm for consoling a crying child?" To

1 See Chap. 4.2

38 Klaus-Peter L6hr

my dismay, the student began talking about actions like taking a tissue, wiping
the child's cheeks and so on; he just had not grasped the essence of the question.
The lesson I learned from this was that although we try hard we must try even
harder.

For me, amalgamation of technical and human issues in teaching remains a
permanent challenge. Often, I am carried away by the attraction of a technical
subject, so that not much time is left for reflection about the human side of the
subject. Sometimes I feel in danger of only paying lip service to the principles I
am advocating. But the effort is worthwhile. Students are generally sympathetic;
it is a new learning experience for them - and for me as well.

2.2 Hermeneutics and Path
Joseph A. Goguen

2.2.1 Introduction

Hermeneutics is the study of interpretation, particularly the interpretation of
linguistic texts, but also of human experience in general, since this can be seen
as both "textual" and "linguistic" in appropriately broad senses of these words.

The works of Heidegger, Gadamer and others l say many interesting things
about the nature of interpretation and its philosophical implications, but they
contain very little for the person who wants to learn how to do interpretation
better, or for the person who wants to know how to teach others how to do it; the
practical dimension is missing from this tradition. There is a striking difference
between philosophy, which is content to make distinctions and debate issues, and
a path which provides practices and guidelines for practice, constituting a way
forward which is nevertheless based on acknowledging where we are.

Interpretation is a demanding discipline, encompassing essentially everything
we are and everything that is. Its practice has the potential to open us up to
what we are and what our world is. What is missing is a set of guidelines that tell
us how to deal with the problems that inevitably arise, and other practices that
are less involved with conceptual content and have the possibility of sharpening
our general mindfulness and awareness.

This short paper suggests that perhaps Buddhism, and in particular Ma
hayana Buddhism, can supply this missing practical element. (The word "ma
hayana" means "great path" in Sanskrit, and describes the tradition from which
Zen and Tibetan Buddhism have sprung, among others.) The result is that the
activity of hermeneutics, that is, of interpreting, can also be a path, by inter
preting the term "hermeneutics" sufficiently broadly.

2.2.2 The paramitas

To be a good interpreter, I believe that it helps to be a "good person" in
roughly the same sense expressed in Buddhism by the "six paramitas." The
word paramita means "other shore" in Sanskrit, and refers to action which is
not selfish, and which thus transcends this shore of the river of confusion and
neurosis. Some hint of this may perhaps be glimpsed in the following brief char
acterizations, which have been specialized to the interpretation of a text which
you should think of as coming from your own time and place:

1 [Heidegger, 1962, Gadamer, 1976] and [Palmer, 1969]; Palmer gives a relatively ac
cessible summary of this tradition.

40 Joseph A. Goguen

1. Dana, which means generosity in Sanskrit, is the joy of discovering that you
don't have to impose your own conceptions on the text, that you can afford
to be open to it, that you can give up your conceptual (and preconceptual)
territory.

2. Sila, which means discipline or morality, is that you don't have to make
any special effort, you already have (what is called in ethnomethodology2)

"member's competence": you are sufficiently grounded in your own tradition
and in that of the text to begin work on it, and you are inspired to do so.
There is no need for dogma, and you can work with what is actually there.

3. Ksanti, or patience, is that you don't have to "succeed," i.e, to satisfy your
own, or anybody else's, expectations about the interpretation; you can there
fore go at the speed which is proper to the task, and not worry about whether
what you discover will be "acceptable".

4. Virya, or energy, is to work with what is given, with what you are and what
the text is (including the whole context of the text and of yourself); you
completely accept the tradition of the text, and then you work from there,
without, however, being bound by 'conventional wisdom.' You can actually
take delight and inspiration in whatever contradictions and difficulties may
arise.

5. Dhyana, chan [in Chinese], zen [in Japanese], or meditative awareness, is to
be completely absorbed in the text, without distinguishing between yourself
and it, but being fully aware of the environment of the text and of yourself.
Your horizon merges with that of the text; or perhaps there is no horizon,
that is, no center and no fringe.

6. Prajna, or transcendental knowledge, is the precision of discriminating aware
ness, which is willing and able to recognize and to cut through your precon
ceptions, as well as those in the text; you can learn from mistakes without
worrying about ability or inability, superiority or inferiority. This is "stable
awareness" rather than confused awareness.

These characterizations were obtained by combining my interpretation of Trung
pa Rinpoche's treatment of the six paramitas3 , with my interpretations of Hei
degger, Gadamer and others. These aspects of interpretation (or of meditation)
do not necessarily arise in strict sequential order, but there is still a sense in
which they build on one another, so that prajna is the fruition of the others.

2.2.3 Confusion

The word "confusion" is used here in a somewhat technical sense, referring to
mind that is not characterized by the paramitas. This is our ordinary confused
mind, which sometimes mislays pens and papers, and is often misled by its own
hopes and fears.

2 See [Trungpa, 1976].
3 Cf. [Turner, 1974].

2.2 Hermeneutics and Path 41

It is important to note that non-confused mind arises by transcending con
fused mind; clarity does not come to us from some separate pure realm of its
own. It arises from accepting what actually happens to us, and working with it
as it is, rather than as we wish it were. As Heidegger4 says,

when something ready-to-hand is found missing, though its everyday
presence has been so obvious that we have never taken any notice of it,
this makes a break in those referential contexts in which circumscription
discovers. Our circumscription comes up against emptiness, and now sees
for the first time what the missing article was ready-to-hand with, and
what it was ready-to-hand for. The environment announces itself afresh
... [and] is thus lit up.

In textual interpretation, this has a very practical meaning: the feelings of con
fusion, attraction, or aversion which we experience while reading a text, while
not necessarily reliable in themselves, are the energy that we have for working
with the text; they are the breaks in the seemingly seamless seas of meanings
that can help us get deeper into the world of the text.

2.2.4 Hermeneutics as path

Without an intimate awareness of how one's own mind works, especially how
one's emotional and conceptual baggage get in the way of seeing things as they
are, it is difficult to transcend one's confusion and actually use it in textual
interpretation. Such an intimate awareness of the confused functioning of mind
is difficult to obtain, and according to most Buddhist traditions, the practice of
meditation is the most effective way forward.

Indeed, most Buddhist teachers insist that it is necessary to practice medi
tation in order for paramita practice to be meaningful, because it is necessary
to develop the qualities of "mindfulness" and "awareness" first. This kind of
meditation practice does not aim to produce either a hypnotic trance state, or
to control the restlessness of mind; it is not concentration. Rather, mindfulness
awareness meditation takes as its subject something very simple and natural,
such as breath. Mindfulness is attention to what is actually there, "one pointed,"
direct and precise. Awareness is the context, the space, within which mindfulness
happens. This is not at all a matter of calculating or of grasping for meaning.
As Trungpa Rinpoche5 says,

Mindfulness provides some ground, some room for recognition of aggres
sion, passion and so on. Mindfulness provides the topic or the terms or
the words, and awareness is the grammar which goes around and cor
rectly locates the terms. Having experienced the precision of mindfulness,
we might ask the question of ourselves, "What should I do with that?

4 See [Heidegger, 1962].
5 See [Trungpa, 1976].

42 Joseph A. Goguen

What can I do next?" And awareness reassures us that we do not really
have to do anything with it but can leave it in its own natural place.
It is like discovering a beautiful flower in the jungle; shall we pick the
flower and bring it home or shall we let the flower stay in the jungle?
Awareness says leave the flower in the jungle, since it is the natural place
for that plant to grow. So awareness is the willingness not to cling to the
discoveries of mindfulness, and mindfulness is just precision; things are
what they are.

Or in the words of Heidegger6 , "we should do nothing, but rather wait."
In this way, one comes to see the nature of the mind; that is, meditation is the
interpretation of mind. Thus, the path of hermeneutics is the path of meditation.
Of course, Buddhism is concerned with one's whole life, not just with how one
interprets texts; but because one's life can be viewed as a text, these concerns
are quite closely related.

2.2.5 Hermeneutics in the practice of science

There are many ways that the paramitas might be relevant to the practice of
science. Perhaps the most obvious is also the most personal: the scientist might
practice meditation, and hence change the way he relates to everything, includ
ing science. But let us consider something simpler and more direct, reading a
scientific paper by Dijkstra7 , which is the basis for a course at Oxford which I
have been teaching.

As it happens, Dijkstra has not been one of my favorite authors; so the first
paramita, dana or generosity, has a particularly pointed meaning here: I should
drop my prejudices and open up to the text; insofar as I succeed in this, my
experience will both be more pleasant and more accurate; just that realization
brings a sense of relief. Of course, I must also be aware of what I already know
and do not know as I work with the text, and this is sila or discipline. Ksanti or
patience means not only that I should be willing to work through any technical
difficulties that may arise as I read, but also that I don't have to compete with
the author.

Virya or energy arises as I actually do all this; if I've got the first three
paramitas right, there will be no particular pain or frustration to this process,
but rather it will be natural and self-energizing. This leads to dhyana, awareness,
in which I can be authentically engaged with the text and its context, including
other related texts and my own being. This does not mean that I must accept
everything the author says; on the contrary, I am now in a position to appreciate
it properly and fully, both its strengths and weaknesses, as well as my own; this
is prajna or discriminating awareness.

And what did I learn? The paper is very concise, clearly and compellingly
written, has excellent examples, and has stood the test of time (this can be

6 Cf. [Heidegger, 1966].
7 [Dijkstra, 1975]

2.2 Hermeneutics and Path 43

seen by comparison with other CACM papers from that year, and also from the
large literature that it has inspired). However, I was irritated that the author
paid no attention to logical foundations or to model theoretic semantics, and
gave no indications of the limitations of his methods; also, I kept wondering how
to formulate things more algebraically. Eventually, I discovered that the issue
of foundations is rather subtle (something like infinitary logic, as explored by
Engeler in the 1960s, is needed), that the model theoretic semantics is awkward,
that the approach works poorly for large programs (since no account is taken of
modules or of data structures), and that category theoretic formulations have
already been given8 . Also, I discovered that worry about all of this got in the
way of my appreciating the elegance of the language design, the beauty of the
examples, the motivation in terms of programming style, and the richness of the
research that this paper opened up. So in the end, I learned something about
myself as well.

In discussing interpretation, we are not talking about discovering some ob
jective truth about a text. Rather, there is a very intimate relationship between
the interpreter and the interpreted, in which each is uncovered to the extent that
the enterprise succeeds. As Heidegger says, "interpretation is never a presuppo
sitionless grasping of something given in advance."9 Indeed, it is typical that we
can learn the most about ourselves from those texts, or parts of texts, where we
have the strongest reactions.

2.2.6 Emptiness and beyond

Buddhism might perhaps be described as a participatory phenomenological her
meneutics of mind, leading to the experience (not just the idea) of non-duality
between self and other, and between mind and body. In contrast, traditional
science is a hermeneutics of other, which already presupposes subject-object
duality.

The traditions of meditation and hermeneutics that we have been discussing
are not consistent with this classical version of science. In particular, Heidegger
presents a stinging critique of the Western metaphysical tradition, including
science and technology.10 Heidegger's hermeneutics opposes the idea that there
are objects already given in the world, which are observed by subjects; it opposes
the ideas of control and manipulation, whether for material or intellectual gain;
and it opposes our usual idea of idea, a pre-existing intellectual structure which
we see only dimly, as on the walls of Plato's cave. Similar views can be found in
Buddhism.

Both Buddhism and science are complex evolving systems, with no ultimate
commitment to any particular dogma, belief or theory; instead, each is united
by its commitment to particular methods and by immersion in its particular
historical tradition. Both are characterized by debate, and by the growth of

8 For example, in [Manes and Arbib, 1986].
9 See [Heidegger, 1962].

10 Cf. [Heidegger, 1977c].

44 Joseph A. Goguen

insight. And contemporary science may even be developing some appreciation
for the inseparability of subject and object. ll

In Buddhism, "emptiness," or shunyata in Sanskrit, refers to this non-duality
of self and other, that is, of subject and object. These are our two most basic and
generic concepts, and without them, all other concepts are also empty. Shunyata
is thus an opposite to Plato's doctrine of ideas. But shunyata is not a doctrine
of nihilism. Indeed, without concepts, the world can shine forth more brightly.
For if we ask, "Are self and other the same? Or are they different?" we find
that they are neither the same nor different. For in any experience of self and
other as being the same or different, self and other necessarily arise together. As
Hayward12 says,

as the mutual dependence [of objects] with the perceiver is felt, they
shine with a spacious but self-luminous quality that is at the same time
empty of inherent existence. This luminosity that is beyond concept is
the fullness of shunyata.

Similarly, Heidegger says in "The Origin of the Work of Art" 13, of a Greek temple
set in a valley, that it

causes [its material] to come forth for the very first time and to come
into the Open of the work's world. The stone comes to bear and rest
and so first becomes stone; metals come to glitter and shimmer, colors
to glow, tones to sing, the word to speak.

Acknowledgements
First of all, I thank Vidyadhara, the Venerable Chogyam Trungpa, Rinpoche for what
ever little I know about Buddhism. I also thank Prof. Rod Burstall of the University of
Edinburgh, Dr. Jose Meseguer of SRI International, and my wife Kathleen, for many
helpful comments and conversations, and both N aropa Institute and the Center for the
Study of Language and Information at Stanford University for partial support and for
stimulating environments. Special thanks to Dr. Charlotte Linde, from which I learned
much of what I know about discourse analysis and sociolinguistics.

The basic text of this piece was found buried in my computer file system; it was
written about 1976 for a course on Discourse Analysis that I taught at N aropa Institute
with Dr. Charlotte Linde. It was then lightly edited at SRI in 1988 for distribution at
the Conference on Software Development and Reality Construction, and was put into
its present form at Oxford in early 1990.

11 See [Hayward, 1987] for more discussion along similar lines.
12 [Hayward, 1987]
13 [Heidegger, 1971]

2.3 Computing: Yet Another Reality
Construction
Rodney M. Burstall

For the past twenty-five years I have been working as a Computer Scien
tist, for the last fifteen I have put a considerable amount of effort into the
study and practice of Buddhism, under the general direction of Trungpa
Rinpoche, a Tibetan Buddhist teacher. These two points of view are not
easy to reconcile, although both have the same basic attitude of "try it
and see if it works". But all of us have a work life and a personal life
to live, sometimes separate, but sometimes mingling, with intrusions of
kindness into the office or of electronics into the home. The boundary,
like all frontiers has its pains, so it seemed worthwhile to try to dissolve
it a little and accept an invitation to write something about all this.
Perhaps the Buddhist point of view will seem foreign or unacceptable to
you, but it may be worthwhile to remember that there is more than one
way of looking at our computing world.

2.3.1 Reality: cultural and computational variants

In the Buddhist tradition there are two veils which separate us from enlightened
mind

• Conflicting emotions,
• Primitive views of reality.

Working with computers and working with other people who work with comput
ers, we develop our own particular attitude to our emotions and our own partic
ular view of reality, or own particular style as the computing community. This
style affects both our working lives and our personal lives. It runs a good deal less
deep than our inheritance of Western European (Greek/Jewish/Christian) cul
ture or Japanese culture, or whatever we happen to be landed with; but because
the computer metaphor is a powerful one it probably has a significant influence
on the way we see our world. I would like to open up here some discussion of
our computer-influenced view of reality.

It is hard for us to see that we have a particular reality. We just think it is
the reality, perhaps not quite perfectly revealed to us. We can get a glimpse of
other people's realities from reading Social Anthropology, or poetry or novels!,

1 For example "Ranta Yo", by Ruth Beebe Rill, or "The World is not Enough" by
Zoe Oldenbourg, or "The Tale of Genji" by Lady Murasaki, or "Njal's Saga" by an
unknown Icelandic author.

46 Rodney M. Burstall

perhaps from reading Greek Philosophers or Early Christian Fathers. I do not
mean their description of their reality, their philosophical dicta. I mean how to
feel as they feel, how to see as they see.

Our European reality has moved from the Medieval Christian world, concen
tric spheres surrounded with celestial realms, a view which we now find puzzling
and remote, through a Newtonian world of empty space and point masses in
clined to linear motion, to an incipient view of our earth as a rather fragile
orgamsm.

In the Buddhist tradition it is very central that our reality is constructed, as
opposed to the commonly held opinion that it is given or uncovered. The root
cause of our confusion, distress and anxiety is that our view of reality is distorted
by our dispositions, based on past anger, desire and stupor. These create our
habitual misinterpretation of the world through the bias of our own neurotic
emotions, our continual reference point of self.

From the standpoint of Computer Science or Artificial Intelligence the idea
that we construct our reality makes a lot of sense. The na·ive view that you tell
a computer what to do and it does it is far removed from our experience of pro
gramming languages and operating systems. Every byte of input is interpreted
with respect to many kilobytes or even megabytes of lexical and syntax tables,
command interpreters, page tables, indirect addresses and what have you. A
robot arm/TV camera set up cannot possibly work without some programmed
in notion of visual and manipulative model, and it is only able to see or act in
terms of this model.

Another way in which computing helps to suggest the relativity of our frame
work of reality is the difference between programming language or operating
system paradigms. Imperative languages, functional languages and logic pro
gramming languages, each provide a different means of expressions, a different
notion of computation.

But what is the style of thinking inculcated by the usual practice of com
puting? Computing systems seem to be totally understandable; you start with a
general notion of what is supposed to happen and work your way down through
module documentation to the high level language code and eventually even to
the object code produced by the compiler. It is all there; you can spell it out.
So the computational viewpoint suggests the possibility of completely grasping
and mastering our world in a formal framework of concepts and definitions.

I would like to suggest here some of the ways in which our involvement with
computing may bias our overall point of view, leading to additional confusion
and pain in our lives, both our working lives and our personal lives. I am not
seeking to indict the computing view and replace it with some other doctrine,
rather to see that it is just a particular perspective which should not solidify
into yet another version of "reality" . To quote Hayward2

The ... "discovery of insight" is realizing and trusting in the causal ef
ficacy and interrelatedness of the world. It is direct, penetrating insight
into causal relationships of the relative world so that one begins to see

2 [Hayward, 1984]

2.3 Computing: Yet Another Reality Construction

how much is presupposed and taken for granted in our usual experience
of the ordinary world. With this discovery the practitioner need not cling
either to particular reference points for perception, or to logic in an at
tempt to sustain only his own viewpoint. He can begin to adopt various
viewpoints without partiality.

2.3.2 Computing as power and control

47

In working with a computer we interact with a small world, partly of our own
creation, in which we have a special role. We are the agent who makes things
happen. In this world we play the role traditionally assigned to God. We have
complete power and our aim is to control everything that happens in this world.
The better we are at programming the more nearly we approach total control
over what happens. Bugs are an unfortunate accident which further persever
ance and skill will eliminate. Everything in this world is open to our inspection,
and in principle we can have complete knowledge. We can strip away levels of
complexity, expanding macros, looking at object code, at the very bit-patterns.
There is some bottom level, the hardware level as a programmer sees it, at which
we have complete information about the whole situation.

This is almost a caricature of the basic attitude of Western science which
is dedicated to extending our control over the world, placing us as nearly as
possible in a position of omnipotence. We might say that we are indulging in
Technotheism, technology as a means to achieve god-like control of the universe.
The computer enables us to simulate this, precisely by creating a world in which
we enjoy complete control. It is all very exciting, and undreamt of power is just
around the corner. Byte Magazine, for example, gives the flavour of this. I find
it very seductive.

Contrast this with an attitude of respect for other inhabitants of our world,
other people, animals or forests, a view of the world in which we do not have some
distinguished role. In such an attitude we are open to the richnesss of phenomena
over which we have no dominion. Think of sitting on a hillside watching the
douds move through the sky, as opposed to sitting at your terminal.

2.3.3 Living in our heads

Working with computers we have a strong tendency to retreat inside our heads.
We live in an abstract symbolic world with little or no connection with our
bodies. We certainly have a mental representation of our bodies, mind-body, as
it is called in some Buddhist traditions, but we may pay almost no attention
to body as a sense of heaviness, of touch, of solidity. This is a reflection of our
tendency to ignore the earth and our connection with ground.

One way in which this manifests is the kind of intent absorption which we
can experience working at a terminal. Outer stimuli are shut off, as we hunch
over the keyboard. Gaps rarely occur and it may be hard for us to find the space
to restructure our thinking. Taking a fresh look at what we are doing, even at

48 Rodney M. Burstall

the level of restructuring part of the program we are developing, can be difficult.
We simply do not have the space to do that.

This confined, groundless feeling seems to continue after we stop work. It
reinforces our search for entertainment. We shut off our perceptions, and we
are unwilling to switch modes to interact with a world of taste, smell or bodily
feeling. This can be quite painful and neurotic, a sort of disembodied restlessness,
and it is hard to shake off. The groundlessness encourages the speediness, the
lack of gap; our world is small and full, like a video game. Compare this with
the feeling of contact with body and earth as expressed by Trungpa Rinpoche3 :

Imagine that you are sitting naked on the ground, with your bare bottom
touching the earth Earth is always earth. The earth will let anyone
sit on it, and earth never gives way. It never lets you go - you don't drop
off this earth and go flying through outer space.

We cannot just switch off this state of mind but we can become somewhat aware
of it and how it affects the people around us.

2.3.4 Conceptual thought

A striking difference between the computational tradition and the Buddhist
tradition is the place assigned to conceptual thought. In the former it is the
be-all and end-all, in the latter it has a subordinate role.

Almost everything we work with in computing is at the level of concept, logic
or language. We come to think of mind as functioning in slightly sugared Lisp
or Prolog, a central process tidily building and moving around data structures.
Consider what happens when we give a seminar. From a na·ive computer point
of view this is transmission of data down a channel. A stream of bytes is to
be transmitted from the speaker to the audience; we have to ensure correctness
and completeness. So we make some transparencies faithfully transcribing our
formulae. We worry whether we will have enough time; should we skip some
parts? We use 1\TEX and invent major and minor headings. This leaves us little
time to think about the audience:

• Who are they?
• What do they know already?
• What problems do they have?
• How would this material be helpful to them?

The main thing is to get the bytes from the disc to the laser printer and then
into their heads.

A caricature? But it is the way the task looks from a computing perspective.
Of course we have enough natural intelligence and life experience to be not
completely limited by this. Nevertheless the caricature has a ring of truth in it,
at least from my own experience.

3 [Trungpa, 1984]

2.3 Computing: Yet Another Reality Construction 49

If we examine the detailed working of our mind through meditation practice,
we first notice a tumultuous sea of internal dialogue, disorganized and uncontrol
lable. But as we persevere we also note the possibility of non-verbal awareness.
The conceptual thread is not the lifeline needed to keep us conscious; we can
rest in a state of non-conceptual awareness for some longer or shorter period of
time. Staying alive, the maintenance of our being, is no longer identified with
conceptual thought.

2.3.5 Awareness

We normally focus on the conceptual content of our mind; working with comput
ers tends to reinforce this tendency. We assume that the way to dispel ignorance
is to accumulate more data; this at least seems to be an implicit assumption in
much of our education system. Outside areas like sport or surgery, acquiring skills
is a less prestigious matter than learning facts. This is noticeable in Computer
Science education where knowledge may be rated more highly than program
ming ability. Indeed we think that we can make people better programmers by
describing to them more sophisticated methods of program development.

Coming a long way behind knowledge acquisition, even behind skill acquisi
tion is the cultivation of awareness. In the Buddhist traditions however awareness
is regarded as a prime antidote to ignorance. There are some things we have never
learnt, but there are many more that we "know" or could perceive but which are
outside our awareness. We read the newspaper while our wife/husband quietly
sobs across the breakfast table, so to speak. Less dramatically we exclude from
consciousness all the nuances of other people's feelings and states of mind, and
all the small sights and sounds which convey the brilliance of the phenomenal
world.

Even in terms of our trade, if computing teaches us excessive respect for
data and conceptual thought at the expense of awareness, we lose the ability to
accomplish our computational goals.

A wareness of other people

Worthwhile computing almost always means working with other people, as a
member of a team, directing research or obtaining funding for it. What propor
tion of our PhD study is directed to cultivating our ability to be aware of others,
to tune in to their minds and their perception of a situation? Even two people
working together on a research problem or on developing a programming sys
tem, create all sorts of fixed positions, ownership of ideas and unwillingness to
retract. It is very painful to give up our ideas. If we do not have some awareness
of this situation and the demands it makes on our generosity, progress is really
difficult.

A wareness of atmosphere

More subtle perhaps is awareness of atmosphere, in a meeting or a seminar. What
is the temperature, when has the atmosphere become inert, dead, when has it

50 Rodney M. Burstall

sparked again? We all perceive such things and use them to help us communicate,
but they are not thought of as "real", like the agenda or the minutes. Our
rationalist and computational bias tends to blind us to such phenomena, even
though our everyday experience forces us to be somewhat sensitive to them.

A wareness of energy in a situation

Intuitively we can pick up on the energy in a situation. We know when a group
of people are fired by a good research idea. We can feel the change in atmosphere
in the work place, the liveliness of the people. Sometimes we can notice how this
liveness gets blocked. Our skills in conducting or assessing computing projects
depend largely on our sensitivity to such atmosphere, and in our informal chat
we often refer to it. But in a "rational", "methodical", "well-structured" world
view, there is no reference to it. We deny the very skills which are most important
to us.

I really believe that well-meant attempts to assess research more objectively,
to set up in advance goals and measures of success, are often flawed because
they ignore such considerations. The conceptual structure cannot encompass
the fluidity and delicacy of the phenomena.

The space of awareness allows insight to arise. Not deductive reasoning, but
the sort of sudden flash with which we are all familiar when we are working
on some mathematical or computational problem, or even choosing a birthday
present. Methodologies of programming which deny the role of intuitive insight
in program development, imposing a process of remorseless top-down handhold
ing, seem stultifying and unproductive. In the same way systems for program
development based on partly automating formal reasoning are much more likely
to be helpful when they provide a vehicle for us to express our intuitive insights
into a problem than when they try to take over the reins; just as a screen editor
is useful because it makes it easier for us to say what we want to say, without
trying to impose a rationale on our creativeness.

Wilber in his book "A Sociable God"4, suggests, with justice I believe, that
our culture dismisses everything other than rational thought as inferior, magic
or myth, based on emotion and primitive logic. Certainly the mythic level of
football crowds, patriotic wars or religious struggles is something which should
be cooled by the application of reason. But he asserts that there are levels of
consciousness transcending rational or conceptual thought. Of these the sort
of panoramic awareness which can see a whole situation at once stands as an
example; this is not a supernatural power but one which we all have to some
degree and which we can cultivate. Another example mentioned above is being
in tune with subtle energies in a human situation. These are powers which our
culture ignores or devalues. We may be concerned lest computer culture lead us
further in this denial.

As to the means of cultivating awareness and insight, many are on offer, in
cluding for example the Buddhist practice of Shamatha-Vipashyana (peacefulness
awareness) meditation which I am practising. The main thing is to experiment

4 [Wilber, 1983]

2.3 Computing: Yet Another Reality Construction 51

for oneself, with some guidance, and discover what seems to work. But the start
ing point, motivating any such endeavour, is to take a critical look at out present
situation.

2.3.6 Conclusions

I have not tried to suggest that we should regard computing as some kind of evil
trap which will warp our minds in a way hitherto unknown to man. Computing
carries a great deal of energy in our current culture, and it fuels our curiosity
and inventiveness. But in order to fully enjoy its possibilities we need to appre
ciate the way it can subtly influence our frame of thought. The recognition of
this influence does not itself free us; but it may provide a starting point for us
to look for ways of working with computers without being entrapped by a lim
ited perspective based on desire for control and exclusive reliance on conceptual
thought.

Acknowledgements
It has been difficult for me to write this - my first and very clumsy attempt at anything
of this kind. Nevertheless I am grateful for the opportunity to attempt to put into words
something of the tension which I feel between my working life and what little I have
been able to learn of the Buddhist path. This tension can be creative, inspiring further
effort at practice and understanding. It is something of a relief to share it with others
who may find it reflected in their own lives.

I would like to acknowledge my debt to my computational colleague and fellow
Buddhist student Joseph Goguen for many years of discussions; to Han de Wit of
the Free University, Amsterdam, and Sherab Chodzin for trying to sharpen my mind;
to my wife Seija and my daughters Kaija and Taru for companionship on this path;
to my colleagues at Edinburgh Computer Science Department for their tolerance; to
Christiane Floyd for asking me to contribute to this book. Finally I express my profound
gratitude to Ven. Chogyam Trungpa Rinpoche for his wisdom and kindness.

2.4 How Many Choices Do We Make?
How Many Are Difficult?
Kristen Nygaard

I have been asked to write about some of the choices I have had to make as
a scientist - choices relating to social responsibility. This is a very dangerous
task, since it may easily become a tale of a battle between evil and good, with
oneself as the hero. In fact, I do not know how to avoid that trap: there have
been battles with very much to lose, and one had to mobilize a strong belief in
the cause one was fighting for.

Some people believe that scientists lead a noble life, aloof and relieved from
conflicts, escaping annoying decisions, only guided by the quest for new discov
eries and truths, so different from the tumultuous and hazardous existence of a
businessman. Other people, like myself, would rather state that being engulfed
in the research and development jungle, one is sometimes longing for the peace
and safety of the marketplace. This is only a general remark, and my paper will
not live up to any expectations raised by it.

Informatics (computer science) and Operational Research (OR) emerged as
sciences in the wake of the last world war. I started at the University of Oslo in
1945, with computing in 1948, programming around 1950, and with Operational
Research in 1952. I got my cando real.-degree in Mathematics in 1956, having
worked (mostly full time) at the Norwegian Defense Research Establishment
(NDRE) since 1948. From 1956 on I had the task of building up the use of
OR in the Norwegian Defense. I was active politically from 1945 on in the non
socialist but left-oriented party "Venstre" ("The Left", corresponding to, say,
the left wing of the British Liberals).

For me, informatics and OR have always been closely related, and I tend
to see many tasks in informatics from the perspective of OR. I left OR in the
mid-1960s, however, mainly because the OR community in my opinion became
too obsessed with optimization and too little with decision support, and because
it failed to realize that a thorough knowledge and mastery of the computer is a
necessary part of competence in OR.

A major and, at the time, largely undebated assumption in the development
of the post-war culture was that "technological progress happens, it is politically
neutral - and good!" . (The concern about atomic weapons was one of the excep
tions.) In Operational Research, however, the situation was somewhat different:
The task was to find the best use of men and equipment, dependent upon a stated
set of objectives. If the objectives were modified, the "best use" changed. Also,
the development of new equipment had to be fine tuned to a proper understand
ing of the objectives of the decision-makers. And those objectives could be highly

2.4 How Many Choices Do We Make? How Many Are Difficult? 53

political, particularly in the military field. The application of OR techniques to
conflicts between interest groups within organizations was an idea dear to an OR
researcher.

Our OR work turned out to be quite successful, and that created an un
expected conflict. I wanted OR to be a science and our work to be research,
providing support for decisions made by those having the responsibility for the
activities we analyzed. I discovered that many in the military establishment were
only too happy to have the researchers point out "the correct solution" to some
of the hot issues, and that my Director at the NDRE was only too happy to
see a development that gave more power to his institute. I tried to counter this
by being very careful in pointing out which conclusions could be validly drawn
from our work and also the factors that we had not taken into account. I felt
that unless we did, both OR and the decision structures would be undermined.

The military people appreciated this attitude after some clarifying discus
sions. The conflict with the Director developed further, and as a consequence
I left the NDRE in 1960 to build up the Norwegian Computing Center as a
research institute in computing and OR.

The conflict also made me aware of corresponding problems in keeping demo
cratic control in the planning processes in Norwegian politics, both at the local
and at the national level. As a result, a debate was initiated among planners
about our professional role, and I once more went into party politics. (At the
time when Simula was finished, I was the chair of my party's Strategy Com
mittee. Soon after I became a member of the 5-person top leader group of the
party whose parliamentary group then participated in the Norwegian coalition
government.)

When the first version of Simula, Simula I, was made available in the spring
of 1965, it was immediately used in a series of jobs in Norway and, even more,
in Sweden. It was of course fascinating to see the tool we had developed being
put to practical use and influencing the design of organizations and production
facilities.

It was evident that the Simula-based analyses were going to have a strong
influence on the working conditions of the employees: job content, work intensity
and rhythm, social cooperation patterns were typical examples. The impacts
clearly tended to be negative. Not surprising, since the analyses were founded
upon a Tayloristic view of management.

My own sympathies were with the employees, and the question was unavoid
able: Should I continue to support the propagation of a tool that to a large
extent was used against those to whom I wanted to show my solidarity?

As I have said, it was not at all a new experience for me that research had
implications in politics. But these had mainly been consequences from one world
into another, relating to commonly hailed democratic ideals. I was active in the
research world and in the political world, but they were separate.

Now matters were different: The demand I had to make was that analyses
should be made as in Operational Research. The "best use" of labour and equip-

54 Kristen Nygaard

ment ought to be evaluated both from the objectives of management and from
the objectives of the employees, taking into account that these objectives nor
mally were at least partially conflicting. The alternative "best" solutions should
then, in my opinion, be communicated to both management and labour.

I realized of course that this demand would not be accepted by the users con
trolling the resources for the applications of Simula in business and production
planning. When I tried to state my views, I was not taken seriously, as expected.
The question then became: May more realistic alternatives be created?

I could not disinvent Simula, and I also believe that computers enrich the
set of feasible social structures. I did not believe that I could find "a general
solution". In the beginning of 1967 I decided to contact the Trade Unions and
propose the building up of competence in information technology within their
ranks.

As it happened, the Trade Union School at the same time had decided to
ask me to lecture on a course named: "The Trade Unions Facing the Future".
The lecture was followed by many more, and it was quickly understood that
it was necessary for the unions to develop an information technology policy. A
discussion group was formed, and it is interesting to note that a large fraction
of the young trade unionists in the group are among the top leaders of the
Norwegian Trade Unions today.

Politically, the end of the 1960s were also for me quite eventful. I started
doubting my engagement in traditional party politics, and left the Liberal Party
when I realized that I had become a socialist. I was the chair of the committee on
environment problems within the Norwegian Association for the Protection of
Nature for a couple of years, and I worked closely with socially outcast alcoholics
in an alternative institution experiment. Both tasks showed me other realities,
very different from those I had known before.

You have observed that the main personal pronoun used till now has been
"I". This does not mean that I was working alone. On the contrary, nearly
all my work has been done in teams. But the decisions discussed above were
made by me. From 1967 on I became a member of a group within a broad,
democratic movement genuinely representing the interests of the workers. (In
Norway unionization is at the 80% level.) It was no longer a question about
what I felt was good for other people, but instead participation in a collective
effort to shape a strategy for all of us.

The group members came from a wide range of sectors in the society: Job
shops, chemical plants, transportation, white collar work, hotels and restaurants,
the public sector. I was the only researcher in the group and had for that reason
special functions in our work. But the other members had their own areas of
competence, equally important for the task.

We first discussed possible consequences of the imminent introduction of
information technology in various sectors, then how we should build up our
own competence. We never considered building that competence by teaching to
union members the curriculum used by programmers, engineers or managers.

2.4 How Many Choices Do We Make? How Many Are Difficult? 55

Knowledge is organized for a purpose and reflects the world view of the authors
in terms of corporate values, power structures, objectives to be achieved and so
on. Uncritical acceptance of such material would make us brainwash ourselves.
What we needed was a reevaluation of the use of information technology based
upon the world view of the union members, emphasizing solidarity, industrial
democracy, safe employment, safe working conditions, decent wages and so on.

Since no such exposition of information technology existed, we concluded
that it was a research task to produce one. In Norway the Royal Norwegian
Council for Scientific and Industrial Research supports a wide range of projects
in information technology, and the Norwegian Iron and Metal Workers' Union
decided on its convention in 1970 to apply for money to "evaluate planning,
control and data processing, based upon the perspective of organized labour"
and to ask the Norwegian Computing Center (where I was working) to carry out
the project.

This was the first project application of its kind to the Research Council. It
was handed over to its Committee for the Mechanical Industry which, no sur
prise, had its offices in the building of the association of the employers in that
industry. Their responses, internal discussions and attempts at getting control
of the project have recently been published in a research report. They are inter
esting, but the end result was that the Iron and Metal Workers' Union got the
funding and the Norwegian Computing Center got the contract.

In order to understand what happened behind the scene, one has to be famil
iar with the Norwegian labour market situation which, at least till recently, has
been rather different from, say, the US and the British situation. The Norwegian
Unions have been both stronger and also more actively interested in having a
responsible influence upon company policies. As a result, the employers accepted
that all information about the planning, control and data processing systems in
four selected company sites were made available to the Iron and Metal Project
team.

This does not at all imply that there was no resistance and conflict sur
rounding the project or the other projects referred to. Those stories do not, in
my opinion, belong in this paper.

The Iron and Metal Project turned out to be very different from other
projects. Not only did the shift from a managerial to a labour perspective
generate a range of new observations and insights, even the basic criteria for
achievement had to be reconsidered.

The project was organized as usual with a steering committee which, as
usual, was expected to do next to nothing. In our committee we had key union
people. From the very start it became the forum for thorough policy discussions
where necessary mutual understanding and consensus about main decisions was
established.

Associated with the project were four local unions at four companies, dis
tributed over the country. They were intended to function as reference forums,
sources for information and criticism. The group at the Norwegian Computing

56 Kristen Nygaard

Center consisted of two researchers, and we had a very active and helpful contact
person in the national union offices acting as our most important advisor.

Our first plan for the project was presented to the steering committee, the
local unions and even to the national board of the Iron and Metal Workers' Union
in the spring of 1971. It was well received, and well conceived (we believed). We
intended to examine the planning systems being used in the four companies,
interview the local union members about what they wanted (and did not want)
from the systems. Then we would examine the possibilities for modifications of
the systems to make them conform better to union objectives. From this we
wanted to extract guidelines both for system design and for trade union policies
relating to new systems.

During the summer 1971 I felt more and more uneasy about this plan, but I
could not spot what was wrong. Gradually it dawned upon me that our strategy
would produce some reports about systems, and two researchers who had knowl
edge on behalf of the union members. The reports and the knowledge would not
be linked directly to the action possibilities of the local unions, and no action
strategy would be developed and tested by the unions themselves. No compre
hensive learning process was incorporated, and the interviews would be oflimited
value when no serious knowledge had been built among the members.

The reorientation was painful, but eventually we chose to tell the steering
committee that we had to completely change the project plan. I hope that similar
choices will not turn up too often in the future.
The key decision was the acceptance of the following statement:

"In most research projects the results of the project may be said to be
what is written in the project reports. In this project another definition
will be applied: We will regard as results actions carried out by the trade
unions, at the local and national levels, as a part of or triggered off by
the project. "

The statement was even, at the insistence of the researchers, made subject to
vote and passed unanimously.

The immediate consequence was that the local unions got a new and pivotal
role. The task was to create knowledge-building processes locally, and to initi
ate action relating to the local situation, supported by analyses made by the
researchers and working groups of local union members and elected shop stew
ards. The researchers became consultants and participants in a mutual learning
process.

Each of the four local unions formed working groups. Approximately 30 mem
bers participated at each site, split into groups of 6-8 members. Each local union
selected tasks they wanted done, and the results of their work appeared in re
ports, to a large extent also written by the unionists. The reports were presented
at meetings with the rest of the members, and important decisions were sub
jected to ordinary decision-making procedures.

One of the unions made a "Company Policy Action Program" , concentrating
upon the planning of work within the union itself. Another made a comprehensive

2.4 How Many Choices Do We Make? How Many Are Difficult? 57

study of a production control information system, and succeeded in modifying
the system in a number of important ways. The other two unions also produced
interesting results, according to the above definition.

The main result of the project was a self-sustaining process which did not
depend upon the presence of external researchers and project money. In 1975
an agreement (the "Data Agreement") was signed between the Trade Union
Congress (corresponding to, say, AFLjCIO) and the National Federation of Em
ployers, stating the right for the trade unions to be informed and participate in
the development and introduction of computer-based system impacting upon
their working conditions. They got the right to elect specialized shop stewards
("data shop stewards") to work with information technology issues. There are
about 2000 data shop stewards in Norway today. They also have the right to ne
gotiate privacy issues. We do not have many, if any, information systems spying
upon their users.

What we gained in terms of general knowledge was a much better under
standing of system development and cooperative knowledge-building processes.
Today these insights are more relevant than ever, particularly in the area labelled
"Computer Supported Cooperative Work".

A standard question during the numerous confrontations with "mainstream"
people in the 1970s was: "Do you agree that your work with the unions is politi
cized research?"

Our standard reply: "You may get the answer you want - 'yes' or 'no' . If
you regard the research along traditional lines going on in research institutions
as politicized, reflecting the interests of management - then the answer is 'yes'.
Our research is also political. If your regard traditional research as non-political
- then the answer is 'no'."

The Iron and Metal Project was followed by other trade union projects car
ried out along similar lines, in Denmark, Sweden and Norway. A number of
gifted young researchers were running these projects together with trade union
members. A community sharing a common basic perspective on system devel
opment emerged and was joined by other competent scientists doing other kinds
of projects.

We felt that the effort we were engaged in was urgently needed, and that
it was necessary to avoid that any single person became indispensable. This
was easy to state but somewhat less pleasant to experience: When two Danish
colleagues told me that we for the first time had been asked to give a one-week
course at the Danish Trade Union School, I enthusiastically started to discuss
how we should do the course. I got no response, and finally they told me that
they had decided that I should not participate, except perhaps during the last
day. Cooperation with Danish unions should be handled by Danish researchers.
Yes.

I have been criticized for not using more time in the 1970s to promote the
Simula language. Many other people have done a much larger job than I. It was
a conscious choice. Should a single idea or project use up your whole life as a

58 Kristen Nygaard

researcher? Simula (and object oriented programming) is like a child: You have
helped create it, you are responsible for its young years, you must see to that it
gets a chance to succeed. Then your responsibility ends. You may be proud of
it, wish it well, but realize that it will develop on its own and is no longer your
property. Your duty is now to care for the new baby and then for any future
children.

In addition, the Iron and Metal project demanded attention. My intention
was initially to supervise the activities in that project. Then I had to realize,
as my boss and a colleague strongly pointed out to me, that a failure for the
project would mean that it would be the last of its kind. I had to work full time
for nearly three years.

When the project was finished, the results had to be turned into an activity
which could survive as an ongoing and integrated part of trade union work.
To contribute to the initiation of similar activities in Sweden and Denmark
was regarded as having second priority. This implied that the dissemination of
information about the project in the scientific community only got third priority,
and the researchers in the project never published any comprehensive account
about the Iron and Metal Project in English. Much has been said about the
projects by others, but I still feel that many of the most important insights
have not been recorded properly. The original reports in Norwegian are still
being referred to but, I suspect, never read. Reference lists are mostly proofs of
awareness of what one ought to have read, and Norwegian is understood by less
than 15 million people (and spoken by less than 5 million).

I regret this situation, particularly since I believe that much of our hard
gained practical experience in how to do this kind of research is just as relevant
for publication today as then.

After the Iron and Metal Project it became important to make what had
been understood about the system development process and the societal im
plications of information technology a part of academic teaching and research
on information systems. As a part of that process I ended up as a university
professor (there were additional reasons) working in teams with students - now
colleagues - trying to build up an alternative curriculum in system development.

A main problem was to get our field accepted as first-class research. It was
at that time frequently referred to as "boxology". Informatics is populated with
people like myself, having a background in mathematics, natural sciences or
engineering. Most of us share a common arrogance on behalf of our fields and
a lack of understanding of social sciences and philosophy, two areas providing
essential knowledge for any serious approach to system development. A strategy
was definitely called for, even if colleagues at our own institute supported us.

The first part of that strategy was to make our courses very real-life oriented,
with theory that was both demanding and useful in practice, and very tough. The
second part was to be always active in explaining, arguing, defending, attacking
when necessary. The third was to embark upon sufficiently ambitious (and thus
risky) research projects.

2.4 How Many Choices Do We Make? How Many Are Difficult? 59

The fourth was an agenda for myself: I decided that I would have to stay
active both in traditional informatics (programming languages) and in system
development, and also acquire and keep updated "hands-on" familiarity with im
portant new developments (workstation hardware and software). If I succeeded,
everyone would have to admit that we at least had some real qualifications. (In
addition all three areas are great fun.) Or, more seriously: My work in languages
could be used to legitimize our work on system development. This may sound
silly, and perhaps it is. But it has worked.

Reading this paper I start wondering. How many basic choices were really
made? The political work combined with the implications of Simula led to the
Iron and Metal Project. The Iron and Metal Project led to cooperation with
unions in other countries and to the building of our approach to system devel
opment. We had to try to introduce those ideas to education and academia.

The basic Simula ideas were generalized in the Delta system description
language, providing a first platform for the unifying efforts and further general
ization attempted in the BETA programming language and for general concepts
in object oriented programming. The integration of information technology in
professions created the need for an examination of extensions to the concepts
and languages of these professions, the agenda for the SYDPOL project. (The
project changed content, but that is another story.)

The movement from traditional party politics to work at grass root level
helped in shaping the participation and knowledge-building strategy of the Iron
and Metal Project. That strategy combined with BETA and the development
of the modern workstations created an important part of the research agenda
for a large ESPRIT project proposal: The 0-4 Proposal (Object Oriented Office
Organization) with cooperating teams from France, Great Britain, Denmark,
Greece and Norway. We did not get the project, but the agenda remains and
has to be carried out in the years to come.

How many basic choices were really made? How many were difficult? When
I try to remember, I feel that most choices were consequences, and that those
remaining seldom were difficult. We had burnt so many bridges behind us that
few options were open - a good strategy for keeping yourself in shape under
pressure.

I have not given the names of all the persons who have been doing the work
referred to in this paper. They are too many, and I will only say this: The Iron
and Metal Project was carried out by approximately 120 persons. Two were
researchers, one was working at the national union level, the rest were local shop
stewards and union members. To work in such a project demands a different kind
of self-discipline and understanding of your own role than traditional projects.
To make this well understood in academia is next to impossible. One has to be
exposed to it through own participation. The cooperation in the Iron and Metal
Project certainly is one of the most valuable and significant experiences of my
work.

2.5 From Scientific Practice to Epistemological
Discovery
Douglas T. Ross

2.5.1 On the being of reality

Nothing doesn't exist. That is the First Definition of Plex - a scientific phi
losophy whose aim is understanding our understanding of the nature of nature.
Plex does not attempt to understand nature itself, but only our understanding
of it. We are included in nature as we do "our understanding", both scientific
and informal, so we must understand ourselves, as well - not just what we think
we are, but as we really are, as integral, natural beings of nature. How one "un
derstand"s and even who "we" are as we do "our understanding" necessarily is
left completely open, for all that must arise naturally from the very nature of
nature.

The "we" in question must include all "beings" , material or immaterial (re
lationships and states, for example), physical (obeying physical laws) or not -
not merely us sentient beings (human or otherwise). For Plex I adopt the obso
lete reflexive meaning of "to understand" vt : 6: obs : to know how to conduct
(oneself) properly" [Webster's 1961 Unabridged] . Whatever a "being" may be,
its "understanding" of nature determines its role in the scheme of things - that
overall scheme of things being "the nature of nature" which therefore is the con
fluence of all those "understanding"s. [For example, a purely magnetic "being"
would couple with nature only magnetically, for that would be the full extent
of its understanding. To it, something non-magnetic would be Nothing, and it
would conduct itself accordingly.]

Plex is a scientific philosophy. Instead of claiming that science is so powerful
that it can explain the understanding of understanding in question, we take
understanding as the open question, and set about to determine what science
results. [It turns out to be precisely the science we use every day, so nothing
need be discarded or overturned - but many surprises result. Some very simple
explanations for some very important scientific observations arise naturally in
the course of Plex development. For example, from the First Definition, there
are several Plex proofs that there was no beginning, contrary to Stephen
Hawking's statement that "this idea that time and space should be finite without
boundary is just a proposal: it cannot be deduced from some other principle."
(A Brief History of Time, p. 136.) The very concept of a "big bang" is strictly
an inherent artifact of our science's view of the nature of nature. There was no
"initial instant" of time.]

Axioms are assumptions. Plex has no axioms - only definitions. (Only) Noth
ing is assumed to be known without definition, and even that is "by definition" ,

2.5 From Scientific Practice to Epistemological Discovery 61

for the complete epistemology of Plex is that

Only that which is known by definition
is known - by definition.

- for without a definition for something, we only can know it as Nothing. With
out even a definition of "definition", the same is true - we know Nothing! So
Nothing is the Ultimate Knowledge - by the above definition of what is Known
- without any assumption at all, including this assumption of no assumption -
inherently! All else is penultimate to that knowledge - purely non-Nothing.

Definitions themselves are non-Nothing, of course - each being unique in its
non-Nothingness. But that which thereby is defined may be Nothing, in which
case the name of that which is defined is synonymous with "Nothing", which
(with the naming quotes) signifies the name of Nothing. There may be syn
onymous expressions for any specific definition. The First Definition of Plex is
unique, but "Nothing isn't" and "Nothing does not-exist" are synonymous with
it, for that which Nothing "does" is "not-exist"ing! - where "doing" concerns the
conduct or role played in the scheme of things. Nothing is the role of Nothing,
for it can neither effect nor affect any conduct. That is why the First Defini
tion is first - because the entire scheme of Plex may be definitively expressed
as "Nothing isn't; Plex is what Nothing isn't". Or, since that First Definition
(here expressed synonymously) itselfis non-Nothing, it itselfis Plex, at first!

With every definition, including the First, the pure non-Nothingness that
isn't Nothing (i.e., Plex itself) becomes cleaved into that which satisfies the
definition versus that which does not. By definition, that which satisfies the
definition is known - as what it is (by that definition), where:

If a definition, D, defines X, then Y satisfies D if and only if Y is X.

[Notice that X satisfies D, by definition.] Thus, for any X, the ultimate defi
nition of X is its self-definition, which is expressed in natural language as "X
is X"- to which any reference to X is synonymous. [For any non-Nothing X, its
ultimate definition (as distinct from the "X is X" universal expression of it) is
X itself! For Nothing X, since there is no "self', this Ultimate Definition defini
tion is quite properly degenerately satisfied, so it does hold "for any X" - even
Nothing!] We can express the cleavage of "Nothing isn't" as:

versus
i.e.,

versus

Nothing is what isn't
Plex is what Nothing isn't
Nothing is what isn't
Plex is what is

- a definition
- a self-definition

The "isn't" of the cleavage is not itself Nothing (it has a self-definition, for if
it did not, there would be no cleavage) and therefore cannot be the Ultimate
Knowledge itself. But it is Nothing-by-definition within the Plex cleavage!
Thus the self-cleavage provides not only the self-defined Plex that is, but couples
it to its very own Nothing boundary that isn't!

The isn't boundary of Plex is a perfect model of the Ultimate Knowledge,
where M models A if M answers questions about A. To the extent that any

62 Douglas T. Ross

question about A is (correctly) answered by M, M models A. For the Nothing
boundary, the answer to any question is Nothing - so it perfectly models knowl
edge of the Ultimate Knowledge, i.e., the knowledge of Nothing. Since Nothing
is known without definition, it is Plex itself that is (self-)known by the First
Definition. Thus Plex is complete as to knowledge-by-definition.

2.5.2 Possibility and meaning

There is no one best or fixed definition sequence for Plex, for other definitions
may intrude between the First Definition (and sometimes even before it!) and
any other definition. But there is special interest in the Possibility Definition
sequence, for it ensures that the science that evolves in Plex concerns only that
which is possible. By definition, any impossible imaginary-world's definitions and
derivations, however elaborate and intriguing the imaginings they yield may be,
are synonymous with "Nothing"! Thus there is only one reality - the reality of
possible realities - which is called Actual Reality. It self-defines itself, so there is
only one - and this is it! - with us in and of it, understanding our understanding
of it through Plex. So here is the Possibility Definition:

A possibility is that which may (but need not) be.

If it is, it is non-Nothing; but it may be Nothing, while still being (merely)
possible. We may think of the may be and the may not be of a possibility as
the two states of that possibility. The coupling between the Possibility Definition
and the First Definition is apparent, for these states match the is versus isn't
(self-) cleavage of Plex. So Plex itse/fis a possibility.

Meaning is the essence of understanding, whether verbalized or not. The
Meaning Definition couples directly to the Possibility Definition and is mar
vellously subtle:

A possibility is meaningful, by definition
- its meaning being its possibility.

Thus Meaning is a possibility; for even if meaning is Nothing, meaning still
is possible. (Nothing cannot be, so the Nothing/not-Nothing dichotomy is the
impossibility /possibility dichotomy.)

Meaning is the essence of understanding, and language, when used for com
munication, is the conveyor of meaning. A meaningful thought is thought, is
written down so that it can be mulled and checked, and then is read aloud as a
spoken message - a signal which is received, is perceived as meaningful, is writ
ten down and mulled and checked, and thereby is understood as meaningful
thought. That is a complete model of how meaning is communicated from sender
to receiver. The model is totally recursive, for in thinking, the sender and re
ceiver are one, and memory is the vehicle for the written-language mulling and
checking.

To apply this model to the study of Plex requires that the simplest possible
(and therefore the most general) Language of Thought Itself be defined

2,5 From Scientific Practice to Epistemological Discovery 63

so that it couples naturally to meaning as already defined by the Possibility
Sequence of Plex, It takes both written and spoken forms, The crucial step is the
(Co-)Definition of the Possibility of Inequality:

For thoughts that are "equal",
their quality is their equality;
Nothing is their inequality,

For thoughts that are "not equal" ,
Nothing is their equality;
they themselves are their inequality,

The quality of a possibility is the superposition of its possibility with its
meaning, so the reference to ''themselves'' for inequality, above, provides the
inherent coupling of these thought-language definitions back to the self-definitions
(of various "itself's"!) of the Possibility Sequence of Plex, By careful work, the
definitions rigorously prove the following scenario: Because of the impossibility
of impossibility, only Nothing is only Nothing, while all else is not only Nothing,
This is the possibility of possibility, It is because of the possibility of possibility
that the impossibility of possibility is not merely Nothing but is the Nothing
possibility (which is the possible Nothing) of possibility, but this is the only
possibility of impossibility (which it also is),

Thus the possibility/impossibility dichotomy provides

impossibility of impossibility Nothing

{
impossibility of possibility } "N th'" I

'b'l't f' 'b'l't 0 mg ,name-on y POSSI I I Y 0 Impossl II y

'b'l't f 'b'l't {non-Nothing and POSSI I I Y 0 POSSI I I Y t I no -name-on y

possibility

The surprising (perhaps even amazing) consequence of all this is that

Although
and
the

meanzng may be Nothing
meaning of meaning may be Nothing
meaning of meaning of meaning cannot be Nothing!

This is a direct consequence of the fact that, by the definition of "possibility"
given,

Although a possibility may not be, by definition,
and the impossibility of impossibility can not be,

the possibility of possibility can't not be!
- leaving actually only the sole possibility, which is

the possibility of possibility of possibility!!!

The possibility of possibility does not satisfy the definition of "possibility" ,
and therefore is not a possibility (even though the reading of this expression for

64 Douglas T. Ross

it sounds like it is one) - for it has no may not be state! It is what is called
"verity" , in Plex - the ontological equivalent of the "tautology", which is a
logical expression which evaluates to True regardless of the values of its variables,
whereas a verity is what it is, regardless of its constituent quality. (Ontology is
"theory of being".) Thus the sole possibility is the possibility of verity, and
we can understand that all non-Nothingness (which is Plex, with us in it) is the
natural elaboration-by-definition of the may be state of that possibility - the
self-knowing of Plex!

2.5.3 A personal note

Plex is my very life - and has been all along, I suspect. From a creative and in
quisitive childhood, sampling all the arts, crafts, and sciences, through a strong
liberal-arts background, to pure mathematics and electrical engineering - I found
myself swept into the very exciting dawn of the computer age in my first graduate
student summer job, in 1952. Just as my marriage to Pat in the January break
of my senior year at Oberlin had been the perfect choice, my change to part-time
Special Student status, while embarking on my full-time professional career at
MIT, can be seen as inevitable, when viewed from today's vantage point. There
is an exquisite economy in the doings of nature, and for a long time, now, I have
been firmly convinced that, whoever I may really be, my role in the scheme of
things has been to initiate the discovery of Plex, not by chance, but as what I
do, simply because I'm me.

I have received great gratification, satisfaction, and some occasional welcome
recognition for a reasonably successful career, to date - academic, professional,
entrepreneurial, and simply personal. But my understanding of all that is that
at each stage, what I was doing in working so hard with and through others,
fulfilling each other as we did so many exciting and worthwhile things, was
merely the then-current vehicle for a single, ongoing process of living through
the discovery of Plex [my survival (living-through), my livelihood (living
through), and my life itself (living, through ... »).

From early childhood, I often have been more aware of and interested in how
I went about solving a problem than about the problem itself. We all go through
that stage - the crude distortion of the crayon drawing is inconsequential, ex
cept as evidence of the accomplishment! In my work, I found that my greatest
success came when I could envision a generalization, solve it, and apply that
"systematized solution" to the special case at hand. When the generalization
applied only as a crude distortion, that was inconsequential, for the elegant spe
cific solution was lasting evidence of accomplishment. In my early programming
work on the MIT Whirlwind Computer, a pattern of solving large and complex
problems by an intimate mixture of many small simple solutions, logically con
trolled by adaptive parameterization emerged. Building languages and tools for
an interactive man/machine problem-solving environment and applying them to
massive data reduction, to the APT System for programming numerically con
trolled tools, and then to Computer-Aided Design (CAD) required innovations

2.5 From Scientific Practice to Epistemological Discovery 65

in every aspect of what now are called Computer Science and Software Engi
neering. In the white heat of that fecund and stimulating environment, and with
my background, being a pioneer came naturally.

By the late 1950s I had coined the name "Plex" for my philosophy of problem
solving, and was actively using it to devise and explain our solutions in these
many areas. I stressed that data + structure + algorithm could model and solve
any problem. Applying Plex principles (molecular structures are built step-by
step from atomic beginnings) to the subject of language yielded my Algorithmic
Theory of Language (ATL), which soon was followed by methods and tools for
generating specialized problem-oriented languages to order. By the late 1960s
we had a complete Software Technology, with many active users, and were boot
strapping the AED System (Algol Extended for Design) to a variety of large
computers.

In 1969 I and key colleagues left MIT to found SoITech, Inc., now grown to
a public company of some 600 people, nationwide. In the early years we con
tinued to extent our tools, methods, and skills into new areas. By delegating
to others, I remained very active technically, and my Plex research led to the
new field of Structured Analysis, as the primary vehicle for a new thrust
into Computer-Aided Manufacturing (CAM). The basis for SoITech's SADTTM
Structured Analysis and Design Technique (and its government-promoted ver
sion, IDEF-O), it was the last widely-accepted offshoot of Plex development, and
also the source (since 1974) of my personal focus on the philosophical fundamen
tals of Plex.

I have skimmed through this litany, here, because I think it is important to
realize that Plex is not some weird, personal eccentricity of mine, but comes from
this long history of practical achievements. No sudden career change turned me
toward outlandish obscurity, seeking to explain the universe itself, on a whim.
It simply is that from all these years of focus on what is going on behind the
scenes, I have discovered that nothing can (or need) be left out! In fact,
although I don't know where the actual working papers are in my files, it was
precisely that pun that thrust me into Plex fundamentals from my early study
of Structured Analysis fundamentals!

I was attempting to use SA to model its own semantics and had derived a
hexagonal (or cubic) model of the interfaces of its three interface types. ["You
can't design an interface from only one side" is an old maxim of mine!] I finally
became convinced that one of the six must be Nothing! I had both I.) Nothing can
be left out (yielding the hexagon), and 2.) Nothing isn't - i.e., that one compo
nent is left out! (in the interpretation of the hexagon) so it must be a pentagon!
Shades of Bucky Fuller's geodesic dome! - said I, but was unable to complete the
connection, then - and thousands of C-pages later [chronological working pages,
this one being C8849], my discovery of Plex fundamentals continues to this day!

The early C-pages are a swirl of varieties of word-, picture-, and combined
language models (some in eight colors, and of startling beauty) as I have pursued
my quest seven days a week in every available moment snatched from my other
activities. Some are pure poetry, when only words are rich enough to carry the
ideas - and every model is full of puns (verbal, visual, and conceptual), for nature

66 Douglas T. Ross

has no structure, allowing all possible structure. Most of these early and hyper
elaborate models I developed purely through the elegance of their structure,
simply marveling at what they disclosed, with only the faintest glimmerings
of what they might mean. They spewed forth from me, whole, unbidden, and
complete - self-stopping - and only years later would I come to understand them
or even believe the interpretation I then could give. It sounds spooky, I know,
and it has taken me a long time to get used to it, but as I said - I live Plex, and
seem to have done so all along.

So as the 1980s rolled around, with SoITech growing rapidly, going public
in 1981, and my extracurricular Plex research becoming increasingly productive,
but more esoteric, I became aware of an increasing sense of responsibility to
both my local circles and to the world at large to focus on what only I could do,
while gradually releasing what reins I still held, letting others do things more
their way, and accepting the results. In 1985 I slashed my SoITech income, so
my Plex research would not be a burden on the company and was welcomed
back at MIT as a (paid only if I lecture) Lecturer in the Electrical Engineering
and Computer Science Department, so I now wear two hats. But it has turned
out that even MIT is not yet ready for SA much less Plex, so my main focus
continues to be on the research itself, as I generate book after book on Plex in
my office at home, in order that Plex will be ready when the world is ready for
it!

2.5.4 The rigor of Plex

Although I miss the bustle of actively leading and inspiring others, and it is lonely
working entirely alone, I am content. With no readers for the last several years,
I progress at my own maximum pace. I am my own best critic, and although
I seldom make blatant errors, the repair of each weak point invariably leads to
still deeper insights and results (sometimes a whole new book further interrupts
completion of the others). By now I am very good at what I do, and post-1985,
I know why things work out so well, which adds to my confidence in Plex.

To my surprise, in 1985 I discovered that the reason my methods worked
so well was that, although I hadn't realized it, I was practicing precisely the
standard, accepted rigor of formal systems - but backwards! The key concept
(going forward) is that of providing a valuation for linguistic expressions by
providing a "Satisfies" predicate, linking them to the structured model. Only by
thus linking language and model, can questions of completeness and consistency
be addressed - and that is as formal as any formal treatment gets! I
do just the opposite. For Plex, the model comes first, and the language is only
and precisely the minimum necessary to express just what shows in the model.
A sequence of models, each related to the earlier ones, builds up a rich formal
language capability and a very deep understanding - all supported by the models,
in which the definitions can be checked and rechecked in every detail.

It is necessary that only Picture Language Models (PLMs) be formally
shown. No-Rule Seeing of the Picture ensures that every relation that shows

2.5 From Scientific Practice to Epistemological Discovery 67

is a Language element, but there is no separate translation into other terms
to obtain the meaning, for it is what shows - Modeled by the picturing itself.
Only with both seeing and saying matched so that meaning is modeled
(using the definitions given earlier) is a picture a PLM. Multiple modelings
(word and picture puns) are inherent and intentional, by the Plex Paradigm
(from the little-known alternate meaning of the word: paradigm (n) 1: Example,
pattern 2: An example of a conjugation or declension showing a word in all its
inflection forms. [Webster's 1961 Unabridged)). Because of No-Rule Seeing, the
scene presented by any PLM is the superposition of all possible meanings, any
one of which may be selected for study.

The important point is that Plex is not merely just as rigorous as the accepted
level of rigor for formal systems; Plex is not informal in contrast to these formal
systems (in spite of the seeming-informality of the word-play inherent in Plex).
The rigor and formality of Plex is the accepted formality and rigor - just
viewed and carried out backwards, or in Plex terms - opposite but the same!

2.5.5 Scope and relevance of Plex

Pursuit of the deep foundations of Plex leads inexorably to the rigorous PLMing
of language, meaning, and thought, itself, at one pole (with which this essay
began), through counting (which must be defined) and all of mathematics, to
the physical spacetime reality ofthe universe, itself, on the other. Many startling
insights result, such as this question and answer regarding the information of
Information Theory:

How many binary digits are required
to encode one bit?

Answer: 3/2
because the value of the half-bit is 3/4 !!!

- which ultimately results from the fact that in actuality, when you don't have
something, it is not the case that you have it but it is Nothing - it is that you
don't have it; whereas when you do have something, that is because you don't
have what it isn't! In the original Plex cleavage, "Ah got plenty 0' Nothin', an'
Nothin's plenty fo' me!" - for there, too, those are opposites that are the same!
For that stage, the Plex saying is:

< it > is Nothing but a < nothing> named "it"

where "it" is our name for whatever currently is relevant « all of relevance>
is < it. >, where word is the Plex quotation notation for the concept of the word
whose name is "word", with the meaning < word>). Here is the

Definition for "not it" :
Given< it. > , < it > , < not it > -

only < not it > is
every meaning other than its name.

68 Douglas T. Ross

A consequence of verity (which can't not be) is that, for any "it", when < it >
is required in order for < 11 > to be what< 11 > now is (loosely, when its time
has come!) - there < it > is! Physical time progressing forward in an expanding
Ulllverse IS a consequence.

The reason that the bit has value 3/2, rather than the (perhaps-)expected
value, 1, is the same reason that there only is reference sequence, rather than
reference alone or sequence alone, in Plex. In both cases, reality intrudes! The
"extra 1/2" value quantifies the contextual coupling of < it > to < 11 >, when
we point and declare "That's it!". To be actual, such a reference must persist in
spacetime [actually, at the deepest, thought-only level, in what I call "thime"
- the foundational level where place-like (there) and time-like (time) coincide],
and a fact of Plex is that there was no beginning, as each < now> similarly
is coupled to its < before < now > >. All follows from that First Definition:
Nothing doesn't exist - the ultimate, driving, creative breaking of symmetry.

2.5.6 The meaning of any word

I close with the Plex resolution to Plato's ideals ["general objects", in modern
parlance] - which is the way that (and why) meaning works:

Let each use of the meaning of any chosen word be synonymous with "point",
l.e.,

Let < point> = < any word >.

Then the following propositions are to be proved:

PI) Let points be such that, except for identity,
they all are indistinguishable.

P2) Let there be only points.
P3) Let the world be the collection of all points.
P4) Then the identity of a point is the collection of all other points.
P5) And every point is the whole world.

[P4 can only begin with "Then", so all follows from the "Let"s of PI -P3 !]

2.5.7 Proof that every point is the whole world. (P 5)

I n = 1: A world of one point is the whole world.
II Assume the theorem is true for (n - 1) points. (n > 1),

i.e., for any collection of (n - 1) points, every point is the whole world.
III To prove the theorem for n points given its truth for (n - 1) points

(n > 1)
(a) The identity of anyone point, p, in the collection is a collection of (n

- 1) points, each of which is the whole world, by II.
(b) The identity of any other point, q, i.e., a point of the identity of p, is

a collection of (n - 1) points, each of which is the whole world, by II.

2.5 From Scientific Practice to Epistemological Discovery 69

(c) The identity of p and the identity of q are identical except that where
the identity of p has q the identity of q has p. In any case p is the
whole world by (b) and q is the whole world by (a).

(d) Hence both p and q are the whole world, as are all the other points (if
any) in their respective identities (and shared between them).

(e) Hence all n points are the whole world.
IV For n = 2, I is used (via II) in lIla and IIIb, q.e.d.
V Q.E.D. by natural induction.

NOTE: In the Fall of 1984, a Graduate seminar on Plex was offered in the MIT
EEjCS Department, but soon ceased for lack of student interest. That was the
first public presentation of this 1975 proof . Because counting and the natural
numbers do not exist in Plex foundations, but must be derived, the preferred
proof for Plex uses the See and Say PLM methodology (- disclosing each point
to be a viewpoint, in and of the world).

2.5.8 Coda: We must understand our understanding
of the nature of nature

This is more than a mere play on words. It would be presumptuous if
not preposterous to say "We must understand nature." Even the more
reasonable goal to "understand the nature of nature" , in which we would
settle for studying the properties of reality without, perhaps, having
any real understanding of the (theological?) purpose or deep meaning
of existence, is too presumptive. In fact, most ontological studies, in
whatever field they may be based, seem to suffer from this over-reaching
of what seems to be our station in the scheme of things. Only when the
goal is made two layers removed and only when it is personified with
"we" and "our" do we arrive at a proper stance. We are, to be sure, in
and of the world of nature, but quite literally, the world is what we make
of it. Not what we make it, but what we make alit. We cannot foist our
viewpoint on nature, but without a viewpoint, there can be no nature
for us.
Nature itself seems hard enough to understand, for it has a habit of
overturning each successive and, up to then, successful theory or science.
Our understanding is itself a participant in nature, and certainly one of
its least-understood aspects. Why, then, set that as the primary goal?
It would indeed be presumptuous and foolhardy to approach the matter
biologically, attempting to study brain and mind as a scientific exercise.
But there is another path open - one that, when it is pursued, shows
surprising promise and progress relative to the effort spent thus far.
In this brief essay I sketch the opening steps along this path, in the hope
that others will join in the exploration. The primary style of approach is
not to make a frontal (prefrontal?) attack on our understanding of un
derstanding, but rather to assume, until forced to think otherwise, that

70 Douglas T. Ross

the fundamental nature of nature must be simplicity itself - that the
rich complexity that is so apparent is an artifact of sheer magnitudes.
The known measurements of physics show that there are roughly the
same number of powers of ten above us (to the cosmic reach) as there
are below us (to the depth of sub-atomic particles). We (i.e., man and
his sensory world) are in the middle of a vast scale of complexity. We will
assume that that complexity is merely fantastically profligate simplicity.
We will assume, until shown otherwise, that if there be a "law of na
ture", that there is just one law, and that it operates intact and in toto
throughout this vast scale. We seek to understand our understanding of
that law, and if the law is to be simplicity itself, then so also must be
our understanding.
We must take nothing for granted. And I mean that exactly and literally.
We must and do take the non-entity as our starting place. We adopt a
posture of aggressive humility, lower our head, and step off along the path
starting from nothing at all. In no way intending to play God, and always
open to changing our stance and direction when forced to, nonetheless
if simplicity it is to be - then there is nothing simpler than nothing. So
that is where we start. Then, if we are indeed careful with our reasoning
at each step, so that we truly do understand our understanding in toto,
then whenever we encounter some aspect of the nature of nature that
goes counter to that understanding, we can retrace our steps and know
exactly what must be altered to proceed.

That was issued April 1976, referencing "some views, tested and still evolving
over a twenty-year period", even then. In this current essay, I have done my best
to present my most recent view of the opportunity of Plex, in the hope that it
can become a proper part of the agenda for the future. It is a completely rigorous
scientfic philosophy, by now, and I feel an intolerable burden ofresponsibility to
still be the only person in the world (to my knowledge) pursuing it, in spite of my
efforts to enlist others even as responsive readers. I expect that most readers also
will not know what to make of my current effort, and will opt not to invest the
time and effort to respond. But I hope that at least some reader someplace might
accept the challenge to join me in this work which I think is very important.

* An annotated bibliography of writings on Plex may be obtained from
Mr. Ross c/o SofTech, Inc., 460 Totten Pund Road, Waltham MA 02154 or
c/o MIT, Cambridge MA 02139.

Part 3

On Reality Construction

3 On Reality Construction 73

Christiane
In this part of the book, we take a look at constructivist thinking. But
without attempting a comprehensive treatment - or even a systematic clas
sification - of different constructivist approaches.

Heinz
What emerges is not a coherent picture with a clear message. Just as in the
illustration, the reader finds here building blocks and facets which he himself
must put together in order to construct his own picture.

Reinhard B.
It also becomes apparent that when using the term "reality construction"
one may have in mind quite different schools of thought whose common
features and whose interaction with other philosophical schools cannot be
fully dealt with here.

Reinhard K.-S.
To my mind, that smacks too much of Dadaism: everything is possible, and
what already exists is negated. What about Radical Constructivism, for ex
ample, which we originally took as a basis for our work. As far as the different
approaches are concerned, I see a thematic break between the first two chap
ters of this part - which belong to Radical Constructivism - and the third
chapter dealing with social reality construction and treating the theme on a
much broader basis.

Christiane
I have come to the conclusion that Radical Constructivism does not exist
as a single well-defined platform, but merely as a lively discourse of views
between individual authors differing from one another in a number of impor
tant points. This I consider a direct consequence of constructivist thought.
Given the fundamental importance of the observer here, every constructivist
position reveals itself as tied to the individual observer. Moreover, we are
primarily concerned with the emergence of insights, not with ready-made
positions.

Reinhard B.
At all events, Constructivism did playa special role in the preparation of
the conference and this book. To begin with, it was important for addressing
potential participants, but then it became the subject of harsh criticism itself.

Heinz
You are referring specifically to Maturana and to Winograd and Flores'
adoption of his ideas. He is the first to come to mind when talking about
Constructivism. But his approach with its biological basis fails to give ad
equate consideration to social aspects. This is also pointed out in some of
the other chapters of this book. None of the authors borrows directly from
Maturana.

74 3 On Reality Construction

Reinhard B.
Christiane's dialogue with Heinz von Foerster and her own separate con
tribution are concerned with cybernetic approaches in applied epistemology
tailored here to illuminate the process of design.

Heinz
As one of the key authors of Radical Constructivism, Heinz von Foerster
has developed the principle of self-organization and applied it to the social
sphere. Unlike Maturana, though, he does not emphasize the closedness of
systems in the sense of autopoiesis, but rather their embeddedness in their
respective context.

Christiane
For him, the dialogical involvement with others is of crucial importance.
This means that interpersonal reality and also the ethical dimension of our
actions are always taken into account.

Reinhard K.-S.
Drawing on these ideas, Christiane views software development as design.
She describes design as a self-organizing, dialogical process in the course of
which a gradually materializing web of design decisions is stabilized.

Heinz
Design is seen here as an insight-building process. Other facets of design are
taken up in later chapters of this book.

Christiane
In contrast to this, Bo Dahlbom's contribution looks at reality construction
as a comprehensive social process, examining the overall social context in
which software development takes place. He shows how the idea that reality
is socially constructed finds expression in the two great modern philosophi
cal movements, the Enlightenment and Romanticism. The interplay between
these two movements, evolving dynamically up to the present day, constantly
creates new conditions under which reality emerges and technology is devel
oped and utilized. To master it, though, political action is required. And
here, too, the limits of constructivist ideas become apparent.

3.1 Self-Organization and
Software Development
Heinz von Foerster and Christiane Floyd

c. Heinz, since I first sought you out in my quest for epistemological founda
tions of software development, I have enjoyed finding myself in continuing
communication with you. In the course of our conversations off and on, my
original topic has gradually evolved and taken shape between us. But we
have also touched on more fundamental issues such as the nature of human
understanding and our dialogical involvement with others. I have learned
with great profit to appreciate your ideas and apply them to my fields of
interest.
You have also taken a strong hand in shaping the conference on which this
book is based. We opened the scientific programme of this conference with a
dialogue, which is the basis of this paper. Later we have decided to arrange
the paper in the form of a dialogue.
I think, we need to make explicit that the resulting text is not itself a dia
logue. It is an arrangement of sediments from our actual dialogues designed
by us so as to please our readers. The actual dialogue processes take place
between the lines. Do you agree to that?

H. No, rather above the lines. Floating. The spirit of your conference. And
whatever lines you include in your final product, the book, you will not be
able to hide from readers our affinity, the engine that is driving our dialogue.

c. I am very happy to acknowledge this marvellous affinity between us.
My main concern is to explore with you the relevance of your approach
to constructivist thinking for understanding software development. The key
notion here is self-organization. Heinz, I would like you to say a few things
about self-organization.

H. Christiane, you have self-organized me already before the opening of this
conference so carefully that I felt I had become your constructed reality.
And I can understand you well, for this conference was for you, as I sense it,
not only an affair of the mind but also of the heart. When you invited me
to participate, I must confess I had no idea what role you thought I might
play. But when I saw your programme, the people I would encounter, the
place where we would meet, the topics we would discuss, I felt that, for me
too, this would become an affair of the mind and of the heart.
Therefore, before I get to the historicals and the scientificals concerning the
notion of self-organization, let me take care of my sentimentals.
It is 40 years now since Norbert Wiener's Cybernetics was published, and
it is only a few months less since I met this extraordinary and modest man

76 Heinz von Foerster and Christiane Floyd

in the flesh, together with John von Neumann, Gregory Bateson, Margaret
Mead, and so many others of the creme de la creme of American science.
It was at the now legendary Macy Conferences on "Circular-Causal and
Feedback Mechanisms in Biological and Social Systems". I had arrived in
New York perhaps two weeks before this conference, and my English vocab
ulary comprised not more than 25 words. Since I even had difficulties just
to pronounce the title of the conference, I found a moment to suggest to
the group a shorter title, namely to call it "Cybernetics", with the sub-title
"Circular-Causal and Feedback Mechanisms ... " etc. Everybody accepted
with applause this proposal which paid tribute to Norbert Wiener; and he,
deeply moved, left the room to hide his tears.
I am telling this to you as if it were yesterday, but none of these people are
alive today; I am the only one here to tell the tale. When I reflect upon this,
I feel as if I were a living fossil who was there, and who can tell you now
how it was and what we thought would become of it.

C. I would like to take the opportunity to pay tribute to you and gratefully
acknowledge your contributions to our conference. In fact, the phrase liv
ing fossil, coined by you to refer to yourself, was later taken up by many
participants with love and admiration. But go on with your story about
self-organization.

H. For me the notion of self-organization is deeply embedded in that of cy
bernetics and vice versa, but I recognize that many others do not feel that
way.
In my case, I can easily trace my sense of the complementarity between
cybernetics and self-organization to my fascination with the logic of cir
cularity, along the lines of circular causality, recursive functions, closure,
self-reference, paradox or, in its modern cloth, non-linear dynamics, chaos
theory and others. I see these conceptual buds popping out at various times
from the main body of cybernetic thought.
As I said before, my enthusiasm for circularity was not equally shared by
all of my early fellow cyberneticians. When the organizers of the Macy Con
ferences on Cybernetics asked me to write a preface for the transactions of
these conferences!, I jumped at the chance to celebrate the peculiarities of
circular causality.
Circular causality - in contrast to orthodox, linear causality - can only be
perceived to operate within a two-dimensional manifold. But, surprisingly,
instead of having gained a degree of freedom from this dimensional expan
sion, we have lost one, for now the value of the end must be the same as
that of the beginning. This condition has the amazing consequence that,
very much like in Schroedinger's wave equation whose solutions assign to
the electrons in an atom certain discrete orbits around the nucleus, it carves
out from an infinity of potential solutions a finite set of actual solutions. The
convergence towards these dynamically stable solutions reduces the spectrum
of possibilities and uncertainties: order emerges.

1 [v. Foerster et aI., 1949]

3.1 Self-Organization and Software Development 77

1 remember the unhappiness of my editorial friends who found my flight of
fancy too esoteric, and who persuaded me to write with them a more down
to earth (I thought, a somewhat pedestrian) piece.
You can now imagine how much 1 enjoyed meeting Gordon Pasko
Your conference marks, almost to the day, the 30th anniversary of my first
meeting with Gordon Pasko It was at the Deuxieme Congres International de
Cybernetique in N amur. After my presentation, people came up to me raving
about an extraordinary leprechaun who opened up new vistas on cybernetics,
teaching and learning. Searching through Namur, 1 finally found him in a
coffee house surrounded by a swarm of the curious and inquisitive, listening
attentively. I wormed my way through the crowd, and after a few minutes
1 knew why they were listening; and after a few sentences of our dialogue,
1 knew I would ask him to join us at the Biological Computer Laboratory
at the University in Illinois. Thus began my friendship with Gordon Pask, a
friendship that will last to the end of our lives.
The following year Gordon was with us in Illinois, and because of his kalei
doscopic contributions to the concept of self-organization, he was nicknamed
"Mr. Self-Organization". This period, and others that followed, were most
productive for all of us. Gordon wrote several seminal papers2 and then, of
course, there are his wonderful drawings for my order from noise principle3 .

c. This was 30 years ago, you say? What has happened in the meantime?

H. A lot! For instance, the preparation of this conference. You perceived that it
was to become a self-organizing system, a process that would establish new
links, may they be personal, social or conceptual; that would generate dia
logues during the conference, generating in turn meetings, seminars, groups,
and I don't know what else, and you don't either! Nobody would have dared
to think that way 30 years ago.

c. To me and to my co-organizers it still seemed quite daring to think that way
today. And we had little guidance when putting this thinking into practice.
As far as I can see, there is a gap between the ideas on self-organization
presented by you and others in the literature, and the level of concreteness
required for basing our actions on these ideas in complex social endeavours,
such as conducting software development projects or organizing this confer
ence. When preparing it, we had to find ways to bridge that gap, relying
essentially on our intuitive understanding, on our loyalty to one another and
our willingness to take risks.
But then you accused me - or should I say made fun of me - for having
"self-organized you" before the opening of the conference.

H. 1 meant to make fun of you, not to accuse you of having self-organized me.
In fact, I wanted to make fun of both of us for self-organizing one another
by using the ambiguity of this very notion that sets the notion in motion.
It is the act of "priming the pump" , of the "initial ignition" , of the "initials"

2 [Pask, 1960, Pask, 1962a, Pask, 1962b, Pask and v. Foerster, 1961]
3 [v. Foerster, 1960]

78 Heinz von Foerster and Christiane Floyd

as Francisco Varela would say4, the ''first distinction" as George Spencer
Brown would say 5, or "nucleation" as Gordon would say.
This is one of Gordon's important points: one must have (if one is a construc
tivist) or there must be (if one is a naIve realist) nuclei for self-organization
to take place at all. Clouds are self-organizing systems, but for the individ
ual water droplets to form, they need particles, dust, ions, or whatever, as
nuclei for condensation: the seeds. All the participants are the seeds for your
conference and, as an old self-organizing systems conferencier, I know that
they are very fine seeds indeed.

C. Yes, we are quite confident of that, too. However, the way you speak about
self-organization just now, illustrates only too well my difficulties in trying
to gainfully apply this notion to social processes.
You draw an analogy between a cloud and the interactive processes amongst
the collection of people gathered at a conference (it might as well be the col
lection of people involved in software development) pointing out similarities
in terms of the capacity for self-organization.
To me, the dissimilarities between these two assemblies are so profound, that
I find it difficult to draw fruitful conclusions from the analogy. Viewed as a
system, a cloud - belonging to the non-living world - is quite different from
a collection of people interacting in a given context.
Also, my relation to these two systems is radically different: I am a mere
observer of the cloud, but I am a participant in the social processes at this
conference. In fact, with my co-organizers, I have created the conditions in
which these processes can unfold. While I can make a description of the
cloud, I take a share in how the processes at this conference actually come
about. Nucleation must mean initiating processes between people here.
And in saying that I have self-organized you, you even go a radical step
further: you apply this notion in a dialogical sense between you and me.

H. There were in these 30 years many developments in the way we look at
the notion of self-organization and in the way this notion itself acted - and
still acts - as a catalyst upon fundamental transformations of our theory
of knowledge. You have illustrated some of these developments by drawing
your distinctions just now.
In the early days of euphoria, when we thought we had "discovered" this
fascinating notion of self-organization, we 'directed all our attention to the
assessment of organization, and didn't pay any attention to the assessor, or
to the semantic booby traps that are wired into the concepts of self and of
organization as well.
For instance, I have become only recently aware of the pun latent in "self
organization" . For I may talk about that critter over there who - as it looks
to me - is now self-organizing, but it could also mean that it is I who am
organizing myself. Let's talk about the critter for a moment, and of his

• [Varela, 1975]
5 [Brown, 1969]

3.1 Self-Organization and Software Development 79

magical feat to organize himself, and we shall see that we are, in fact, talking
about our own magical powers to organize ourselves.
When we use the verb "to organize" in connection with self or something
else, we imply that the organization of that something changes, usually from
lower to higher states of organization. We also imply that organization is
measurable.
The two components that come to mind, when one thinks about more or less
organization, are complexity and order. In the Jurassic period of the infor
mation age the dinosaurs at that time jumped at the possibility of defining
a metric for order based on its close conceptual relationship with its meas
urable cousin redundancy.
Since redundancy goes from 0, for perfect chaos, to 1, for perfect order,
let redundancy and order stand for one another interchangeably. That is, if
by knowing one thing about an organization you still know nothing about
the rest of it, there is chaos, redundancy is 0; but if by knowing one thing
about an organization you know it all, this is the perfect state of order, it's
paradise: redundancy is 1.

C. But Heinz, I find this confusing. You are now using terms from physics and
information theory, as you do in your original paper on self-organization6 . I
can follow your argument on its own terms, but it's not obvious to me how
it applies to the critter. And, when thinking of the social world, this is a
horrific prospect. In your state of perfect order there is no freedom of choice:
this is hell! How can you call it paradise?

H. Don't forget that I'm talking about the insights of the dinosaurs of the
information age and, please, ignore the labels "chaos" and "paradise" for
the time being. Look at the numbers 0 to 1, disorder to order, and allow me
to use the language of physics a little longer.
As you know, redundancy goes up when entropy goes down, but the Second
Law does not allow this to happen in a thermodynamically closed system.
Hence, self-organizing systems must be open to let the flow of energy activate
potential organizational changes. And what you need to pay attention to is
that, when the system's maximum entropy goes up, redundancy, i.e., order,
goes up as well. Since maximum entropy is connected through the logarithmic
function to the number of distinguishable states of the system, this implies
that the number of distinguishable states of the system increases.
Going back to the critter, this means: By distinguishing other, additional
states, that is, by calling upon my cognitive skills, by drawing more distinc
tions, I, the inventive observer, am constructing a new reality, now inhabited
by a system, or better, by a critter who is more organized, yet even richer
in his possibilities than he was before.
This doesn't sound like paradise. But it seems to me to be more interesting.

c. It seems to me, you are saying that your understanding of the critter is
richer: it allows for a greater richness of the critter's possibilities You don't

6 [v. Foerster, 1960]

80 Heinz von Foerster and Christiane Floyd

appear to be saying anything about the critter himself, independent of your
understanding of him.
Meanwhile, I am determined not to lose sight of my concern for understand
ing and conducting social processes such as software development or the
organization of this conference, in terms of self-organization. We need to
return to this later.
But first tell me: Why don't you say anything about what the critter is?

H. This would be arguing along the lines of ontology. I bring up ontology here,
because you will get the argument from ontology again and again. It is the
argument from "as things are", or "as it is", as if one could ever find out
what is. The flavour ofthis argument has not changed since the 17th century,
when the primary "it" was, of course, God, and the task of the ontologists
was to prove that He is. In the past 200 years that task has changed: the
"it" is now the world, and ontology tells you how the world is.

C. What's wrong with that?

H. That you can't do it.

C. Why not?

H. Because I can only speak about my experiences, they are the primary cause.

C. And the world?

H. And the world is the consequence.

C. How do you see then the connection between what you call the primary cause
and its consequences?

H. That is the epistemological question.

C. You bring up a new term here, epistemology. Can you explain it?

H. It is Greek: epi means "up" , "above", and histamein means "to stand"; hence
epihistamein means "upper-standing". The English, apparently, prefer to see
things from below, so they speak of "under-standing"; thus, epistemology is
the science, study, theory of understanding. But since a theory is to provide
an understanding of that what it is the theory of, epistemology is under
standing understanding.

C. I'm not understanding your "understanding understanding"; can you say it
differently?

H. When you asked me for the connection between experience and world, I
would probably have said that any circular process, any recursive process,
when operating on an entity, produces that entity, where these "entities"
themselves can be operations, processes, etc.

C. This is very abstract. You now refer to mathematical notions of recursive
functions as a general basis for understanding mental processes. In order to
concretize your notions, we need to identify the relevant specific processes,
and the entities produced by them in any given field of interest, and demon
strate their recursive nature. - Can you help me by giving an example?

3.1 Self-Organization and Software Development 81

H. Language may be a good case. Ask "What is Language?" and the answer
must have been contained in the question, for otherwise the question could
not have been asked. Moreover, language speaks about itself: there is a word
for language, namely, "language", a word for word, namely, "word", etc.
And then there is of course the hermeneutic circle: the meaning of a word
is established through its context - Zusammenhang, as Frege called it 7 • But
context, in turn, is built through words.

C. Don't you get the argument that this never-ending circularity is a de facto
circulus vitiosus, that it is, in essence, an attention diverter for hiding the
flaw in your upside-down epistemology, where experience is the cause and
the world the consequence, instead of being the other way around?

H. Of course, I'm getting these arguments all the time, and in all shades. And
understandably so. Because it is not more than 20 years ago that the an
cient philosophical rejection of the indefinite regress, an operation that was
believed to lead to nowhere, was replaced by an understanding of recursive
functions that lead indeed to somewhere. They lead to those stabilities that
evolve, emerge, arise, come to the fore, become manifest, for instance, in the
phenomenon language, "as a coordinating agent for actions among convers
ing human beings" as Terry Winograd and Fernando Flores would sayS or
become even objects as I would say9. Objects in the sense that they stand
as tokens for stable behaviours, "Eigen-behaviours" as these stable dynamic
equilibria were then called. Today, however, one speaks of "fixed points",
"attractors", even "strange attractors", when referring to these recursively
stable states.

C. This implies that when applying your ideas to my fields of interest, I would
have to tailor these notions to fit for instance the processes at this conference
or the processes of design involved in software development. I need to look for
the relevant recursive operations in action here and for the specific stabilities
that they give rise to.
The interactions between the participants of this conference may be taken as
recursive operations giving rise to stabilities in terms of richer distinctions
and common insights leading to further interactions.
In the case of design, I have argued that the making and revising design
decisions are recursive operations and the resulting web of design decisions
the emerging stabilities1o .

In doing so, I may find a way of understanding these processes better as
an observer. Even more, I am interested in facilitating these processes as a
participant.

But, let us first continue to discuss your arguments on epistemology.

7 [Frege, 1950]
8 [Winograd and Flores, 1986]
9 [v. Foerster, 1981b]

10 Floyd, Chap. 3.2

82 Heinz von Foerster and Christiane Floyd

H. You spoke about my upside-down epistemology, where experience is the
cause and the world the consequence, implying that there must be a right
side-up epistemology, where the world is the cause and my experiences are
the consequences.
You were right: this is, in fact, the popular, or should I say, orthodox position.
This is the position of an observer who thinks he is separated from the world,
looking as through a peephole at an unfolding universe, and who believes
that he reports unequivocally to us all about this unfolding universe. It is
the delusion of objectivity and truth.

C. You are using very strong words.

H. Not strong enough. By separating oneself from the world, one separates
oneself from others as well. Hence, one thinks that one can, without conse
quences for oneself, tell others: "Thou shalt ... " or "Thou shalt not ... " . Or
take objectivity: "The properties of the observer shall not enter into his de
scriptions." How can this be? Without his faculties to observe and describe,
there would be no descriptions in the first place.

C. And how about truth?

H. Christiane, it's a millipede we are talking about, so brace yourself. Truth? It's
impossible! First, because it is impossible to describe anything unambigu
ously, for it is the listener and not the speaker who determines the meaning of
an utterance; and second, because we can never check the truth of a report,
for nobody knows what is, or was, we only know what is experienced.
No, Christiane, we cannot use this epistemology.

C. So you would say that this is the wrong epistemology. But how can we do
without the notions of objectivity and truth? Does this not imply that every
thing is arbitrary? Do you have an alternative to offer? Is your epistemology
the right one?

H. Wow! Four questions at once! Let me postpone for the moment my view on
right and wrong epistemologies and turn to your question of how we can do
without objectivity and truth.
Since objectivity and truth are only recent inventions, we must have done
pretty well without them before. Aletheia in Greek means "that which is not
obscured" (a not, lanthanein to hide). From the context in which aletheia
appears, one thinks it can be translated with "truth", though "evidence"
may be semantically closer, for here being true is not the opposite of being
false, but of being hidden. There is a fascinating analogy in German where
the word for "perceiving" is "wahr-nehmen", that is "taking-a-hold-or'.l1

C. And when I perceive what is not, is that an illusion, a hallucination?

H. By way of an answer, let me refer to our great perceptologists Francisco
Varela, Humberto Maturana12 and others, who insist that there is no dis
tinction between perception and hallucination. When, in delirium tremens,

11 The root for this word in old German is the now obsolete "wahr" as in "Gewahrsam".
12 [Maturana, 1978]

3.1 Self-Organization and Software Development 83

I see white rats running up and down the walls, white rats are running up
and down the walls. Too bad for the others who don't see them.

c. Did you say earlier that you would give me your view on my question about
right and wrong epistemologies, or did I have a hallucination?

H. I don't know. We have to ask the others.
Be that as it may be, my view on this question is that it belongs to those
questions that are in principle undecidable. The fascinating thing is that
the question: "Is the world the primary cause and my experiences the con
sequence, or are my experiences the primary cause and the world the con
sequence?" is in principle undecidable. It is like asking the question: "How
did the universe begin?" Nobody was there, and there is no way to find out.
Nevertheless, we have many answers: a creation a few thousand years ago; a
big bang a few billion years ago; the wedding of chaos with darkness, whence
everything came forth; etc.

c. You said that these are in principle undecidable questions, and yet you give
me plenty of answers. What is going on here?

H. What is going on here is that it is precisely those questions, that are in
principle undecidable, that we can decide.

c. Why?

H. Because those that are decidable, for instance, "Is 208796 divisible by 2?" we
cannot decide, they have already been decided by the choice of the framework
in which they are asked. However, with in principle undecidable questions
we have the freedom to decide, and with this freedom we now have the
responsibility for our decision.

c. Does that mean, that we have the freedom to decide whether or not we con
sider the world or our experiences as primary; that we have the responsibility
for this decision; and that your stand on epistemology is a result from your
choice, which I mayor may not follow?

H. Precisely!

c. In our daily lives, questions of the fundamental kind you have just mentioned
rarely become explicit as the basis of our actions. Your distinction between
decidable and in principle undecidable questions would have to be drawn on
a much smaller scale. Are there in principle undecidable questions coming
up in ordinary situations?

Looking at software development again, we need to concern ourselves with
questions that may crop up in design. While functional software requirements
tend to be decided in advance by the choice of the framework in which they
are asked, issues of software quality are determined by decisions for which
we take the responsibility in design.

Thus, our way of constructing a reality as inventive observers, the metaphors
we use, the distinctions we make and the flexibility we allow for, give rise to
quite different possibilities for people to interact with software.

84 Heinz von Foerster and Christiane Floyd

Is this a variation of what you once called an ethical imperative: "Act always
so as to increase the number of choices" 13?

H. Of course, very much so. The spirit of this "imperative" is to encourage an
"opening" , a "seeing" , an extension of one's antennas, a refusal to take things
for granted, a questioning of "necessity". Ever since Jacques Monod came
up with his famous book Chance and Necessity14, it has become popular to
think of chance and necessity as the two complementary poles in a conceptual
whole. But the complement to necessity is not chance, it is choice!
You touched on this point just now, when you talked about creating differ
ent possibilities for people to interact with software, about constructing our
reality as inventive observers, about the way we use metaphors and so on.
Christiane, all this is so different from the earlier obsession with telling you
how it is, the ontological thinking. It is quite clear to me that you and
the participants of your conference are not so much interested in what is,
but in what can be created. This explains your pre-occupation with self
organization, with reality construction, with inventing and the like, all gen
erative processes, conceptually linked to the notion of choice.
Listen to one of your philosophical brothers, the existentialist Jose Ortega
y Gasset: "Man does not have a nature, but a history Man is no thing,
but a drama His life is something that has to be chosen, made up as he
goes along, and a man consists in that choice and invention. Each man is
the novelist of himself, and though he may choose between being an original
writer and a plagiarist, he cannot escape choosing He is condemned to
be free "15.

Constructivism and related ways of thinking deal with ontogenetics, the sci
ence of becoming. They touch domains that are untouched, and untouchable
by ontology, the science of being.

c. I remember that when I first gave you my paper on paradigm change in soft
ware development16 , where I point out the complementarity between pro
cesses and products, you immediately brought up ontogenetics, since looking
at design as a process emphasizes how software is made up by us as we go
along, and how we assume responsibility when providing possibilities for
computer-supported action for ourselves and for others. This responsibility
is connected to our awareness that there are human choices to be made in
design.
On a very deep level, you said you make a choice in considering your experi
ences as primary cause and the world as consequence. What persuades you
to do so?

H. This choice connects me inseparably with my world and with others. When
ever I act, not only I change, but the universe as well. Notions of reflexivity,

13 [v. Foerster, 1981a]
14 [Monod, 1972]
15 [Ortega y Gasset, 1961]
16 [Floyd, 1987]

3.1 Self-Organization and Software Development 85

of self-reference that turn on themselves, that preserve the tie between ob
server and observed, speaker and speech, and partners in dialogue, form the
core of this position, and the only commandments that make sense are: "I
shall" or "I shall not ... " .

C. How do you then account for dialogue?

H. When 1 read Martin Buber's Das Problem des Menschen 1 was most moved
by the last paragraph of his book17. When 1 translated it from the German
into English 1 tried to preserve the force and the spirit of the original. May
1 read it to you?

C. Yes, please do.

H. "Contemplate the human with the human, and you will see the dynamic
duality, the human essence, together: here is the giving and the receiving,
here the aggressive and the defensive power, here the quality of searching and
responding, and always both in one, mutually complementing in alternating
action, demonstrating together what is is to be human. Now you can turn to
the single one, and you recognize him as human for his potential of relating;
then you can turn to the whole and recognize it as human for the richness
ofrelating. We may come closer to answering the question: what is human?,
when we come to understand him as the being in whose dialogic, in whose
mutually present two-getherness, the encounter of the one with the other is
realized at all times."

C. 1 can now understand what you meant when you said that 1 "self-organized"
you, and 1 join you happily in acknowledging the dialogical human reality
you refer to. It seems our task, then, to find ways for making this dialogical
reality come to life in all our endeavours, including professional activities
such as developing software.
Clearly, "self-organizing one-another", to put it in your terms, does not re
fer to manipulation and control. Rather, it means to create and maintain
conditions allowing the richness of human relations to unfold in dialogical
networks, with a view to increasing the possibilities of choice for all.
But I must confess that your expression "self-organizing someone" sounds
unnatural to me. We seem to leave the conceptual domain of reality con
struction, unless it be joint reality construction with you, in the sense of
sharing reality in the web of all dialogical relations we find ourselves in.

17 [Buber, 1961]

3.2 Software Development as
Reality Construction
Christiane Floyd

3.2.1 Introduction

Reality = Community
(Heinz von Foerster)

I would like to present a view of software development as an insight-building
process in terms of multiperspectivity, self-organization and dialogue, drawing
on epistemological ideas that have emerged from the discourse in Rational Con
structivism.

I have come to this view in the course of my recent research on epistemological
foundations of software development!, which was motivated by many years of
preoccupation with software development methods in my research, teaching and
project practice. It was during this period, first in industry and since 1978 at
the Technical University of Berlin, that I began to question the validity of the
established models of thought in software engineering as the sole foundation for
our work as computer scientists. I gradually became convinced that we need to
arrive at a sufficiently rich understanding of software development if we want to
facilitate it with methods in a meaningful way.

My doubts apply, in particular, to the following basic assumptions of the
discipline: its view of software development as the production of program systems
on the basis of fixed requirements; the separation of production from use and
maintenance; the division of production into linear phases; the almost exclusive
use of intermediate results in the form of documents; the view of methods as rules
laying down standardized working procedures to be followed without reference
to the situation in hand or the specific groups of people involved; and the one
sided emphasis on formalization at the expense of communication, learning and
evolution. The resulting critique of software engineering has been elaborated in
a number of papers2 .

I will gladly concede that I know of scarcely any author today who still
accepts these assumptions without reservations. They are looked on rather as
ideals that can only be approximated in practice. There have, however, as yet,
been few efforts to develop conceptual alternatives to the established tradition
of thought in software engineering.

1 This research was funded by a grant from the Stiftung Volkswagenwerk enabling me
to spend my sabbatical term in Palo Alto from September 1987 to March 1988.

2 Cf. [Floyd, 1981, Floyd and Keil, 1983, Floyd, 1984, Floyd, 1985a, Floyd, 1987].

3.2 Software Development as Reality Construction 87

One of my reasons for questioning the validity of this tradition were the
glaring contradictions between what it postulates and the reality of software
projects in both industrial and academic settings, despite the fact that many of
these projects were ostensibly conducted along traditional lines. I by no means
wish to contend that the production view of software development is irrelevant.
But it does seem to me to hold only in part - for specific, well-defined partial
goals - failing to do justice to software development as a whole.

Another reason for my doubts about the validity of the established view was
its failure to take into account the quest for quality3 in software development.
Ultimately, it neglects to provide any sort of foundation for human-oriented
system design.

It seems to me a richer view is needed here. And it was this realization
that induced me to seek for suitable epistemological foundations for software
development. Such foundations must help us to understand specific, communally
sustained, coordinated processes of cognition in which different domains of reality
meet. In these processes, abstract - and at the same time highly complex - results
are obtained, and the emergent technical reality of the software is interwoven
with the social reality of its production and use. These processes take place
against a background of social conflicts, changing needs and limited resources
and lead to insights regarding the desired software and its use.

The soundest alternative thought model available, to my mind, is Peter
Naur's view of programming as "theory building" 4, which has been very in
fluential in shaping my own ideas. However, Naur says little about what theory
building consists in. And he does not account for the interpersonal nature of
communal theory building. I

As I see it, software development is, first and foremost, a specific instance of
design. By design I understand the creative process in the course of which the
problem as a whole is grasped, and an appropriate solution worked out and fitted
into human contexts of meaning. To paraphrase Naur: Software development is
an activity of overall design with an experimental attitude5 .

To establish foundations for design, I draw here on epistemological insights
that have emerged from the constructivist discourse, notably on the work of
Heinz von Foerster and Gordon Pask6 . Their ideas are, I feel, particularly con
ducive to understanding the process of software development as design.

In the following section, I begin by outlining the postulates of the established
software engineering tradition, subsuming them under the general term produc
tion view of software development. My aim is to show that these postulates are
of a perspective nature. They were invented from a particular viewpoint to high
light a particular facet, necessarily obscuring others. Which brings us straight
to a key insight of constructivism.

3 A phrase coined by Don Knuth in his reflections on the errors he made in the
development of the T.EX system (Chap. 1.2).

4 See [Naur, 1985b] and Chap. 1.1.
5 [Naur, 1974, p. 296]
6 See Chap. 3.1.

88 Christiane Floyd

In Section 3.2.3, I introduce some important elements of constructivist think
ing and relate them to our present subject. I refer specifically to the school of
thought labelled Radical Constructivism. Of interest to us are the insights it
provides concerning the emergence of knowledge in different areas. Our task will
then be to explain, in the light of these insights, the specific types of cognitive
processes that are important for software development.

In Section 3.2.4, I attempt to elaborate a suitable concept of design for soft
ware development. Design is not primarily tied to predefined goals, but is gov
erned by the quest for quality.

In Section 3.2.5, I then go on to unfold the design space. It consists of the
interlaced domains of reality - application, methods and means of implementa
tion - that are constructed during design. Unlike the production view, there is
no assumption here of a phase-specific, temporal transition from one domain of
reality to another; we are dealing rather with a vibrant structure of ever new
and ever finer distinctions, "dancing", as it were, in time.

In Section 3.2.6, the cognitive processes taking place in design are character
ized as a web of decisions linking together the domains of reality important for
design. The viability of a design decision is determined through its evaluation.
Where feedback is permitted from the evaluation to the design process, we have
closure, the results of design again forming the basis for its further development.
Successful design is marked by a stabilization of the web of design decisions
through revisions.

What we have said so far also applies to design processes carried out by
individuals. In Section 3.2.7, though, we go on to look at communal design
implemented in terms of dialogically organized cooperation. This allows for a
conscious dialogical orientation of design in which the "I and Thou" of software
development is acknowledged in the basic relations "I develop software with
you" and "for you" and implemented in terms of dialogically organized cooper
ation. This orientation directly incorporates the element of responsibility in our
technical work.

In the final section, I examine the way this view affects training, project
organization as well as the development of methods and tools for software de
velopment.

What emerges, in general terms, is a view of design as consisting of interlock
ing, living processes that are sustained by us, that may atrophy, degenerate or
unfold. Their unfolding presupposes both sufficient autonomy of design and the
ability and willingness on the part ofthose involved to engage in multiperspective
reflection.

3.2 Software Development as Reality Construction

3.2.2 Software Development as production - a view and
its limits

89

In this section, I wish to outline what are to me the essential issues and show
how I set about tackling them. A practicable approach to epistemological inquiry
in our domain has been shown by Winograd and Flores 7 . The established view,
the authors argue, only appears to be self-evident to us as long as we remain
within the rationalisitic tradition, which is characterized by them in terms of
its postulates and underlying assumptions. (Actually, we are not only concerned
here with the rationalistic tradition as a theory about our way of thinking,
but also with the realistic tradition as a conception of reality.) This tradition,
however, like any other, involves a certain "blindness" by obstructing our view
to its underlying assumptions.

Winograd and Flores translate the notion of rationalistic tradition into more
concrete terms by deriving from it assumptions relating to different subject do
mains. Related specifically to the domain of software development, it justifes the
following assumptions:

• There is a given reality "out there" which we come across during software
development. By analyzing the facts of this reality, we obtain requirements
for the software.

• The essential task of the software developer is - starting from the problem
defined in that reality - to find a correct solution in the form of a program
system.

• It is possible to separate the production of software from its use. Software
engineering is concerned with the production of software on the basis of fixed
requirements.

• Software production is based on models representing reality. Models should
map reality correctly.

• The whole process is largely independent of individuals. For one and the
same problem, different developers should arrive at the same results. The
developers should be interchangeable.

• Communication should be restricted and regulated via fixed interfaces. The
division of labour can be worked out on an ad hoc basis. Subject to technical
feasibility, any desired parts of the production process can be automated.

• The developer's responsibility covers - only - proper construction of the
product in accordance with the requirements specification. Any ethical con
siderations that go beyond this are quite separate from the technical aspects
of the work.

The view of software development reflected in these assumptions has been in
strumental in bringing about impressive advances in programming methodology,
in generating controllable models for project execution, and in promoting the
development of tools on this basis. It allows us to understand important aspects
of software development prior to initiation of the development process, to sub-

7 [Winograd and Flores, 1986]

90 Christiane Floyd

sequently assess more or less completed projects - or to "fake" a rational design
process as suggested by Parnas8 .

It fails, though, to offer any help in understanding the software develop
ment processes actually going on in a given situation - processes relating to
the emergence of insights into the functionality, implementation and usability
of programs. Indeed, the production view is misleading, suggesting as it does
that we can (must) proceed from fixed requirements and can derive a program
system from these (ideally, in accordance with fixed rules).

The production view highlights one important facet of software development,
eclipsing others. In my opinion, it obstructs our view of design. The pervasive
nature of design and thus the key role occupied by it is also recognized by other
authors. Winograd and Flores, for instance, have given their above-cited book
the subtitle "A New Foundation for Design".

Questioning the rationalistic tradition necessarily involves examining other
epistemological approaches. I shall confine my attention here to constructivist
ideas. They fit in perfectly with the facet I have chosen to focus on: software
development as an insight-building process.

3.2.3 Entering into the constructivist discourse

Studying constructivist approaches was no easy matter for me. They call for
a radical process of rethinking which I can only accomplish step by step. In
addition, the available primary literature on the subject is heterogeneous and
chiefly concerned with domains outside my own particular sphere of interest.
This is due to the fact that the key insights have been derived from a variety
of sources, including biology and developmental psychology, and subsequently
applied to the social sphere. But retracing this process is not our concern here.
Nor are we able, within the present context, to explore just how far these insights
can be applied to other spheres.

Radical Constructivism as a school of thought has grown out of Cybernetics
and is closely related to chaos theory. What we are dealing with here is the
emergence of phenomena, in our case with cognition as the emergence of insights.
Since there is no one overall, clearly elaborated constructivist position, but rather
a variety of related approaches - differing quite considerably in detail- that blend
into a common mind9 , one can justifiably speak of a constructivist "discourse" 10 .

The various authors are involved in the ongoing scientific discussion within their
own particular disciplines, but they go beyond the "what" of their respective
subject to look at the "how" of the emerging insights, discovering as they do
related patterns within the different disciplines.

It would be asking far too much to expect me to give a proper introduction
to constructivism within the present context. Nevertheless, I shall attempt to

8 [Parnas and Clements, 1985]
9 [Bateson, 1980]

10 This is reflected in the German title of an excellent survey on Radical Constructivism,
cf. [Schmidt, 1987].

3.2 Software Development as Reality Construction 91

outline at least its essential fundamentals in order to be able to refer back to
them later on.

According to constructivist views, our cognitive faculties are ultimately rooted
in the biological nature of the human being and his co-evolution with all other
living beings. Bateson, an important pioneer of constructivism, postulates the
essential unity of mind and evolution 11. Maturana and Varela consider cognition
to be inherently tied up with life12.

Mind, in this sense, not only characterizes the individual human being, it
is also encountered in other living systems. Mind is also invariably related to
something. Thus, mind characterizes the way communities interact with respect
to common concerns. For example, a group of people interacting in a project
when developing software might exhibit mind. Here, deeper insights emerge by
careful contrasting and coordination of individual contributions.

In constructivism, a distinction is made between epistemology and ontology
in a subtle way. Constructivism teaches us that we construct what we know;
it makes no mention here of being. In constructivist thinking, cognition is not
concerned with images mapping a given reality; instead, we construct knowledge
in such a way as to make it fit our purposes. Von Glasersfeld suggests talking
about the viability of our knowledge rather than about truth or falsehood. 13 This
notion seems quite natural in connection with design.

An essential element here is the introduction of the observer. Cognition is
invariably tied to an observer14 . Observers can only perceive what they are in a
position to perceive. Communication between observers takes place in consensual
domains that are mutually accessible.

Also tied up with this is the concept of perspectives. A perspective is the
totality of assumptions about relevant aspects of a specific subject domain from
a common viewpoint. Perspectives are not necessarily tied to individuals. People
adopt different perspectives at different times. Between two or more individuals,
common perspectives are formed15.

Perspectivity necessarily entails blindness. I cannot see what I cannot see
from my perspective. It is impossible to eliminate this blindness. An important
prerequisite for the emergence of deeper insights is self-reference (see below) and
the interaction (crossing) of perspectives.

Constitutive elements of cognition are distinctions and indications16 . Com
plex cognitive processes consist of webs of interlocking distinctions, each relating
to different perspectives, and their recompositions into a coherent whole17.

A key concept here is self-reference. While in logic it results in paradoxes,
it is fundamental to an understanding of living entities. Self-reference requires
operational closure. All this means, in basic terms, is that the results of an

11 [Bateson, 1980]
12 [Maturana and Varela, 1980]
13 [v. Glasersfeld, 1987]
14 [v. Foerster, 1984, Maturana and Varela, 1980]
15 [Pask, 1976], see also [Bd.ten, 1978].
16 [Brown, 1969]
17 [Pask, 1976]

92 Christiane Floyd

operation are themselves elements of its domain of definition. This supplies the
conditions required for the recursive application of operations.

In operationally closed and energetically open systems, the system's be
haviour is determined by the recursive coupling of operations, with several lev
els of consideration interacting. System behaviour is stabilized by reference to
eigenvalues that give rise to system-specific eigenbehaviour. This results in self
organization leading to the emergence of higher orders in systems. This is the
essence of the "Order from Noise" principle formulated by von Foerster18.

Living systems are characterized by the fact that, during the course of their
existence, they continuously reproduce their own organization19. Autopoiesis
takes place in a medium. The autopoietic system and the medium condition
one another. I avoid giving here an assessment of how this concept can be use
fully applied also to social systems, as the current discussion about this point
is strongly controversial. For example, rather than regarding software projects
as "autopoietic beings" using systemic notions as Joseph Goguen does20 , I will
confine myself to considering closure at the level of processes.

Self-reference also plays a major part in the emergence of insights. Perspective
blindness can be overcome by self-reference. Once I see that I am blind, I can
see again. Self-reference is also amenable to mathematical treatment21 .

An essential and repeatedly emphasized aspect of constructivism is that
ethics can never be divorced from the consideration of cognition and action22 .
This is ensured not by explicitly laying down norms about what to do, but
rather by viewing cognition and action as being sustained by us as individuals.
This leads to von Foerster's ethical imperative: Act always so as to increase the
number of choices. In my opinion, this can be applied directly as a guideline for
designing software development projects as well as computer-supported systems.

According to von Foerster23 , acknowledging others involves making a de
cision. It causes us to emerge from our monologue and enter into a dialogue.
Dialogue means adopting the other's perspective. Closure, then, occurs through
the other. I see myself through the eyes of the other.

This step towards living in dialogue24 is of crucial importance in implement
ing constructivist ideas in our dealings with others. It leads to the view "Reality
= Community" 25 selected as an epigraph for this contribution. According to
Braten26 , our cognitive faculties as a whole are geared to dialogue.

Well, that was, of necessity, a rather rudimentary and fragmentary crash
course in constructivism. I have attempted to convey something of the pleasure
I experienced as I gradually came to grasp what it is all about in my dialogue

18 [v. Foerster, 1984, p. 17]
19 "Autopoiesis" is the term coined by Maturana in [Maturana et al., 1974].
20 See Chap. 5.1.
21 [Varela, 1975, Varela, 1987]
22 [v. Foerster, 1984, v. Glasersfeld, 1987, Maturana and Varela, 1980]
23 [v. Foerster, 1984, p. 307]
24 The term is used here in the sense of Buber [Buber, 1984].
25 [v. Foerster, 1984, p. 308]
26 [Braten, 1988]

3.2 Software Development as Reality Construction 93

with Heinz von Foerster27 • I feel at home with these ideas. They tie in with
my own everyday experience both privately and professionally, and they seem
to me to open up far-reaching prospects for a desirable design of our life in the
community.

My subject proper begins with our recognition that the view of software
development as production is an invention. Thus, the prevailing view of the
subject of the software engineering discipline turns out to be constructed reality.
It is useful for understanding certain aspects of software development, but of no
use for others. It is therefore important to contrast it with other views.

3.2.4 Software development as design

To begin with, I should clarify what I mean here by design. It will not do to
simply adopt an existing definition of design. What I shall endeavour to do
instead is to construct a concept of design to fit my fundamental concerns. In
other words, I would like you to join me in drawing a number of distinctions in
order to arrive at a useful characterization of design in software development.

By design, we mean a specific type of insight-building process that is geared
to producing feasible and desirable results within a particular domain28 • The
domains in question may differ widely. We normally only speak of design when
there are concerns we wish to fulfil, limited resources at our disposal, and differ
ent implementation options open to us.

Design in software development is of a distinct nature and subject to special
conditions. Software is characterized by an interplay of several unusual features,
relating to both the nature of the product29 and its embedding in human contexts
of meaning 30. Software exhibits an extreme degree of complexity, thus calling for
equally complex construction processes. It consists of a uniform, abstract build
ing material, is therefore plastic and, in principle, of unlimited revisability31. It
must be machine-processable, i.e., complete down to the last detail, consistent
and formally free from error. It is not amenable to sensory perception and can
therefore, in the last analysis, only be evaluated once in use. It creates social
contexts for human actions, which are shaped by the technical properties of the
product.

Design thus links different worlds: the social world of the application in ques
tion, the technical world of the means of implementation, and the formal world
of methods and concepts.

In order to elucidate the meaning of design as we understand it here in
all its essential richness, we have to consider the way this concept is used in
different contexts. As a rule, we distinguish between design and implementation.

27 See Chap. 3.I.
28 In German, the two terms "Entwurf" and "Gestaltung" are used to approximate the

meaning.
29 See [Parnas, 1985] and Keil-Slawik, Chap. 4.4.
30 See [Ehn, 1988] and Reisin, Chap. 7.3.
31 See Coy, Chap. 6.3 and Budde/Ziillighoven, Chap. 6.2.

94 Christiane Floyd

We design something. The result is subsequently implemented. Occasionally, we
call the result of a design process "the design", focussing here on the external
features of an object. That is too narrow a view, though. We also speak of design
in a broader context when we have in mind the overall process of organizational
and technical system development.

Design should be understood here in a processual sense: the results of de
sign are incorporated into the design processes from which they were obtained.
Design relates not only to external features, but also to the functionality of the
program system under development and its embedding in human contexts of
action. Design also includes the provision of suitable tools and methods for the
specific software development situation and for project organization.

I should now like to illuminate design in software development from a number
of different angles. I apologize in advance for my rather abstract wording. This
is due to the fact that I begin by characterizing design in terms applicable to
both individual and communal instances of design. I do not make a distinction
between the two until later on, in Section 3.2.7.

3.2.5 The design space as an unfolding of interlaced
Domains of Reality

The production view implies looking on software development as a sequence of
phases, ideally to be run through linearly. Each phase is concerned with a specific
object: first of all, analyzing the requirements of the application; then, on the
basis of this, elaborating a specification of the future system, defining what is to
be done without prescribing how the system will work; and, finally, deriving the
program from this.

It is here that the domains of reality relevant to design implicitly enter into
the picture:

• the world of the applications whose concerns are relevant to software devel
opment and from which we derive requirements for the software,

• the world of the means of implementation - in our case technical information
systems including existing software,

• the world of methods and concepts which we use in the same way as maps
to guide us in linking concerns with means of implementation.

The phase model prescribes just one path through these worlds: that starting
from fixed requirements and following predefined methods to arrive at the im
plementation of a given system. Ideally, this path should be followed only once
with respect to the overall product software.

The design view involves a process of rethinking here. Temporal progress
should be separated from the domains of reality. These are not processed in
temporal succession, but are present and linked at every point in time. Moreover,
there are no preordained domains of reality; these are constructed in the course
of the design process. This means:

3.2 Software Development as Reality Construction 95

• We do not analyze requirements; we construct them from our own perspec
tive32 • This perspective is affected by our personal priorities and values, by
the methods we use as orientation aids, and by our interaction with others
constructing requirements from their perspective. Requirements are governed
by perspective. In most cases, they reflect differences in perspectives and are
subject to temporal change.

• We do not apply predefined methods, but construct them to suit the situation
in hand. There are no such things as methods per se - what we are invariably
concerned with are processes of situative method development and applica
tion. We select methods and adapt them. What we are ultimately doing in
the course of design is developing our own methods.

• We do not refer to fixed means of implementation that only take effect
later on when working out the details of implementation decisions. Instead,
we construct the meaningful use of means of implementation by testing,
selecting or complementing what is already available.

To postulate the existence of a predefined path through these worlds is mislead
ing. It would only be possible to follow such a path if all the relevant decisions
had already been taken. But then there is no place for design.

3.2.6 Design as a web of decisions

Design is rooted in concerns. These concerns induce us to set goals that are to
be attained with the help of specific means. By drawing this distinction between
concerns and goals, I wish to anticipate any discrepancy between what is os
tensibly to be attained and what proves to be desirable33 • Design is normally
initiated with a view to set goals, the point of departure being an already es
tablished web of decisions linking the concerns considered relevant for attaining
the goals set with provisionally designated means of implementation.

Nevertheless, there is no fixed foundation for design, nor is it determined
by predefined goals. The concerns may change during the design process. The
means of implementation may prove inadequate. The predefined goals may turn
out to be misleading or be considered no longer valid. To this extent, design
may be regarded as goal-free. Design creates its own foundations and sets its
own goals.

Design calls for an interplay of different faculties: besides a command of
methods, what is needed is an awareness of the potential of the means of imple
mentation and a sensitivity to the changing concerns of the application.

Design presupposes a range of options and scope for playfully exploring these
options. In other words: design can only take place where a sufficient range of op-

32 See Reisin, Chap. 7.3.
33 According to the constructivist view, the notion of goals should be treated with

caution. In [Schmidt, 1987], von Glasersfeld is quoted that what ever can honestly
be set as a goal may be derived from the need to sustain autopoietic organization.
We mean something similar when we speak here of concerns.

96 Christiane Floyd

tions is available for making the relevant distinctions. Design requires autonomy
if a genuine choice is to be made.

Design consists of a web of design decisions which, taken together, make up
a proposed solution. Not all necessary design decisions are taken consciously.
Frequently, it is not until the proposed solution has been evaluated that it be
comes clear which decisions will be needed and which consequences failure to
take them will imply. The importance of explicit design decisions has been em
phasized in particular by Parnas34 . However, he only considers design decisions
as a basis for modular design. Design, of course, involves a wealth of other deci
sions. They link concerns and means of implementation with a view to attaining
the goals considered valid within a specific context. This results in building up
complex structures of interwoven decisions. These must be intrinsically coherent
and, overall, viable. Their emergence is specific to the individual design process;
it is not determined by the given problem. Instead, the problem itself is grasped
in the course of the design process. Design is determined by the perspective of
those sustaining the design process and by the constraints imposed upon them.

The viability of design is determined by a number of different factors, which
are frequently difficult to reconcile: whether the decisions match the concerns;
whether the web of decisions covers all elements of the problem that are con
sidered essential; whether meaningful use can be made of the means available;
whether the goals set are attained. These distinctions are made by an observer.

Design is thus based on a wealth of correlated distinctions concerning what is
"good" (desirable). There emerges here an interplay between proposed solutions
and their evaluation. What is "good" is determined in the course of the process
by what those involved consider to be "good". The criteria for such distinctions
are derived from the concerns relevant to design.

Design can only fully unfold where decisions that have already been taken
can be revised on the basis of their evaluation; in other words, if the results of
design again become themselves the starting-point for design. This is how closure
in design comes about.

Decision-making, evaluation and closure are interleaved and take place on dif
ferent levels: in individuals, on an informal level; when developing and checking a
proposed solution; during joint critical appraisal; when practically implementing
a decision; during testing; during use.

Closure involves admitting our errors and learning from them35 , offering and
accepting constructive criticism, abandoning erroneous goals and recognizing
changing concerns. Closure means the continuation of design.

Design is successful as a whole if the web of design decisions is stabilized
in the course of revisions; in other words, if it withstands evaluation and is
acknowledged as "good" by those involved despite changing concerns.

Design is, then, always muitiperspective, even where pursued by individuals.
This is due to the linkage of concerns, means of implementation and methods,
to the different evaluation criteria, and to the interplay between design, imple-

34 [P arn as , 1972]
35 See Knuth, Chap. 1.2.

3.2 Software Development as Reality Construction 97

mentation and use that is an important prerequisite for closure. Design requires
multiperspective reflection.

3.2.7 Dialogical orientation in design

This section focusses on software development with others and for others - the
form socially effective software development normally takes. It is to be seen here
as potentially dialogical. The "I and Thou" of software development is concealed
in basic relations such as "I develop software with you" and "I develop software
for you". Teamwork in software development can be viewed as a network of
this sort of basic relations. The specific network of relations between the people
involved, unfolding in time, is constitutive in design.

If we acknowledge this fact and attune ourselves to it, we come to a con
sciously dialogical orientation. We can decide in favour of accepting the "you"
and make provision for it. This means accepting the other, not instrumentaliz
ing him36. The essential activity then takes place between me and the other: we
develop jointly. We look for ways of thinking that will enable us to understand
our common reality, and for forms of work that will help us to completely unfold
this reality.

In the light of the prevailing practice in software development, this may sound
absurd. As we know, software development is widely used as an instrument for
exercising power and control. Software projects are managed along bureaucratic
lines and controlled by means of tools. Teamwork is characterized by rivalry and
lack of coordination. Failure to recognize these facts would indeed be absurd.
But we are not obliged to regard this an unalterable state of affairs.

On the contrary, I consider far-reaching changes in the way software devel
opment is practised to be imperative if we are to strive for quality and human
oriented system design. I consider such a reorientation to be necessary not only
for "humanitarian reasons" - as if the technical work could be performed at least
equally well without taking others into account. As I see it, communal design
has no chance of unfolding without this reorientation. This also seems to me to
be in agreement with Goguen's views on projects as "autopoietic beings"37.

For this reason, we at the Technical University of Berlin have been working
for a number of years now to reorient software development towards a notion
of system design that takes account of human needs. These efforts have led
to the development of the approach STEPS38, which has been elaborated in
cooperation with other scientists and tried out in academic project situations,
in the context of method development, and in practice39 .

I now go on to describe in constructivist terms the ways of thinking and
forms of work that have shaped our experience.

36 According to [Buber, 1984].
37 See Chap. 5.1.
38 Software Technology for Evolutionary Participative System development,

see [Floyd et al., 1990]'
39 PEtS Project, see [Floyd et al., 1989a] and Chap. 7.3.

98 Christiane Floyd

"Dialogical orientation in design" is one way of characterizing cooperation
both among developers and with users. In our experience, there are such common
features. But we must also be able to differentiate between the two cases. We
distinguish then between

• dialogical design among developers - by which I mean jointly working out a
proposed solution together with others40 , and

• jointly creating computer-supported contexts of action with users41 .

Dialogical design involves working out a desirable tentative solution between
myself and others, taking design decisions on a joint basis, and bringing about
closure with consideration being given to the perspectives of all parties. This
means that, instead of developing my model in accordance with my evaluation
criteria - objectifying and enforcing these where possible - I should endeavour to
be receptive to the perspectives of others. Instead of upholding my own model
monopoly42, to which others must conform, it is up to me to take up all the
other perspectives and allow them to interact.

There is little methodological support for this. Most of the methods I am
familiar with are of a monological nature (strictly speaking, they postulate a
pseudo-objectivity, failing to acknowledge the designer's perspectivity)43. In a
dialogical design process, we must assume that each contribution is of a provi
sional nature; that cooperating designers entertain different expectations with
regard to the process as a whole, setting different priorities and applying differ
ent evaluation criteria. In dialogical design, we must also acknowledge existing
conflicts and jointly overcome them.

Dialogical design must succeed in weaving together these perspectives in
such a way that the web of decisions emerging during the design process is
borne jointly. This involves meaningfully alternating between individual and
cooperative work, offering and accepting constructive criticism, exploring the
consequences of proposed design decisions, evaluating results multiperspectively
and revising them jointly - until gradually a stable solution emerges that is
endorsed by all parties.

The basic prerequisite for dialogical design is trust. This can only develop
where the interests of those involved are taken into consideration. Moreover,
it presupposes a willingness on the part of all parties, especially the project
manager, to create and maintain a socially supportive milieu.

Dialogical teamwork cannot proceed from any implicit assumptions; it must
lay its own foundations for cooperative work. This involves cooperation in es
tablishing the project, in assigning tasks and responsibilities, in synchronizing
and coordinating work, and in laying down conventions and standards for work

40 This is elaborated by Jiirgen Pasch in [Pasch, 1989, Pasch, 1991]'
41 This is elaborated by Michaela Reisin in [Reisin, 1990] and in Chap. 7.3. She, how

ever, speaks not of "dialogical" but of "cooperative" design.
42 [Braten, 1973]
43 One exception here is SADT with its concept of viewpoints and the author-critic

cycle (see Ross, Chap. 2.5). However, SADT fails to provide means for bringing the
different perspectives into interaction with one another.

3.2 Software Development as Reality Construction 99

within the team. But it also means jointly working out an authoritative project
view of the basic documents and of the concerns, priorities and evaluation criteria
valid in each case.

Dialogical design calls for the conscious development of a project language,
linking the relevant domains of reality in a way that everyone is able to follow.

Joint goals must be set and revised during the ongoing process as the respec
tive situation demands.

Cooperative work calls for commonly accessible and jointly maintained "ex
ternal memories" 44 such as project files and diaries, recording the currently valid
foundations of work and jointly taken decisions, so as to enable the decision pro
cess to be reconstructed in the case of revisions.

In contrast to the assumptions underlying the production view, dialogical
design calls for rich communication between all the parties involved. Informa
tion must be continuously collected and disseminated, new viewpoints must be
incorporated, and evaluations must be made from ever new perspectives.

The distribution of work tasks must always take place with reference to a
jointly upheld overall view, and results obtained individually must be jointly
validated. This process can be given technical support in the form of prototyp
ing, the emphasis here being on mutual learning on the basis of preliminary
implemented versions.

The measures outlined here are basically geared to facilitating the unfolding
of a "Project Mind" and the emergence of a shared perspective.

3.2.8 Concluding remarks

Although I have only been able to outline software development as design in
broad terms, I should like to finish off by showing what the results will be,
should we be willing to accept this view and make proper provision for it. It
offers us a conscious orientation for our theoretical and practical work.

Applied to training, it will mean equipping students with the knowledge and
skills required for design.

As regards the development of methods, it will involve elaborating flexibly
adaptable concepts and techniques supporting cooperative work with other de
velopers and users. Also, a cooperative, flexible and incremental work-style will
be an important factor in tool development.

Project organization will also promote cooperation in design. This means as
much autonomy as possible to enable us to incorporate the element of respon
sibility; it means the creation of a dialogically oriented working milieu enabling
shared perspectives to be formed; a division of labour that allows us to arrive
at and evaluate joint design decisions; and finally, the conscious integration of
revisions allowing closure in design.

Accepting and implementing this view means designing design. Undoubtedly,
we still have a very long way to go before arriving at the sort of societal conditions

44 See Keil-Slawik, Chap. 4.4.

100 Christiane Floyd

that will allow this to take place on a large scale45 . That makes it all the more
important - by way of a contribution to desirable social changes - to outline
practicable approaches to design, using as a guide our common experience of
quality and human-oriented design, and to explore these approaches and prove
their suitability.

Acknowledgements
This section is of considerable importance because the ideas set out in this chapter
were developed in dialogical processes. In other words, they were made possible and
given concrete form by cooperation, conversations and intellectual discussions with a
number of people, all of whose names I am unable to list here.

The technical experience on which this contribution is based was gained since 1978
at the Technical University of Berlin in a research milieu organized along cooperative
lines, and it has been substantially supported by my co-workers. My special thanks
are due to Reinhard Keil-Slawik, Jiirgen Pasch and Michaela Reisin and all others who
have contributed to our methodological approach STEPS.

Important insights were derived from the research work I did during my stay in
Palo Alto in 1987/88 and from the work involved in organizing and holding the con
ference on "Software Development and Reality Construction".

A considerable help to me in writing this contribution were the valuable discussions
I had with Michaela Reisin. I learned a great deal from the continual and conscious
crossing of our perspectives.

For enabling me to make a tentative entry into the constructivist discourse, I am
indebted to three scientists for their intellectual guidance, encouragement and kind
support. Stein Braten showed me the door to this world of thought and was an in
valuable help in finding my bearings there. My attempts to understand Gordon Pask's
theory, and his personal support in these attempts, have helped me to acquire key
insights. And last but not least, Heinz von Foerster has been a great inspiration to me
and instrumental in shaping the essence of the ideas presented here.

45 The masters of design are to be found in the Scandinavian countries. Their theoretical
and methodological approaches - along with strategies for societal implementation
of these approaches - can provide us with important insights for our own work (see
[Floyd et al., 1989a).

3.3 The Idea that Reality is
Socially Constructed
Bo Dahlbom

"Die Philosophen haben die Welt nur verschieden interpretiertj es kommt
darauf an, sie zu veriindern."

3.3.1 Introduction

Constructivism, the idea that reality is socially constructed, has recently invaded
the field of software development. Producing software, designing computer ap
plications, installing systems, reorganizing work patterns, are all constructive
activities which, more or less directly, contribute to changing the world we live
and work in. A clear understanding of the idea of reality construction is then
a way to understand what one is really doing as a software developer. Such an
understanding should be easy to obtain in view of the current popularity of the
idea. It is not. The main reason for this is that most proponents of constructivism
today brandish it as a weapon in a humanistic campaign against technology. Do
ing this they not only fail to see the truly technological nature of the idea of
reality construction and the vital roles played by technology in all constructions
of reality, but they also manage to alienate many of the practitioners whose
practice they want to enlighten.

To claim that reality is socially constructed is to claim not only that real
ity is constructed, as opposed to "given" or "simply there", but also that this
construction is social as opposed to, say, natural, private, or technical. In the
recent vogue of social studies of science, constructivism is thus used to combat
the hegemony of the natural sciences by showing that a social understanding of
concept formation and knowledge acquisition is fundamental to our understand
ing of reality. Similarly, the current interest in social studies of technology aim
at showing that changes of reality initiated by engineering become real only to
the extent that they are socially realized.

In a world becoming ever more filled with technical artifacts, the idea that
we construct our reality is not that outlandish. But when constructivists argue
that reality is socially constructed they are not thinking of the construction of
buildings, bridges and highways using concrete and steel. They are thinking of
mental rather than material construction, of interpretation rather than material
change.

The importance of interpretation, of the meaning we give our world, is under
rated in a technological age stressing material goods and values. But acknowl
edging the importance of mental constructions should not make us forget the

102 Bo Dahlbom

reality of material construction. As I try to spell out the complexity of the idea
that reality is socially constructed, by sketching its history, by looking closer at
some of its major advocates, and by drawing out its implications for software
development, my major task will be to warn against such forgetfulness.

I will take you on a tour through the idea of reality construction by travelling
back and forth between the two intellectual strands in the process of modern
ization: the Enlightenment and Romanticism. The major part of our tour will
be spent in the land of Romanticism, accepting without argument the kind of
irrealism propounded by constructivists like Nelson Goodman, Richard Rorty
and Jacques Derrida. But throughout I will try to give the Enlightenment its
due by pointing out the important roles of technology in the processes of reality
construction: in material constructions, as a basis for thought experiments, as
provider of intellectual tools, and as a source for constructivist ideas in general.

In the first two sections the distinction between material and mental con
struction is introduced and discussed, first, in terms of a distinction between en
gineering and construction, between industrial production and craft. Secondly,
the background of this distinction is traced in the opposition in our culture be
tween the ideas and ideals of the Enlightenment and Romanticism. In the next
two sections I then try to show how closely related these two forms of construc
tion really are. Section 3.3.3 tries to show that material construction is always
mental by discussing the dependence of facts on theories, of objects on ideas. In
Section 3.3.4 the task is the complementary one of showing how thinking relies
on material artifacts.

In Section 3.3.5 our understanding of constructivism is deepened by a close
reading of some recent philosophical contributions. Section 3.3.6 aims to make
clear that a socially constructed reality has all the properties we are accustomed
to attribute to reality. In Section 3.3.7 I argue that the constructivist idea really
is the idea of technology, and I discuss how science is now changing as it begins to
appreciate this idea. Section 3.3.8 finally tries to pull all the threads together in a
recommendation for all of us, who would like to see a computerization on human
terms, not to be content with trying out different interpretations of computer
technology.

Before we begin I would like to stress the importance of processes of con
struction in nature, of "natural reality construction", to counter the Romantic
tendency to make of construction a human privilege. The idea of human world
making makes good sense when it comes to theorizing about society. And every
thing we care for is (automatically) socialized. But the fact that social reality is
constituted by the institutionalized conceptions of its members does not mean
that social theorizing can forget about material conditions, be they technologi
cal, biological or physical. And when it comes to nature, the idea that it is our
conception that counts is, to my mind, an example of ridiculous hubris. We are
nothing but tiny flecks in the surface of the grand and forbidding construction
of nature. Our constructions of nature weigh lightly in comparison with nature's
constructions of us.

3.3 The Idea that Reality is Socially Constructed

3.3.2 Industrialization and the social construction of
technology

103

We use technology to change our natural environment and we use it to change our
societies. The automation of manual labour has made much more effective our
attempts to change nature to our liking. The tremendous social changes brought
about by this industrialization are largely side-effects. Information technology
plays an important role in industrial production, but its current major role is in
changing relations between people: as a technology for expression, communica
tion and social control.

Our conception of how technology brings on changes derives from our experi
ence of industrialized manual labour . We act as if information technology can be
used to change social organizations along the very lines of how industrial tech
nology has changed our natural environment. Computerizing an organization,
we tacitly assume, is pretty much like fertilizing a field: a matter of introducing
the right cause in order to get the desired effect, a matter of good engineering.!

This does not mean that in software development people are unaware of
complications resulting from dealing with human beings. But many system de
velopers like to think of them as just that - as complications in a process that
has a fairly simple causal character of engineering a change. They want to think
of those complications as really beyond the business of system development. Just
as pollution is a political rather than an industrial problem, software develop
ers should not worry about such complications as long as they produce good
systems, they say.

Of course it is true that without such simplifications of complex processes,
one can do nothing. A complex process can only be competently handled by
divided labour. But not just any simplification will do, and sometimes it becomes
necessary to take a hard look at the total process in all its complexity in order
to rearrange the division of labour. In the eighties there has been a growing,
now rather widespread appreciation that system development (like industrial
pollution, medical care, etc.) is in dire need of such a "holistic" going over. 2

System development projects are relatively small-scale, planned attempts to
use computer based information systems to change social organizations. The
practice and theory of system development is only beginning to learn the com
plexities of such tasks. One of the first lessons learned was that using information
technology to change an organization should not be viewed as a process of en
gineering. For reasons of democracy such a perspective would be degrading and
for reasons of making profit it would be silly so to underestimate the complexity
of social response to technical change.3

On a more general level these issues are studied by the growing field studying
technology and social change. Traditionally, such studies have often been studies

1 See the discussion of this and similar examples in [Dahlbom, 1987].
2 See, e.g., [Mathiassen, 1984, Lyytinen, 1986, Winograd and Flores, 1986,

Bjerknes et al., 1987, Ehn, 1988, Bjerknes et al., 1990] and, of course, this
volume.

3 An influential version of this argument can be found in [Checkland, 1981].

104 Bo Dahlbom

of how technology has changed society thus inviting technology determinism: a
developing technology will have social consequences for us to foresee and then
live with. To counter this deterministic view one can try to change the perspec
tive. Rather than looking at society from the viewpoint of technology one can
choose to study technology from the viewpoint of society. In system development
this means to approach the computer based system from the viewpoint of the
receiving organization rather than the other way around.

Such a shift of perspective is currently under way in European technology
studies, going by the name of "The social construction of technological systems"
or the "SCOT" programme for short.4 In this programme one sets out to study
local environments in which technologies are developed, how general social con
ditions make a certain technology appreciated and profitable and determine its
direction of development, in short, how social conditions, material and ideologi
cal, influence the development of technologies.

In all this there is an underlying thesis to the effect that the fate of a tech
nology depends on how people conceive of it, what they know about it, their
attitudes to it, their values, etc. Sometimes the phrase "the social construction
of technology" is interpreted much more strongly to mean that a technology is
what its users conceive it to be. This strong interpretation is attractive (to some)
in view of the power over the technology it gives the users. It turns technology
into a democratic phenomenon: it is not the experts who design the machines
that really make them but we, the users. Rather than being complications in
a causal chain of engineering, the users turn out to be the real designers. The
strong interpretation is attractive, as well, for its idealism: technology can be
changed, oh so easily, by rethinking it, by changing our ideas about it, by "pos
itive thinking" .

An appreciation of the idea that technology is socially constructed by its
users will change one's conception of such a business as software development.
The heart of that business can no longer be a product, a system, produced by
professional software developers, since the properties of that system will be deter
mined in its use. Software development becomes an open-ended process in which
the software developers playa marginal role. 5 But in all this there is a neglect
of the current process of industrializing software production, a process working
against user-involvement. Information technology has increased our possibilities
for industrializing manual labour , but it is also beginning to make reasonable an
industrialization of intellectual labour, including the production of information
technology itself.

When the construction of software is a process taking place in projects, in
the field, as a craft, using prototyping, resulting in systems tailor-made for a
specific customer, the users can play an important role in the design process.

4 This research programme is inspired by the so-called "strong programme", an influ
ential constructivist approach in recent sociology of science. Both programmes are
described in [Bijker et al., 1987]. Recent works in this vein are [Latour, 1987] and
[Latour and Woolgar, 1986].

5 Cf. [Floyd, 1987] for a clear formulation of the nature of such a change.

3.3 The Idea that Reality is Socially Constructed 105

But with a growing software industry producing ready-made system solutions,
there will be less and less opportunities for individualized system analysis and
design work in the field. Standardized software will replace the works of craft
and the users will enter the process of software development consequent to the
purchase of an advanced software product package.6

That package may of course be tailorable by the users to satisfy their specific
needs, but the constraints on that tailorability will be set by software industries
competing in a market. As users of computer software we will be in the situation
we are now when we move along the aisles of the supermarket trying to pick
one out of thirty, virtually identical, laundry detergents all giving our children
allergies. Noticing that the distance between the user and the producer will grow
as the industrialization of software production proceeds, we must realize that
the process of software development is two processes rather than one. Stressing
the user involvement by worrying about the design of field projects should not
make us forget the importance of gaining power over the process of software
development in the software industry.

The industrialization of software production means that when we think of
software development as "social construction of technology" we must be careful
to pay attention both to the social reality of software use and the social reality
of industrial production of software. If the former is mainly a process of ideology
construction, of attitudes, learning, habits, and the like, the latter is primarily
a material construction of a product, subject to economical and technical con
straints. The idea that technology is socially constructed is valuable in making
us see clearly that changing society cannot be conceived as a form of engineer
ing. But if the idea makes us play down the importance of material construction
work and underestimate the significance of the ongoing industrialization of in
tellectual work, then that idea will do the users of computer software more harm
than good.

3.3.3 A changing world

The modernization of Europe is a drawn-out process, clearly visible in the 16th
century, but not really gaining momentum until the 19th century. It is a complex
process of change, transforming a traditional society of peasants, craftsmen,
clergy and landlords into the industrialized society we see around us. It has
become common to collect the various, often conflicting, ideas involved in this
process into two major intellectual strands: the Enlightenment and Romanticism.

The philosophers of the Enlightenment dreamed of a world ruled by reason,
governed by science and technology. They formulated this dream, their "project
of modernity" , as a programme for democratization, secularization, and industri
alization, all three conceived as elements in a rational transformation of society.
As the philosophy of a rising bourgeoisie class, this project made its forceful
impact on European societies in La grande revolution.

6 See my discussion in [Dahlbom, 1990].

106 Bo Dahlbom

Romanticism grew out of that revolution, inspired by it, but giving it a differ
ent, emotional interpretation: revolutions were not just means to ends, but ends
in themselves. Romanticism turned not only against the authoritarian rule of a
feudal society, but also against the rule of the commonplace in an Enlightened
society. Its means were the humanities, artistic expressions by individual genius,
an inspired anarchy. Its values made Romanticism an easy prey for various elitist
movements.

As elements in the modernization process, both the Enlightenment and Ro
manticism wanted to change the world, society and man.7 But whereas the
Enlightenment had a fairly clear idea of the ends of modernization, Romanti
cism was programmatically vague and open-ended. This difference can be traced
back to fundamentally different conceptions of knowledge. The Enlightenment is
a goal-directed, problem-solving, cognitive enterprise in search of the objective
truth about the world, society and man, on which to found its projects of change.
Romanticism is a process-oriented, inspired, expressive movement inviting us to
participate in bold constructions of uninhibited utopias. The Enlightenment has
a strong sense of reality. Romanticism pushes further the frontiers of the possi
ble. The Enlightenment, as an epoch in our history, is the era of map-making,
Romanticism of world-making. The Enlightenment makes maps to be used in
a cumulative rearrangement of the world. Romanticism views these maps as
largely counterproductive, providing support for a world well lost, and prefers to
debunk that world by demonstrating its ephemeral nature as construction and
supplant it wholesale with a brave new world.

In a stable, traditional society, reality is created by God for man to dwell in
and worship Him in. What is worth knowing are the principles, the order laid
down by the creator, and man himself is subject to that order. He cannot change
it. Every real change is authored by some divine, creative power. Nothing really
happens unless some divine power wills it to happen. All else is mere appearance.
The idea of change so fundamental to the process of modernization is not an easy
one to accept for a traditional society steeped in the notion of a divine order.
"Change" smacks of "chaos" , and the Enlightenment has to begin its revolution
of this society by viewing change as only realizing the true, natural order.

The Enlightenment moves cautiously from the Christian idea of a world re
cently created to a world with a billion-year-Iong history of construction, from
the Aristotelian idea of an unchanging, ordered and teleological nature to Dar
win's conception of fortuitously evolving organisms, from a fixed human nature
to a human being almost infinitely malleable by learning. In all these areas the
change is a change in the conception of the nature of nature, man, and society.
It is as a result of scientific research into the nature of phenomena that these
are seen to be changing rather than stable. Change is understood as the lawful
rearrangement of unchanging elements. Every extension of the idea of change is
accompanied by ideas of a more fundamental stability, of conservation.

7 At the same time they correct one another on this score. Romanticism can be used
as a basis for a conservative reaction against an uninhibited process of enlightened
rationalization. From an enlightened standpoint it is often important to warn against
Romantic excesses.

3.3 The Idea that Reality is Socially Constructed 107

In a lawfully changing world there is a place for engineering. Knowing the
laws of change in nature, society, man, we can use this knowledge in physical,
social, educational and genetic engineering. The Enlightenment idea of a man
made, constructed, artificial world is the idea of applying science in designing
nature, society and man. From Bacon's New Atlantis to Skinner's Walden Two,
engineering is understood as the competent control of a determinate nature.

With Romanticism caution is abandoned. Taking seriously Giambattista Vi
co's daring conception of society as freely constructed by its members, the Ro
mantic philosophers argued against notions of a fixed nature, be it of nature,
society or man. These philosophers were led by their line of reasoning to lose
interest in the way the world is in favour of an interest in how we conceive the
world. Or, better, to identify the way the world is with our conception of it. Mak
ing a major point of the observation that our world is shaped by our experience,
these philosophers wanted to change our world by changing our experience. New
worlds could be constructed, they argued, not by engineering and control, but
by new ways of looking and thinking, the construction material being spiritual
rather than material.

The decisive move in this argument is what Immanuel Kant called his "Coper
nican Revolution" - from the Enlightenment theory that our conception of the
world is a representation of a ready-made nature "out there" to the transcen
dental theory that nature is constituted by our conception. By this ingenious
move, Kant wanted to avoid the skeptical conclusion that if our access to the
world is limited to our representation of it, we have no guarantee that these
representations are accurate or, for that matter, that there is a world out there.
If nature is our construction, we don't have to worry about our access to it.

By claiming that the fundamental concepts we use in constructing nature are
fixed, Kant made sure that natural science had a secure foundation in one nature,
characterized by the necessary truths of Euclidean geometry and Newtonian
mechanics. This idea was soon to be abandoned by the Romantic philosophers
taking off from Kant. By making the fundamental concepts relative to culture,
the construction of reality came to be seen as a historical process. The necessary
truths turned into social conventions, and the interest gradually shifted from the
nature of reality to the social process of constructing multiple realities. Kant's
transcendental Kritik, searching for first foundations for science, changed into
Kulturkritik and Ideologiekritik.8

Trying to bring together the two strands of the Enlightenment, rationalism
and empiricism, Kant inadvertently managed to prepare for a much deeper split
in our culture. His "Copernican Revolution" gave our minds a decisive role in
our search for knowledge, replacing Descartes' rather passive mirror of nature
with an active world-maker. This "revolution" was to have a tremendous impact
on the humanities and the social sciences, but it left members of the natural
science community cold. The result was a split between a natural science and

8 In their own different styles, with their own different motives, Marx, Nietzsche and
Freud were the major instigators of this change. Heidegger, Lukacs, Mannheim and
the Frankfurt school are some of the inheritors in our century.

108 Bo Dahlbom

technology guided by Enlightenment ideals and an approach to the study of
society and culture based on Romantic ideas.

This split between Naturwissenschaften and Geisteswissenschaften, between
"positivism" and "hermeneutics", was unfortunate in contributing to a division
into what C. P. Snow called "two cultures". But it was fortunate in the sense
of being a powerful source of discussion. The philosophical tug of war between
an Enlightened interest in reality and a Romantic interest in our conceptions of
reality has moved back and forth. In 20th century philosophy the Romantic in
terest in Weltanschauungen, conceptual schemes, has continued to grow. Today,
when we can look back upon two decades of Romantic ("postmodern") attacks
on Enlightenment ideas ("modernism"), it is safe to say that, within philosophy,
Romanticism maintains the strongest position.9

When we leave the philosophy seminar behind, however, and enter the busi
ness of software development, Enlightenment ideas still dominate. Systems are
judged by their accuracy in mapping their target domain. If we are unhappy with
this situation, if we are oppressed by the conservative elitism of experts design
ing systems "mapping objective reality", and want to turn software development
into a more democratic, constructive enterprise, we may turn to philosophy and
a Romantic world view for support. But liberating as this move may seem at
first, giving us a view of technology as having the properties we conceive it to
have, there are dangers ahead.

3.3.4 The mental nature of material constructions

When impressed by Enlightenment ideals we speak of constructing the world,
we mean it literally. We want to build cities and highways, schools and sports
arenas, develop technology, give everyone an automobile, a washing machine
and a personal computer, make the country grow. We want to change society by
reforming it, by giving it a new form. Material constructions are the most visible,
and eager to see results we will tend to stress material aspects, building a welfare
state. This does not mean that material values dominate the Enlightenment. On
the contrary, material reforms are only means to more spiritual ends such as
justice, liberty, equality, democracy, education, meaningful employment, love and
self-respect. The problem is only to make sure that changes in these directions
are real changes. For the Enlightenment wants real changes - not just talk.

The Romantic idea of reality construction is very different. When the En
lightenment plans its construction projects, Romanticism will speak of the pos
sibilities for a new society based on a new kind of people. Against the Enlighten
ment idea of a fixed human nature, of the members of society as fairly constant

9 It should be clear by now that the Enlightenment and Romanticism are both systems
of thought and epochs in our history. They continue to fight for domination. They
tend to coincide, roughly, with periods of economic growth and stagnation respec
tively. The period from the Korean war to the Oil Crisis (the '50s and the '60s) was a
period of Enlightenment. Since then (the '70s and the '80s), Romanticism has ruled,
but times seem to be changing again.

3.3 The Idea that Reality is Socially Constructed 109

and known resources (and consumers), Romanticism counters with a belief in an
unfathomed capacity of human beings to change, develop, grow. Against the En
lightenment project to reap nature of its fruits by developing a material culture,
Romanticism counters with a project of human growth, of spiritual culture.

To use the expression "reality construction" to characterize both an En
lightened project of material construction and a Romantic project of spiritual
growth is of course confusing. Nothing has come to seem so separate in our
culture as engineering and art. Putting together bricks is real construction, the
Enlightenment will argue, while putting together ideas is at best metaphorical
construction. But even the most down-to-earth engineer has come to feel un
comfortable when making such a statement in view of the current widespread
agreement that this item of common sense is false.

In science, to give just an example, it has become commonplace to question
the objectivity of scientific facts and appreciate the role of theoretical interpre
tation. Even such a lowly object as an ordinary brick is always seen through a
theory and thus we cannot put bricks together without putting ideas together.
To say that there is theory involved even in our handling of bricks is to say
that there is room for variation in our conception of bricks. Our objective reality
is not so objective after all. It only seems objective as long as we stay in the
company of people sharing our theory.

This 20th century critique of the idea of an objective, given reality, has spread
outside the intellectual debate in philosophy, art and science. The Enlightened
engineers have learned their lesson by the very difficult process of losing cred
ibility, of seeing their skills questioned by a moral majority. Their stubborn
insistence on real change today seems quite impressive considering the difficul
ties of success. For what the Enlightenment engineer wants is of course not just
any old material change, but one with a certain meaning. Unless the new schools
mean a better education, the automobile and nuclear plant a better life, etc., the
change is only real in an ironic way. But how do you make sure that the material
change you bring about will mean what you want it to mean? How do you know
that the ones you do the reforms for will interpret them the way you intend them
to? When you begin taking such questions seriously, it is only because you have
been forced to appreciate that reality is in the eye of the beholder.

Once we have begun to question our natural attitude of taking our immedi
ately perceived reality for given - be it by way of personal experience, modern
physics, philosophical argument or a course in anthropology - we realize that
bricks are no more (or less) real than ideas. As long as we all agree on what the
world is like we can attend to the bricks and forget about ideas. But when ideas
begin to vary we have to worry about them in our reality construction projects.
The neat separation into material and mental construction breaks down. What
is literal construction and what is only metaphorical is no longer so obvious.

Of course, no one is surprised by hearing that material construction projects
involve ideas - in the planning, execution, interpretation and evaluation of pro
cesses and products. What we tend to forget is the fact that those ideas may
cause disagreement on what we have achieved, to what purpose, with what
success, that is unresolvable. And that therefore material construction projects

110 Bo Dahlbom

always are mental construction projects as well. But then again, don't we all
know that the successful engineer always is a good artist, or has the use of a
good designer group and a good advertising agency? Of course we do, but the
more Enlightened we are, the more distasteful we find those "artistic" aspects of
our work. Mental construction is a way of faking it when one is unable to make
something real. That people continue happily to prefer bad technology can only
be explained by the negative influence of mental constructions.

The Enlightenment idea of a project, of a goal-directed effort to change the
world, involves planning, an ability to think what is not, to imagine situations
that are (as yet) unreal. Putting together ideas in order to imagine goals, we
mentally construct a reality later to be materially constructed. And when the
material construction has done its job we have to mentally interpret the result
and relate it to our goals, knowing well that no project will be true to plan.
For the Enlightenment it is material construction, what technology can do, that
counts. For a Romantic the mental construction phases are the most important:
what human beings want to do with the technology.

We don't have to study the introduction of high-tech in pre-industrialized
countries, or ponder the conservative nature of the automobile, to see that a Ro
mantic perspective can be illuminating (and lucrative). With such a perspective
we will be struck by the futility of technology, of our material constructions, in
a number of everyday situations. Children playing with pine cones, sticks and
stones will, for example, construct a reality almost by imagination alone, and
fancy prefab toys add nothing to the play. Who is to say that the traffic jam
constructed on the living room rug becomes more real when the cars are powered
by batteries rather than by a child's imagination?

When a child plays with toy cars, those cars are both symbols for real cars
and real cars in a constructed reality. Bricks and ideas are certainly very different
but the bricks are suffused by our ideas and sometimes act as symbols in our
thinking. The processes of material and mental construction are intertwined and
impossible to separate. Our material constructions use materials with colours,
textures and shapes which are laden with culture and our thinking rely on ma
terial support for illustration, inspiration and communication.

But software development is no child's play, the software engineer will reply.
And we can see how this debate between material and mental constructivists
will go on. But enough is enough. Let us be content here to observe that a
software development project is a very complex mixture of material and mental
constructions in which it is important to pay heed both to technical constraints
and human inventiveness even if it is impossible to obtain a neat separation
between what technology does and what human beings want to do with the
technology.

3.3 The Idea that Reality is Socially Constructed 111

3.3.5 The material nature of thinking

To construct is to "put together" and the acts of construction as well as their re
sults differ widely depending on what it is we put together: bricks, ideas, words,
notes, etc. That such putting together is "social" can mean that people do it
together, orienting their individual contributions to those of other contributors.
More interesting is perhaps the idea that constructions of reality are social be
cause what we put together are social objects, cultural artifacts, rather than
natural objects. Indeed, it may seem like a good idea to classify constructions in
terms of categories such as material, mental, natural, social, artificial, depend
ing on the types of objects used in constructing. Things are more complicated,
however, as we shall see when we look more carefully at these categories.

It is easy to see that the material construction projects we undertake are
social, both in the sense that they involve several people and utilize materials and
tools that are the results of previous processes of construction. It is important
to realize that mental construction projects, as well, are social in both these
respects. When we appreciate the extent to which thinking is a social rather
than individual activity and a cultural rather than a natural process, the material
nature of our mental constructions become visible. 1o

It is only within the last decades that social scientists have begun to pay
serious attention to how organizations think, learn, remember, forget, etc. Our
thinking about thinking has been so dominated by the idea that it is an individ
ual, mental process as to block out the obvious fact that most of the thinking
going on is more profitably ascribed to organizations than to individuals. But
wait a minute! Certainly, thinking is a mental process, a brain process, and or
ganizations don't have minds, not to say brains. I am not denying that (here).
What I am saying is rather that thinking is like traffic: individuals drive the
cars, but to understand the traffic in a big city we had better look at what is
going on as a system, an organization.

One way of appreciating this point is by seeing that thinking is an activity
which, like so many other activities in our modern society, has undergone a pro
cess of industrialization. What used to be an individual craft using fairly simple
tools has become a complex production process performed by organizations rely
ing on advanced rule systems, planning, division of labour and high technology.
Like so many other activities, thinking survives as a craft, but the thinking that
really matters in our modern society is almost exclusively organized, institution
alized.

There are several obstacles hiding this fact from our view. One is our tendency
to think of thinking as a process in the mind or brain. As a brain process thinking
is a natural process, and this makes it difficult for us to see that thinking today
is about as artificial as anything else - communication, production, consumption
- in our modern artificial world. Just as our society will grind to a halt when

10 This lesson has been hard to learn. One exception to the general blindness to the
social and cultural nature of thinking is the Russian school in psychology, now gener
ally referred to as "activity theory". See the contribution by Arne Raeithel in Chap.
8.4.

112 Bo Dahlbom

our artifacts break down, so thinking would reduce to next to nothing were we
to suffer a breakdown of our intellectual artifacts. What could we think, how
could we reason, if we did not have words, figures, books, diagrams, concrete
examples, slide-rules, algebra, logic, Lisp or legal aid?

Thinking of thinking as a brain process makes us think of human intelligence
as natural (in spite of the fact that most so-called intelligence tests measure
artificial capacities like vocabulary and numerical ability). This has made the
discussion of research on artificial intelligence more confusing than it need be.
Once it is seen how artificial human thinking is, to what extent it relies on cul
tural artifacts, the AI-project is seen as a rather mundane attempt to automatize
artifacts, in this case intellectual tools rather than manual ones, but so what?
And we realize that calculators are exemplary instances of artificial intelligence.

Another obstacle to seeing the cultural nature of thinking is the dominant role
played by visual perception in our attempts to understand thinking. Thinking is
conceived as a sort oflooking (with the mind's eye), a fairly laid back observing of
the thoughts passing by in the stream of consciousness, or at best a more active
looking around, doing some sort of inventory or search. The thoughts appear
or are found rather than being produced or constructed. This view of thinking
has always had its rival in a more active notion of thinking (and consequently
perception), but this rival did not become a serious contender until Kant and
Romanticism.

The na·ive theory of how we get to know the world has not even discovered
that perception is a process: just open your eyes and there the world is. The
Greek philosophers were not that na·ive. They thought of perception as imita
tion: the world somehow impressing its form upon a passive mind. Galileo was
moving away from this view of thinking as an imagistic, pictorial imitation, when
he argued that "the book of nature is written in a mathematical language," but
mathematics to Galileo was Euclidean geometry - still pictorial. It was up to
Descartes to take the decisive step to algebra as medium of representation, alge
bra as our language of thought, which he did by inventing analytic geometry.!!

When we use mathematics as our language of thought, our thinking about
the world can no longer be understood as pictorial imitation. Algebra is a cul
tural artifact, constructed by the Arabs, and a theory about the world couched
in the language of algebra is similarly a constructed artifact, a cultural object.
This was by no means clear to Descartes, nor to his followers. The status of
mathematics as Truth stood in the way of an appreciation of the cultural na
ture of mathematical thinking. Rationalists from Leibniz to Wittgenstein treat
mathematics as a natural rather than a conventional phenomenon, dreaming of
the ideal mathematical language, with a logical form mirroring the form of the
world.

The cognitive science of the last three decades, including artificial intelligence
research, lean in this rationalist direction. Major turbulence has been created

11 Thus there is in Descartes a clear formulation of the idea, so important in artificial
intelligence research, that thinking is calculation or computation. [Raugeland, 1985]
has a nice discussion of this idea.

3.3 The Idea that Reality is Socially Constructed 113

by such issues as if we think solely in words or also in images - the implicit
presupposition being that thinking is a natural phenomenon. In spite of all the
work going on in AI on constructing artificial languages, it is most unusual to
find someone arguing that human thinking itself is an artifact, done in whatever
medium found suitable.

When the Romantic philosophers turned to action rather than perception in
search for a model for thinking, they first viewed thinking as an expression of
our human nature. Our mental processes, including perception, are then taken
as starting point in a search for the innate principles of the human mind. Such
was the program initiated by Kant and it lives on in much of contemporary
cognitive science. Such a program certainly thinks of thinking as a constructive
process, but it attends primarily to the predetermined aspects of that process in
search of a general theory of the mind.

As we move from viewing thinking and perception as processes of imitation
to more complex representational processes to processes of expression, man's
contributions to his view of the world increase. But to say that man constructs
his world becomes a forceful claim only when we take the further step of real
izing that this construction is determined by culture. If knowledge is a natural
phenomenon, if knowledge is obtained by a natural process, it makes little sense
to speak of reality construction. But if knowledge is cultural, an artifact made
by man to his infinitely varying measures, then it begins to make sense to speak
of knowledge, truth and reality as constructed. That is why it is so important
to stress that reality construction is social.

To say that thinking is a process of social construction is then to express a
view very different from the standard view of thinking as a natural process in the
mind or brain. It is to claim that thinking is regulated by social norms, that much
thinking is better understood as a socially organized process involving several
individuals (and of course their brains) with an organization as "the thinking
thing". It is to claim that the process of thinking relies on intellectual tools
and materials supplied by culture, some of which are internalized but a great
deal of which are provided by the environment. It is to claim that the symbols,
categories, elements we use in our thinking are drawn from our social, natural
and artifactual environment, and put together to make worlds, new artifacts
made possible by, and making possible, new worlds.

But can reality really be an artifact? Well ... In sociology there is a growing
discipline called "social problems research" .12 Much of the research in that dis
cipline wants to look at social problems as socially constructed. The standard
procedure, then, is to "deconstruct" social problems by showing how the one
or the other phenomenon of long standing, say the battering of children, in a
certain social setting becomes identified or defined as a social problem. Here
one obviously operates with a contrast between an objective fact, the battering
of children, and a social artifact, child abuse. Distancing oneself from the so
cial problem under study, it can be viewed as socially constructed against the
background of more objective phenomena. It is of course possible to carry such

12 [Schneider, 1985] is a short review of this discipline.

114 Bo Dahlbom

a distancing process further, applying it to the phenomenon of child battering
itself, then seen perhaps as socially constructed by the science community. But
how far can such a process of deconstruction be carried? Will it not have to stop
eventually, confronted with a real as opposed to an artifactual reality?

One way of answering this question is to choose a more humble attitude to
our tradition of theorizing about thinking. Rather than claiming that the move
from imitation to representation to expression to social construction is a move
from mistaken ideas about thinking to the true theory, one then takes more
seriously all these attempts at understanding thinking. That our view of the
world is socially constructed does not mean that it isn't also obtained through
processes of imitation, representation and expression.13

3.3.6 The philosophy behind

A great deal of the theoretical discussion in the social sciences is today dedicated
to analyzing constructivism and its consequences. Influential empirical work in
such areas as the sociology of science and social problems are guided by the idea
of reality construction. This idea has been a central topic for philosophical debate
in the last two decades, approached in different fashions by French, American
and German philosophers. It has even entered biology through attempts to base
a constructivist approach on biological ideas of self-organization. It has played
a major role in the culture debate over "postmodernism" ranging from topics
in architecture to politics. Social constructivists are happy to see the current
projects of deconstruction and reconstruction going on in Eastern Europe.

Its current popularity notwithstanding, the idea that reality is socially con
structed has a long and complex history in our culture. The first proponent of
social reality construction we know of was the great sophist Prot agoras (500 B.
C.) with his "homo mensura" sentence: "Man is the measure of all things, of
the things that are that they are, and of the things that are not that they are
not." His major opponent was, of course, Plato, who despised the sophists for
relativizing truth and made Protagoras a major target of attack. The battle has
been raging ever since.

I have no intention of charting this history here. In the previous sections I
have tried to indicate some of the complexity of the ideas involved. My purpose
was twofold. I wanted to prepare for the main thrust of my argument to the effect
that an appreciation of the fact that reality is socially constructed should not
blind us to the importance and interdependence of all the various constructivist
processes going on, be they material or mental, natural or social. I also wanted
to prepare for a presentation of a handful of recent philosophical contributions
to constructivism. The following is not intended as an introduction to these

13 Notice that it is a foursome of theories with wide applicability. You can use them to
say interesting things about almost any arena of (human) activity. Art is an obvious
case, but so is software development.

3.3 The Idea that Reality is Socially Constructed 115

thinkers. Compressing their complex systems of thought into a few paragraphs
I try to give a flavour of what these thinkers say and how they say it. 14

Peter Berger's and Thomas Luckmann's The Social Construction of Reality
is probably the most influential recent source for constructivist ideas. This little
book is a major effort of synthesizing such ideas within the field of sociology.
Berger's and Luckmann's project is an attempt to place the sociology of knowl
edge, the study of the social conditions of knowledge, at the core of sociological
theorizing: "The basic contentions of the argument of this book are ... that re
ality is socially constructed and that the sociology of knowledge must analyze
the process in which this occurs." (p. 13).15

The construction of reality is a continuing dialectical process involving three
moments: externalization, objectivization and internalization. "Society is a hu
man product. Society is an objective reality. Man is a social product." (p. 79).
The objective social reality is constructed through habitualized actions consti
tuting institutions. Language, in the form of everyday conversations, plays a
central role both in establishing and legitimizing institutions. The institutions
are integrated into a social system only through the process of legitimation. This
legitimation, involving the use of "symbolic universes" is "faced with the ongoing
necessity of keeping chaos at bay ... All societies are constructions in the face of
chaos." (p. 121).

Berger and Luckmann distinguish social reality from nature. Biological facts,
characteristics of the human organism and its environment "serve as a necessary
presupposition for the production of social order." (p. 70). Such facts impose
limitations on man's construction of his social reality and of himself as a social
being. Through reification, i.e., "the apprehension of human phenomena as if
they were things" (p. 106) ... "the world of institutions appears to merge with
the world of nature." (p. 108) Reification is not "a perversion of an originally
non-reified apprehension of the social world." (p. 107). On the contrary, the re
alization that the objective social reality is a product of human activity comes
rather late in history and in any individual's life. "Roles may be reified in the
same manner as institutions." (p. 108). In a modern, industrialized society, how
ever, with social division of labour and social distribution of knowledge, there
will be "an increasingly general consciousness of the relativity of all worlds, in
cluding one's own." (p. 192). In such a society reification is less of a threat, and

14 In order to indicate some of the complexity of the background of the idea that
reality is socially constructed, I have chosen Peter Berger and Thomas Luckmann
[Berger and Luckmann, 1967] as representatives of the phenomenological movement
founded by Edmund Hussed, as interpreted by Alfred Schiitz, with firm roots in Ger
man idealism; Nelson Goodman as an example of an analytic philosopher building
his constructivism on Bertrand Russell's idea of "a logical construction of objects"
as developed by the logical positivist Rudolf Carnap; Richard Rorty as an Ameri
can pragmatist reaching his version of constructivism through John Dewey, the later
Wittgenstein and Heidegger; and, finally, Jacques Derrida and a constructivism com
ing out of the structural approach to language and other social phenomena, origi
nated by Ferdinand de Saussure. Quite a mouthful.

15 Page references are to the Penguin edition (1967).

116 Bo Dahlbom

individuals not only play at "being what they are not supposed to be. They also
play at being what they are supposed to be - a quite different matter." (p. 192).

Berger and Luckmann brush aside the philosophical problems of the status
of "reality" and "knowledge" (p. 13f). Proceeding from a phenomenological,
everyday conception of reality, they can treat nature as "really real" . A minute's
reflection on this issue will, of course, lead one to question such a "reification"
of our conceptions of nature. What is it that makes our knowledge of nature less
susceptible to sociological analysis than our knowledge of the social world?

"Nothing" would be the answer from the philosopher who more than anyone
else has contributed to a deeper understanding of the conditions of reality con~
struction. I am thinking, of course, of the Harvard philosopher Nelson Goodman
and the way he comes forth in books like Ways of Worldmaking16 and Of Mind
and Other M atters17. Not that Goodman is particularly interested in discussing
the social aspects of reality construction. Being in spite of everything an exem
plary representative of modern analytic philosophy, Goodman rarely comments
on the fact that man is a zoon politicon.

Goodman sometimes characterizes his philosophical position as "irrealism".
This position "sees the world melting into versions and versions making worlds,
finds ontology evanescent, and inquires into what makes a version right and a
world well-built." (p. 29). There is no world out there, independent ofus. 18 There
are only versions made by symbols of all kinds, and true versions make worlds.
"The world of a true version is a construct; the features are not conferred upon
something independent of the version but combined with one another to make
the world of that version." (p. 34). "The worldmaking mainly in question here
is making not with hands but with minds, or rather with languages or other
symbol systems. Yet when I say that worlds are made, I mean it literally" (p.
42).

Worldmaking is a matter of categorization: distinguishing elements, cate
gorizing them by function, uniting them into wholes. Categories are symbols,
elements of linguistic and other symbol systems, and Goodman has been partic
ularly interested in artistic symbol systems.19 Worldmaking can be compared to
the construction of material artifacts. And just as we cannot make such artifacts
any way we like, so our worldmaking is restricted. "Making right world-versions
- or making worlds - is harder than making chairs or planes, and failure is com
mon, largely because all we have available is scrap material recycled from old
and stubborn worlds. Our having done no better or worse is no evidence that
chairs or planes or worlds are found rather than made." (p. 42f).

All this is pretty straightforward, but Goodman goes on to claim that "many
world versions - some conflicting with each other, some so disparate that conflict
or compatibility among them is indeterminable - are equally right." (p. 39). Ver-

16 [Goodman, 1978]
17 [Goodman, 1984], quotations below will all be from this latter book in which Good

man comments on critics and expands on his views.
18 "while the underlying world ... need not be denied to those who love it, it is perhaps

on the whole a world well lost." (Ways of Worldmaking, p. 4)
19 See his Languages of Art [Goodman, 1976].

3.3 The Idea that Reality is Socially Constructed 117

sions are right or wrong - or, more specifically, when the symbols are linguistic,
true or false - not by corresponding or failing to correspond to an independent
world "out there". "Nevertheless, right versions are different from wrong ver
sions: relativism is restrained by considerations ofrightness. Rightness, however,
is neither constituted nor tested by correspondence with a world independent of
all versions." (p. 39).

So by what is rightness constituted, by what is it tested? "Rightness of cat
egorization, in my view, derives from rather than underlies entrenchment." (p.
38). This, no doubt, is the weakest point in Goodman's philosophy. He has
nothing of substance to say on the matter of entrenchment.2o Some categories,
or systems of categories, survive but why they do so we cannot say, except that
they "fit" together. They get entrenched in our culture, and that is it.

It is Goodman's strength that he accepts this consequence of his reasoning
without flinching. Having rejected realism in the sense of a categorized world
"out there" in favour of a position where all categorization is our doing, cor
respondence theory is out. "Not all differences between true versions can be
thought of as differences in grouping or marking off within something common
to all. For there are no absolute elements, no space-time or other stuff common
to all, no entity that is under all guises or under none." (p. 36). All the structure
there is in the world is man-made, and structure is all there is to the world.21

Coherence is no live option, "for a false or otherwise wrong version can hold
together as well as a right one" (p. 37), and what remains as a possible candidate
for truth is then only functionality. Now this would seem a likely candidate
in view of Goodman's comparisons between worldmaking and the making of
artifacts. And, indeed, there are hints in that direction in his comments on the
notion of entrenchment - entrenchment as adaptation - but there is also explicit
rejection of this option, e.g., in Ways of Worldmaking (p.122f). Functionality is
much too simple-minded as a criterion or definition of rightness in view of the
wealth of variety of kinds of versions Goodman is able to keep simultaneously in
VIew.

Constructivism is a powerful idea for fulfilling the philosophical task par
excellence: that of questioning the obvious. It is a liberating tonic for anyone
- like Kierkegaard, Nietzsche or Sartre - feeling oppressed, or nauseated, by a
reality too much taken for granted. But driven to its extreme, constructivism
sweeps away the very foundations of our existence, resulting in a Kundera-like
experience of "the unbearable lightness of being" .

If one sometimes gets this experience when reading Goodman, it dominates
the reading of Jacques Derrida. According to Goodman, we use scrap material
from past worldmakings in making our worlds. We have a tendency to take
this material at face value, it's old enough to give us a feeling of acquaintance.
We think we know what we mean by what we say, we feel at home in our
thinking, in our conceptual worlds. Categories get entrenched by fitting together.

20 What little there is, is in [Goodman, 1979, Chap. IV].
21 "The many stuffs - matter, energy, waves, phenomena - that worlds are made of are

made along with the worlds." (Ways of Worldmaking, p. 6).

118 Bo Dahlbom

Derrida is out to shatter that comfortable feeling, by striking at categories, often
dichotomies, at the very foundation of our reality construction.

Once reality is seen to be a culture relative construct, the critique of culture
turns into a "reconstruction of reality". That is, a current reality is criticized
in favour of a more or less utopian alternative. But unlike his predecessors,
Nietzsche, Husserl and Heidegger, Derrida is not out to reconstruct reality but
to deconstruct it. And worse than that he wants to deconstruct the philosophical
project of deconstruction itself, thus leaving us no foundation whatsoever. To
give only one example, it has become common coin to recognize that our think
ing is metaphorical through and through. But sitting there in our smugness,
saying fashionable things like "Of course the computer is not literally a tool or
a telephone or a processor ... ", Derrida will come around and deconstruct, i.e.,
pulverize, the very dichotomy literal-metaphorical on which we were basing our
insight. No wonder, he has been criticized for advocating a most extreme kind
of nihilism.

The American pragmatist Richard Rorty , author of Philosophy and the Mir
ror of Nature, is one such critic. Basing his critique of postmodern French ni
hilism on a very American trust in a liberal, political praxis, Rorty wants to
steer clear of constructivist excesses. Chaos, as Berger and Luckmann would
say, the lightness of being, is held at bay by the stability of liberal political in
stitutions. This democratic praxis is primary to philosophical theorizing about
human nature and the good society. That praxis is the foundation upon which
intellectual adventures in science, philosophy and culture at large can be staged,
as long as they leave that praxis untouched. It is that praxis that decides what
is knowledge, truth, virtue and beauty, not the theories that philosophers so se
riously struggle to put together. And the essence of that praxis is "free speech" ,
an ongoing conversation.

The philosophers of the Enlightenment searched for first foundations for sci
ence, ethics and politics, for infallible methods by which to attain objective truth
and justice. When Romantic ideas dominate philosophy, this quest is abandoned.
Methods are scrapped, truth is dissolved. Reality, truth and justice are socially
constructed subject to cultural variations. There are no natural rights. Nothing
is absolute. This can either result in a nihilistic degrading of science, ethics and
politics, as only different arenas for the power struggle of reality construction, or,
on the contrary, in an upgrading of the philosophically na·ive practice of science,
ethics and politics. The practice is strong enough to need no foundations, no
philosophical support. It needs no codified method, no absolute truth. True to
his American heritage, Rorty has an unshaken trust in practice.22

22 Habermas, Foucault and Rorty are good examples of these three positions. See
[Rorty, 1984] for a discussion of the differences between Habermas' Enlightened
search for foundations, the nihilism of modern French postmodernism, and the belief
in practice characteristic of American pragmatic philosophy.

3.3 The Idea that Reality is Socially Constructed 119

3.3.7 Reality is a social artifact

Our world is becoming ever more artificial, our reality more of a human artifice.
But that the world we live in is an artificial world, constructed by us, does
not make the world any less stable than were it a natural world. Things (Latin
"res"), i.e., middle-sized material objects, are our paradigm cases of reality, and
artifacts are real to the extent that they resemble things, i.e., are "reified".

Artifacts differ with respect to their "thingishness", their objectivity, inde
pendence and stability, of course. Material artifacts, such as tools, machines,
works of art, roads, buildings, are (at least) as real as rocks and bodies. Social
artifacts, such as organizations, institutions, roles, persons are less tangible but
still reified enough to be treated as objective and independent, often being an
noyingly stable. Ideal artifacts, finally, such as scientific theories, world-views,
programs, ideologies, norm systems are the least concrete of our constructions,
getting their stability from their material and social implementations.23

The insights that the material world, the social world and the ideal world are
all socially constructed grows on European man, in starts and leaps, as major
strands in the process of modernization. The expansion of technology, indus
trialization, moves man's material support from nature towards the artificial.
A growing awareness of society as constructed, as in Thomas Hobbes' idea of
a social contract, goes hand in hand with democratization. The idea that man
makes himself, of a person as a work of art, makes room for ideas of personal
liberty. The transition from Plato's world of objective, unchanging ideas to the
belief in culture as constructed is long and tortuous, and has still a long way to
go in such areas as that of mathematics.

As one of the mainsprings in the modernization process, the idea that re
ality is socially constructed has formidable power. That reality is constructed
means that it can be deconstructed and reconstructed. The realization that a
phenomenon is an artifact, the result of human construction, may undermine
one's trust in its reality. The power of God is undermined when we realize that
we have constructed him rather than the other way around. Similarly our belief
in the objective truth of science is shaken by seeing how theories are constructed
by people using material from their personal history and social setting.

But it is easy to overestimate the power of the idea that reality is constructed.
Social practices are inert, difficult to change and difficult to control. That reality
is socially constructed means that changing it is more easily said than done. To
the individual it is generally more correct to say that reality has been constructed
than to say that it is constructed. The practical inertia of social construction
gives its products their stability, their reality.

23 When we talk of "social reality construction", we might of course mean the construc
tion of social artifacts as I use the term here. We might, like Berger and Luckmann,
be interested in pointing out that a study of social systems modelled on the natural
sciences runs the risk of forgetting the task of analyzing the process of constructing
those systems. The way I understand the phrase is, of course, as making the stronger
claim that all of reality is socially constructed. This is a large claim, amounting to a
thorough "social-cognitive" turn, from reality as nature to reality as a social artifact.

120 Bo Dahlbom

Practically speaking, a socially constructed reality is just as real as a reality
that just is. To interpret the move from an objective, natural reality to one that
is socially constructed as a liberation from external control is to misjudge the
power of social norms. Social determinism, e.g., is not easier, or more difficult, to
escape from than biological determinism, even if you believe that the former is
"merely" constructed and the latter "really" real. To show that a phenomenon is
conventional rather than natural will liberate you only to the extent that nature
is more difficult than conventions to change. But only the most cursory glance
at social norms and institutions will reveal their power.

Take the notion of "objectivity" , for example. If this concept is understood
along the lines of "really there", "representing reality" or suchlike, the realization
that knowledge is constructed will make us wary, and we will move towards a use
of the term "objective" as meaning "intersubjectively agreed", "conventional"
or the like. But this latter type of "objectivity" is not threatened by stories
about the construction of knowledge, and will soon be indistinguishable from
the former type. Hobbes did not for a minute believe that the social norms were
undermined by the observation that they were conventions, part of a contract,
rather than natural rights and duties. Constructivism is not an exhortation to
deconstruction. Nihilism, anarchy, or revolution are not the consequences of a
constructivist revelation. And an appreciation of the fact that reality is socially
constructed is not a decision to begin constructing reality, but the appreciation
that we have always done so and always will.

The construction of artifacts is subject to norms, guided by values. To think
of construction as engineering means stressing the functionality of the artifact.
What matters most is that it works. To think of construction as scientific is to
subject it to the norm of truth. To think of it as art means to stress its aesthetic,
edifying, or communicative aspect. To think of construction as politics means to
stress its power to control. Our construction of reality, of conceptual schemes,
scientific theories, social institutions, information systems, software, computers,
can be subjected to all these values, depending on what aspect we want to stress.

The realization that human activity is fundamentally constructive - in art,
science, technology or politics - does not in itself come into conflict with any of
these values or norms. That these norms are seen themselves to be socially con
structed is no reason to abandon them. It may give us a deeper understanding of
the projects of art, science, technology and politics, but with that understanding
we can go on as before.

The idea of constructing reality is intertwined with the idea of changing it.
The possibility of change is a strong motive for believing in the idea of reality
construction. When constructivists argue against a science that sees itself as
mapping reality, or more generally against the Cartesian idea of knowledge as
representation, the vehemence of their argumentation derives from the fear they
feel that such ideas support reification and stand in the way of change. A picture
is painted with two opposing camps, one standing for a free and self-organized
world, democratically constructed by persons with emotions, the other for a
deterministic world, ruled by technology, understood only by experts through
objective, cognitive representations.

3.3 The Idea that Reality is Socially Constructed 121

But if there is some truth to that picture, the diagnosis is certainly mistaken.
A representational theory of knowledge does not stand in the way of change, nor
is constructivism a short cut to democracy. The Enlightenment philosophers
argued quite forcefully for the exact opposite: that only by representing the
world did you have a chance to change it deliberately, and that an unbridled
constructivism left you in the hands of construction elites. Those arguments can
of course be countered. And my point is a different one. The understanding that
reality is socially constructed, that the power of science and technology is socially
rather than naturally founded, will not in itself threaten that power. Truth may
have served an ideologically important role as science was breaking away from
the Church, but in our times science is powerful enough to manage without that
ideology.

When we realize that the natural, objective world is really a social, intersub
jective one, there is no loss in determinism, external control or expert rule. The
freedom gained by the possibility of multiple perspectives is lost when perspec
tives are seen as powerful institutions. Our artificial reality gains its stability, its
reality, from the stability of social norms. The practical inertia of social institu
tions plays the role of the physical inertia of matter, and it plays it well. That the
world is socially constructed does not make it any less important to map that
world. For what is Berger's and Luckmann's theory, of how we "internalize" the
social reality we grow up in, but a theory of representation? The very theory of
knowledge as representation lives on as an important element within a general
idea of knowledge as reality construction.

Likewise there is no conflict between a theory attributing knowledge to per
sons and a cognitive theory about how our brains represent the world, as long
as we don't believe that a cognitive theory can tell us what is known and what
is not. We can construct our brains with innate ideas, categories and perceptual
constraints and still hold that what is known is socially settled. As construc
tivists we may very well claim that worlds are made without restrictions and
truths are always relative to a world, but then go on to argue that it is vital
to determine the extent of restriction and variation in world-views within the
world we've made.

All this seems to come down to the rather boring conclusion that "philosophy
leaves everything as it is". But boring or not, I think it is important to realize
that reconstructions of reality, in the sense of redescriptions or reinterpretations,
mind-blowing as they may seem to those who experience them, achieve nothing
by themselves. It is what we do that counts and we are all masters at adjusting
wildly varying descriptions to the very same actions. Constructivists will argue
that when descriptions change the actions will change too. But that is not always
true.

There is something frightening in the constructivist belief in the power of
descriptions or interpretations. Accustomed to a wealth of conflicting descrip
tions given of our everyday most mundane actions, most of us go through life
skeptically playing with different descriptions, perspectives, frameworks, mov
ing happily within the elbow room thus provided. This is Rorty's point, namely
that it is only against this background of habits that the dramas of ideology are

122 Bo Dahlbom

staged, that we do our philosophizing about the meaning of the universe and
everything. Unless we change those habits nothing is really changed. But those
habits can rarely be changed by words alone. Our strength, our autonomy, lies
exactly in this our resistance to "propaganda". That a rose is a rose by whatever
name is nothing we should grieve for.

3.3.8 Science as construction

That it is reality that is socially constructed means that the scientific enter
prise to study reality retains its importance. The enterprise to map an objective
reality is not superseded but complemented. On the one hand the objective,
in the social sciences, is to construct theories, classifications and descriptions,
which adequately map the systems of artifacts constituting social reality. On
the other hand, the fulfilling of this objective is itself a social process of artifact
construction, a contribution to the constitution of that reality. These two objec
tives are difficult to keep separate. It is impossible to analyze ideologies without
contributing to the production of ideology.

In the natural sciences the foundations for research are laid by some sort of
general framework, system of categories, conceptual scheme, or paradigm, consti
tuting the general characteristics of reality. Such a framework is generally taken
for granted, upheld by the scientific community, transmitted to new members as
part of the socialization to a natural scientist. Research is done within such a
framework, and consists in filling in the details, chartering the white spaces.

Questioning the framework, asking "external" questions, is a major under
taking of radical nature. Normal science stays comfortably within the socially
prescribed framework, tackling "internal" questions only. External questions are
open-ended, bewildering, philosophical, since they concern what reality it is we
are examining. Internal questions are normal, have definite answers, provided of
course that they don't strike at weak points in the general framework. In the
latter case it is often wise to back off unless one has the courage to take on a
revolution.

As it is in science, so it is in other kinds of human activity, including tech
nology. There is always a choice between acting within the given framework
and trying to break out of it. Or, rather, there is always a choice between what
framework to act within. A technology designed to fit a certain reality will, when
successful, strengthen that reality. It therefore becomes important to determine
whose reality it is one wants to tailor the technology to. In our kind of soci
ety the default choice will almost always help propagate a reality organized by
principles leading to injustice and exploitation. Constructivism gets some of its
power from its capacity to help you avoid making that default choice blindly. If
reality is socially constructed, constructed by "us", it becomes important to be
one of "us".

A general appreciation of the constructive nature of science will change your
notions of scientific truth and objectivity, but it will not change the practice of
doing science. That practice will only change if there is a change of methods

3.3 The Idea that Reality is Socially Constructed 123

and techniques. There is such a change of practice going on right now and it is
of a constructive nature. It is spurred by the growth of technology in general
and by a rapidly increased use of computer technology in scientific research in
particular.

Notice that the similarity between a socially constructed reality and one that
just is hinges on the fact that the latter too is constructed, only not by us. The
material artifact is the bridge between a natural and a social reality. When we
stress the materiality of social constructions and the constructed artificiality of
everything that is, the difference between nature and culture decreases. Technol
ogy as successful producer of material artifacts plays a leading role in this game.
I would even go so far as to argue that the idea of reality construction at heart
is a technical idea, a generalization of the very idea of technology. Romanticism
is a take off on the Enlightenment idea of technology, art is really irresponsible
technology.

Technology has given science an interest in how things function, how they
are made, constructed, designed. As a result we have changed our conception
of nature from that of a stable typology, to be once and for all adequately
categorized, to that of a constantly changing, ongoing construction. The realistic
enterprise to identify the structure of nature, to "carve nature at its joints" , loses
some of its force as evolutionary thinking makes us realize that those joints are
the result of a constructive process in constant flux. Our interest in what nature
is like becomes subordinated to an interest in what is possible. It is all right for
a biology with book-keeping as an ideal to catalogue the life forms that have
happened to evolve on earth, but modern, Darwinian, biologists ought to be
more fascinated by what is biologically possible. 24

The conception of nature as a constructive process gives to man the opportu
nity to interfere with, and contribute to, the construction of nature. But such a
contribution demands more powerful capacities of imagination than we mortals
have. For a while we have satisfied our wish to contribute to the construction of
nature by direct interference. Rather than trying to imagine the consequences
of certain actions we have made experiments and observed the consequences.
The use of mathematics to simulate complex processes has certainly aided our
imaginary powers, but now, with the use of computer technology we have really
obtained a prosthetic imagination.

The telescope and the microscope changed science by magnifying our powers
of perception. Computer technology plays a key role in a current development of
science by extending our powers of imagination. As the telescope and microscope
opened worlds to study that were previously unknown, so the computer will
mean a shift in our scientific attention. The new worlds that now will begin to
fascinate us are all the possible worlds, all the worlds that could be constructed.
And we realize that all those worlds together make up reality, that there is no
reason to single out the one world that happened to be constructed, and call it
reality. Science cannot be content to study that world as it crumbles around us.

24 And they are finally beginning to be so, as witnessed by the contributions to the
volume on Artificial Life, edited by [Langton, 1989].

124 Bo Dahlbom

Like technology it should instead teach us more about what could be, a type of
future studies as it were, in the sense of constructions of possible futures. There
is nothing much we can do about the past.

3.3.9 The politics of reality construction

We have already heard Goodman claim that his idea of worldmaking is one of
making worlds "not with hands but with minds, or rather with languages or
other symbol systems." Goodman is true to the "linguistic turn" taking place in
philosophy in the 20th century. If we go back to the Romantic philosophers, their
idea of worldmaking was one of consciousness "constituting" worlds. Their means
of construction were concepts which were thought of as mental entities, somehow
deeper than language. As we move into our century, the philosophical notion of
a concept changes. The pragmatists want to think of concepts as behavioural
dispositions, practices, or rules of action, but most contemporary philosophers
agree with Goodman that concepts are fundamentally linguistic in nature.

Thus, the modern contributors to the idea of reality construction we have
looked at - Berger and Luckmann, Goodman, Rorty, Derrida - all stress the
importance of language as a means for worldmaking. This move from conscious
ness to language (and action) is a move from private to public, from individ
ual (or transcendental) constitution to social construction. It is a move from
"subjective" to "objective" construction in Berger's and Luckmann's sense of
externalized objectivization in social institutions.

There is in all this an unfortunate neglect of the more mundane but, to my
mind, more important making of worlds "with hands", as Goodman puts it.
The Romantic instigators of the idea of reality construction were idealists - they
really believed that ideas make the world go round - and the dominating trend
in current conceptions of reality construction is likewise idealist in nature. The
historical heritage may explain why this is so, but it is still difficult to understand
how, having made the move from subjective consciousness to intersubjective
action patterns and language, from individual self-expression to institutionally
controlled reality maintenance, current exponents of reality construction ideas
give to technology such marginal attention. It makes good sense, of course, to
stress the importance of mental worldmaking in the face of a widespread and
na·ive reification of technology. Technological determinism with its boring talk of
"consequences of this or that technology" must be countered, but this cannot be
done by turning one's back on the objectivization of social reality in technical
artifacts.

Rather than trying to fight the reification of technology by pointing to the
importance of our conceptions, to the fact that use of technology is socially
constructed, one should take a more serious interest in the social processes of
technical construction, in the secret ways of high-tech institutions and the game
of technology politics. The reason is, of course, that the latter institutions are
the most powerful instruments in determining our conceptions of technology and
its use.

3.3 The Idea that Reality is Socially Constructed 125

Technology plays a twofold role in our construction of reality. Only by ma
terially realizing our mental constructions does it make sense to develop them
further. We formulate our imagined goals, whether it is a car, a summer house,
or a spouse, but as long as they remain unrealized they tend to cramp our think
ing. Once realized, however, our mind can soar again, imagining new goals, since
all the goals we reach will leave us unsatisfied. Technology, or rather its material
artifacts, also plays a more direct role in our thinking as support and medium.
Technology supplies our thinking with its tools, such as books, calculators, pen
and paper, etc.

What this comes down to is an appreciation of the complex interplay of
forms of reality construction, both private and public. And, an appreciation of
the importance of worldmaking by hands in the construction of reality. The
widespread and deep-rooted reification of technology cannot be neutralized by
reference to a general theory of mental reality construction. It has to be taken
seriously as a social phenomenon, and used to our advantage as constructivists
by active participation in the production of technology.

The objectivization of a socially constructed reality is powerful to the ex
tent that there are intersubjectively shared norms or criteria of rightness. The
functionality of technology is such a criterion that is hard to match. Thus our
tendency to reify technology. It is real because it works so well at holding chaos
at bay. It is all very well to argue that all worldmaking is of the character of
fiction, a matter of turning ideas into worlds, but the strategic power of this ar
gument stumbles in the face of the facts of a powerful technology. The reification
of technology is an indication of the power and success of technical reality con
struction. Freedom from technological determinism is not won with a theory of
mental construction, but by a fight for power over the production of technology.
The strategy cannot be to see the social construction of reality as a means for
taming an existing technology, but rather to see the production of technology as
the most powerful method of social reality construction.25

Thus, the primary remedy against oppressive computer technology lies not
in the strengthening of a multiplicity of different perspectives or organizational
structures, unless these are seen as means towards changing the technology. Sys
tem developers should concentrate on the objective of producing good technology
rather than on working with organizations faced with bad technology. Philosoph
ical perspectives and organizational competence is all very well, but these are
toothless weapons in the struggle for a computerization on human terms.

The major lesson to be drawn from the idea of social reality construction is
not one of increased freedom, but rather a strategy for utilizing the freedom we
have. To see that science and technology are socially constructed is to realize
the importance and role of social institutions in the production, justification,
and legitimation, of science and technology. It is to realize the importance of
construction as opposed to interpretation, or the constructive element in all

25 If enough of us decide that there are no bombs, there won't be any. But the most
powerful strategy, except for occasional charismatic mass manifestations, to make us
so decide, is to stop making bombs.

126 Bo Dahlbom

interpretation. And it is to realize the importance of being one of the ones
constructing, of the role of power in the construction of reality.

To stress that reality construction is a social process, is to stress the impor
tance of the process of objectivization, of the use of intersubjectively available
means of construction. It is to make the individual's ability to rethink his or her
situation and his or her world dependent on the social institutions of that world.
Reality can be changed by changing our conception of it, but institutionally
grounded conceptions are powerful forces in delimiting our individual freedom.
Technology constitutes an important element in such institutional grounding,
the most important element in our kind of society.

And when technology is being produced by worldwide, multinational com
panies, the construction of our social reality is largely out of our hands. We
can always pretend, of course, by carving out local niches, that there is room
for self-organized reality construction. And as a countermeasure to apathetic
acceptance of technological determinism such self-organized reality construction
is valuable. But there lies great danger in making such happenings, be they
under the name of "user-oriented system development" or "local democracy",
the major undertaking for a discipline of system development. In the long run
that would only result in a disillusioned acceptance of the fact that technology
really determines our lives and that we can't do anything about it. Taking Marx
seriously we cannot be satisfied with providing local interpretations of a given,
international technology, but must struggle for real power over the constructive
production of that technology, i.e., power to change it.

Acknowledgements
I am grateful to, among others, Christiane Floyd, Kristo Ivanov, Lars-Erik Janlert,
Ingvar Johansson and Thomas Soderqvist for comments, and to the Swedish Council
for Planning and Coordination of Research for economic support.

Part 4

Learning to Know

4 Learning to Know 129

Reinhard K.-S.
We live in a time when terms such as "information processing", "communi
cation technology" or "knowledge engineering" have become common usage,
and yet we know so little about what it really means to know and understand
something and to deal with it appropriately.

Christiane
In our everyday practical work, we as computer scientists use, as a matter of
course, terms relating to human thought. Words like "information", "com
munication" and "knowledge" each have a well-defined technical meaning.
But its relation to human reality remains unclear.

Reinhard B.
And this is what makes it so surprising that the search for foundations
of computer science in the humanities is frequently met with astonished
disbelief or dismissed outright.

Christiane
It seems we must first of all demonstrate what might be the good of such
foundations.

Reinhard K.-S.
So far, computer science has implicitly relied on the premise that thinking
goes on "inside the head", the brain being seen as a processor for rule-based
symbol manipulation. Crucial aspects are neglected: the interplay between
head and body, the emergence of knowledge as a social process, the role of
artifacts in cognition ...

Reinhard B.
What are required, then, are sufficiently rich perspectives, which the hu
manities can supply. They need tailoring to the issues concerning computer
science so as to be adequate for understanding processes of constructing and
dealing with formalisms in our specific domain.

Heinz
There is, however, no established body of knowledge we can fall back on
here. Initial findings resemble a jigsaw puzzle more than a finished picture.
As in the illustration, we handle pieces without really knowing how they fit
together.

Reinhard K.-S.
But unlike the puzzle, although we are already able to construct well-turned
parts, we have no idea what the finished picture looks like. This is a general
metaphor for creative processes of cognition. The pieces used by us are ar
tifacts incorporating previous findings in the form of "external memories".
In the course of construction processes, we fit them together to produce new
artifacts.

Christiane
Interlaced learning and communication processes take place on a variety of
levels: when pushing forward the boundaries of scientific knowledge; when
developing software in the context of projects; when using the computer in
work procedures ...

130 4 Learning to Know

Reinhard K.-S .
. . . and this part of the book is intended to help us understand such pro
cesses. Klaus Amann examines how knowledge is generated, mediated and
established in a social process. For example, we are only able to understand
an experiment by following the steps involved, and at the same time con
stantly explaining the way things are meant and why they take this and not
that form.

Heinz
Knowledge, then, neither exists merely in a person's head, nor is it con
tained - independently of people - in a document. Knowledge is a social
entity, manifested in "external memories". But it then depends on human
individuals who have their own thoughts about it. Incidentally, this is also
in keeping with hermeneutic ideas.

Reinhard K.-S.
We have to create the conditions for the generation and communication of
knowledge. Dirk Siefkes shows that, even in the case of a mathematical proof,
the essential quality is not to be found in the formal derivation steps, but in
the degree of commitment with which people combine the formal How of a
derivation with the Why of its purport.

Reinhard B.
Commitment presupposes a desire to think; it calls for motivation and indi
vidual free will.

Reinhard K.-S.
But this "being free to see" is at the same time both a chance and a con
straint. Jack Carroll emphasizes the fact that we cannot deduce the design of
an artifact from psychological invariants we may find when studying human
behaviour. Hence, we have to study the ecology ofthe task-artifact cycle, he
argues, if we wish to improve our understanding of design and usability of
artifacts.

Christiane
That would seem to tie in closely with your ideas. In the final chapter of this
part, you investigate the role of artifacts in software design. By reference to
our biological and cultural heritage, you establish an ecological perspective
that allows you to derive some principles for the design of artifacts that are
meant to support human communication and learning processes.

Reinhard B.
We still have a long way to go as far as implementing these ideas in computer
science is concerned. But we already have an inkling of what we have yet to
learn. After all, finding out what you don't yet know is what science is all
about.

Heinz
The following parts will look at tentative attempts to carry these ideas into
the realm of computer science.

4.1 Scientific Expertise as a Social Process
Klaus Amann

4.1.1 The social organization of expertise

In a research project in the sociology of science I study knowledge strategies
used by experts in acquiring and changing complex and innovative knowledge.!
The goal is to analyze problem solving strategies in real-world contexts and to
describe the forms of their social organization.

The starting point of such a description of the social organization of problem
solving strategies is the assumption that it cannot be appropriately understood
as long as one tries to think of the action of experts in terms of the activities
of individual experts. If we analyze social fields as domains containing knowl
edge which is at the disposal of experts, we have to make this knowledge more
accessible in order to be able to represent it in formal systems or models. In
addition, the means of its interactive accessibility in a social context have to be
determined. In contrast to the mere possession of knowledge and the competence
to use it, accessibility is the result of a social setting, not of "sediments" in in
dividuals. On the one hand, this is recognizable in the socialization of experts,
on the other hand, in their socially bound behaviour.

The stages of becoming an expert as described by Dreyfus and Dreyfus2 pre
suppose a social context in which there are experts, who in turn conduct their
negotiations with a novice and an advanced beginner in an already existing set
ting. It takes not only embodied competence to be a "master" but also a workshop
which enables him to act competently. So one can say that an expert's means
and his ways of conveying his competence are not just linguistic explanations
but in a specific way they are meaningful objects and manageable tools. Master
and workshop provide by the interaction (the use) of competence and "tool" an
outline of competent behaviour, the behaviour of experts.

An advanced beginner will not reach the stage of competent problem solving
until he can demonstrate in social encounters that he has mastered the estab
lished use of the means at hand - both linguistic means: the ability to talk
intelligibly on certain subjects, and instrumental ones: the ability to produce

1 This research has been made possible by a grant from the Deutsche Forschungsge
meinschaft (project: Complex Knowledge Processes). The areas we chose are research
groups in molecular biology and high energy physics.

2 [Dreyfus and Dreyfus, 1986]. The authors' differentiation of these stages of becoming
an expert is based on an individualistic concept of knowledge which is isolated from
the social contexts in which knowledge exists and takes effect. Presumably this is
due to their epistemological, partly speculative approach with its lack of empirical
testing of experts' action.

132 Klaus Amann

something. However, it is not this knowledge as such that can be demonstrated
but only its use. The status of an expert is tied to a field of interaction. In such
a field it is conferred on somebody. There is a connection between the feature
of this status as something conferred and the responsibility for competent ac
tion, which is also acquired in the process of an expert's socialization. "Being
responsible" and "being conferred" are not simple property conditions but so
cial mechanisms which organize natural knowledge systems. "Being conferred"
implies that opportunities to act personally remain connected to their locally
based use.

This also applies to the competence embodied in the "master" which is re
alized in its use in the social context of the "workshop". However, this is not a
matter of a mere reification of established action patterns but of dealing with
objects whose meanings and methods of handling have to be regarded as non
established. The everyday notion of an expert comprises as an essential element
such an ability to deal with something new, with open, confusing, unexpected
situations.3

This involves activities with a 'creative' relationship to the basis of some
body's action and the possibility to modify this basis, i.e., meaning relations, in
two directions: First, a given situation is made comparable with earlier, similar
cases by identifying "the essence" of this given situation. It is then dealt with
accordingly within the limitations of someone's action potential. Second, the
given context of action and knowledge is changed as a result of modifications to
practices and to the ascription of meanings.

Embodied competence then appears as a necessary but not sufficient con
dition of such modifications. They require a change of practices and meanings
which were established and used interactively, i.e., a change of the actual basis
which only made possible the division of concrete and linguistic labour. Conse
quently, their successful use necessitates prior negotiations on these changes. So
the character of embodied competence as something conferred in a social field of
action is a bar to any autonomous changes to the collectively established basis
of this competence. Before such changes can again become effective as conferred
competence, they first have to gain acceptance socially. Apart from the convinc
ing demonstration of a modified use, the acceptability both of a corresponding
course of action and of the interpretation of its consequences must be negotiated.
Thus the modifications established in an expert's activities can only become an
effective part of experts' action if there is agreement within a field of experts
and if these modifications are generally adopted. Just like the acquisition of
established competence, reaching a consensus is accomplished by negotiation.4

These considerations lead me to deny the identity of expertise and knowledge
of experts, which is assumed by those developing expert systems as well as their

3 In [Dreyfus and Dreyfus, 1986] this ability constitutes the highest stage of an expert.
4 Is it conceivable that an individual expert develops a practice which is both mastered

by nobody else but himself and regarded as expertise in dealing with particular
phenomena? Yes, but only as long as he is considered to be the only expert in this
practice.

4.1 Scientific Expertise as a Social Process 133

critics, and which is suggested by concepts taken from cognitive psychology. Put
nam - until recently one of the main advocates of the "computational view of
the mind" 5 - takes the problem of the relationship between reference and mental
representations to show that all mentalistic theories ignore the "social dimen
sion of meaning - the division of linguistic labor" ,(po 88). He adds the pointed
formulation that "Meanings aren't 'in the head"'(p. 73), and finally: "knowing
what the words in a language mean (...) is a matter of grasping the way they
are used. But use is holistic; for knowing how words are used involves knowing
how to fix beliefs containing those words, and belief fixation is holistic." (p. 119)
This view that meaning is not in the head points us to the fact that meaning is
created and exists only in a speech situation.

The production of meaning is not just a matter of linguistic work but also the
result of object-oriented action in the world. Competent action of human experts
implies non-linguistic handling of meaningful objects. Following Putnam, I would
say: expertise is nowhere in the body of experts (neither in their bodies nor in
their minds). Expertise is an emergent phenomenon of social and local practices
in a real world context. To regard experts as "containers" of expertise leads
to an objectivistic and mentalistic reduction of natural knowledge processes.
This reduction is at the bottom of all problems we know from discussions of
artificial expert systems: the acquisition problem, the rule application problem,
the meaning problem, the implementation problem, the learning problem and the
interaction problem. To provide further arguments for the independence of local
expertise as the form in which natural expert systems are socially organized, I
shall now use results from my own research.

4.1.2 Expertise as locally and interactively accomplished
'thinking'

What I find in observing scientists at work is not just a link between thinking and
language, but a link between thinking and talk, more precisely shop talk. What
difference does this make? When embedded in talk, thinking is interactively
accomplished. It exploits the power of discourse to bring forth features of the
phenomena which, once on the table, may be very suggestive, and thus may facil
itate or simply imply certain conclusions. Put loosely, the move is from inference
to conversational implicature6 : what we get instead of mentally-induced prob
lem solutions are conversationally induced utterances which, among members
of the appropriate science culture, may trigger certain previously non-obvious
interpretations or performance recommendations. We have identified several in
teractionally accomplished inference 'machines' at work in the research groups
observed: procedural implicature, optical induction, the oppositive device, and

5 [Putnam, 1988]
6 This way of putting the matter draws upon a possible but not very clear distinc

tion between "inferences" as logical accomplishments and what Grice calls "con
versational implicature" which in our reading rests upon convention and cultural
knowledge [Grice, 1975].

134 Klaus Amann

thinking aloud patterns.7 Scientific thinking as it appears in scientific work has
a prosthetic structure.8 It employs devices other than mental activities to elicit
and facilitate conclusions. One such device is the interactional inference ma
chinery of shop talk. The pervasiveness and the sheer amount of shop talk is
striking in the sciences observed. It is plain that work gets accomplished in shop
talk, and that shop talk must be considered a technical instrument of knowledge
production just like the more familiar experimental apparatus and machines.
We found several recurrent patterns of talk that ostensibly accomplish inference
tasks. Most widespread among these appear to be procedural implicatures and
the oppositive device. Two of the devices identified are argumentative, the think
ing aloud pattern and the oppositive device, with the latter being adversarial
while the former is not. To some extent, argumentative patterns 'feed upon'
or overlay other conversational patterns; the patterns described are not mutu
ally exclusive. For example, participants may draw visual inferences and make
optically-derived claims in the service of their argument. Arguments are often
backed by episodic reasoning, as are conclusions in all devices. Episodes are one
of several narrative elements in scientists' spoken discourse, other elements be
ing stories and reports. Two shop-talk routines are attached more heavily than
others to the objects around which the conversation turns: optical induction and
thinking aloud. In thinking aloud, speakers turn away from hearers and face the
object while they sketch out arguments, identify issues ("problems") and formu
late experiences or conclusions - all apparently in making their clues from the
object. In optical induction, the same close connection between object and talk
occurs in a more literal sense: by the way it looks, how it is positioned in relation
to other observables, etc., the object "suggests" a conclusion. Yet both patterns
rely, like the first two mentioned, on the presence of other speakers: They are
realized through talk.

In identifying these patterns of talk, we paid attention to the phenomenon
that complex problem situations tend to become interactively dissolved in shop
talk.

In a further study on the fixation of (visual) evidence9 we address the ques
tion of the conversational routines and inference machineries in terms of which
seeing becomes socially organized in talk. Conversational inference devices are
employed as participants run into problems in recognizing visual objects, in de
termining, say, the identity of 'traces' on data displays. With the help of these
devices, participants develop a sense of "what was seen" on these data displays.
Through montage, this sense of what was seen is transformed into evidence. Both
processes constitute what we have called the fixation of evidence. Evidence is
here the aesthetically enhanced, carefully composed rendering of flexible visual

7 In [Amann and Knorr-Cetina, 1989] we regard inference 'machines' as vehicles of
thinking. Apart from mental operations there seem to be mechanisms of thinking
in scientific inquiry where thinking has less of a cognitive structure (in the sense of
mental calculations) but rather a speech act and particularly a dialogue structure.

8 For an interesting study of "prost ethic" forms of thinking in lay persons solving
everyday arithmetic problems see [Lave, 1985].

9 [Amann and Knorr-Cetina, 1988]

4.1 Scientific Expertise as a Social Process 135

objects that, through the meandering interrogatory processes of image analyzing
talk, have been embedded and entrenched in procedural reconstructions, local
experiences and in the landscape of the data display.

The analyses of the interactively organized fixation of evidence as well as of
the organization of thinking through talk make it obvious that experts coping
with complex, naturally occurring problems continuously include local features
in their collective mechanisms of interpretation and persuasion.

I shall discuss one of the learning phases I studied as an example of how sci
entific novices acquire competence in dealing with corporeal knowledge through
negotiations with the advanced scientists in the lab. The following excer[220zpts
from a transcribed dialogue show how novices learn to carry out what is de
scribed in so-called lab protocols.

Excerpts from an explanation during radioactive labelling of nucleic
acid molecules
A explains what B has to do with the steps listed in the protocol:

The colour you see/ you see because then that is [... J you see that this here
for example/ the blue runs ahm runs with the nucleotides or around ...
I would just spin it down ah, because there are quite a few counts here
sticking on the top ...
Well then you have a volume of two/ fifteen or twenty or whatever and here.
loading with a pipette isn't it/ take care now I've just done this/ that this
one/ begins to run dry you know it from the columns ...
Here take this one for loading and ahm, don't smear it on the wall that the
drop is really there/
B: right in the middle okay? /
A: yeah exactly ...
Okay that's what I meant/ now put it there in there above isn't it so and
ah so n/ to suck it up take the 200/ it's always annoying when they pull off,
fill in very carefully ...
And these are mostly green ones from the dyestuff and that's what I don't
take anymore. Green

In contrast to the protocols, which only sometimes refer to perceptible matters,
the accomplishment of the procedures are accompanied by personal demonstra
tions and comments on visibilities and observabilities. The entire experimental
process during this learning phase dissolves into a complex flow of perceptibili
ties and quite small manipulation details that must be coordinated in order to
successfully accomplish any given step.

Everything that happens when objects and their meanings are dealt with
in this example - by means of demonstration and imitation - constitutes the
basis on which a procedure laid down in documents can succeed in its locally
established meaning. Documented knowledge alone offers only an insufficient
framework for the development of expertise. Only the successful demonstration
of the use learnt in negotiation with other experts allows a competent expert an
autonomization of his activities as a part of local expertise.

136 Klaus Amann

4.1.3 The possibility of standardized expertise

Ascribing expertise to people is an established form of dealing with knowledge.
People (but occasionally also machines or automats) are collectively treated as
if their activities as experts were completely determined by their competence
as socialized participants. One prerequisite is the responsibility of individuals,
which follows from their place in a local context of social relationships. This
in turn requires the existence of clearly delimited areas with a standardized,
i.e., a collectively accepted repertoire of activities. In natural expert systems
such a repertoire is the outcome of a long-term occupation with delimited or
delimitable areas of phenomena or problems. These areas become "encapsulated"
by a standardization of situation interpretations. As soon as a situation can
be interpreted as "similar" with respect to the applicability of a standardized
procedure, no more (collective) interpretation and determination of the next
steps are needed.

However, such an encapsulation or standardization is preceeded by varied
processes to stabilize procedures. It is followed by activities which serve to main
tain a once established standard (and to modify it). Standard activities in turn
are maintained in local contexts of action. In the empirical sciences this local base
is the lab, which comprises objects, people and procedures. Standards are main
tained because they are embodied in procedures: partly in instruments, tools
and machines, partly in personal competence. These procedures contain fixed
interpretation patterns for experimental effects, the "data". The application of
such procedures includes checks to make sure deviations from the fixed course
of action remain interpretable within a procedure. So standardized procedures
consist not only of a standardized course of action but also of a standardized
repertoire of interpretations of deviations. This facilitates the treatment of some
thing standardized as an entity with a fixed meaning.

Yet this (seemingly static) procedure remains open to constant modification
in the case of experimental action in changed contexts. In the course of the
research process the range of interpretations of experimental effects is often
imperceptibly modified. On the material level, reductions and simplifications are
implemented, new case histories extend (or restrict) the meaning of procedures
and their effects, which were made visible.

These modifications are processed in the local context of the lab, and this
shows that even something standardized is subject to changes in procedures.
In the lab, collective activities serve to integrate changes. Communicative re
lationships and work at the lab - at contextual features - lead to a dynamic
stability of these procedures and their respective expertise. Procedural knowl
edge of dealing with and interpreting case histories as affiliated patterns of a
standardization is continuously circulating in this setting and the procedures
are tied to this knowledge. In the course of collective learning processes, which
are organized, e.g., through the types of shop talk and fixation of evidence men
tioned above, they are incorporated into the standard repertoire. So constant
implicit changes, among others of rules for the application of rules and of the
knowledge base of scientific expertise, take place in such a research process.

4.1 Scientific Expertise as a Social Process

4.1.4 Compulsory standardization in artificial expert
systems

137

Right from the start existing expert systems emphasized the possibility to stand
ardize and to individualize expertise. In this case expertise is exclusively mod
elled as the interaction of knowledge and the way experts (individuals) deal
with it. The expert system itself is presented as an aggregate of several experts'
stocks of knowledge and their ways of dealing with them, a "superexpert" who in
principle has to know more than the experts who answered questions when the
knowledge was gathered. So here the successful modelling of expertise requires
the possibility to explicate completely all steps an expert takes while solving a
problem. And this requires a model of an expert who has all these steps au
tonomously at his disposal, independently of any interaction in his field. In a
number of domains this seems to be possible and we can identify domains in
which expertise seems to be entirely transferred to individuals. If we take for
example medical expertise, it is possible to extract rules and knowledge and to
model individualized expertise. A precondition of this is that experts themselves
must have advanced the standardization of procedures and the stabilization of
local contexts of action to such an extent that the interpretation and the as
cription of meaning works like a "reading" of unambiguous signs. In previous
learning and ascription processes the interpretation was fixed in such a way that
the potential range of uses of instruments and objects was eliminated. When
an artificial expert system is developed for a field, some areas are created in
which only predetermined procedures and uses of knowledge are admitted and
unrepresented knowledge becomes meaningless. The stocks of knowledge incor
porated in an expert system - propositional knowledge and knowledge of rules
- replace after their implementation the kinds of procedures previously needed.
Other procedures are applied before or after the introduction of expert systems
in these areas. So by applying fixed rules, the artificial expert system is treated
like an expert who can and must always read sensory data as unambiguous signs
of objective events. The unambiguity of signs is brought about by their earlier
assignment to interpretation rules.

To make this work, only certain formats of "input data" are admitted. A
user of such a system is called upon to remove ambiguities, whereas the system
provides interpretations, so that data can be processed within a scope for inter
pretations limited by fixed rules. At the other end, the result of this processing
is transferred into the "natural" situation. It is thus made accessible and can
then be dealt with in the usual processes. The success of such an artificial expert
system depends on a trick: It is to put through compulsory standardizations, i.e.,
to have cleaning-up phases prior to the use of such a system. The social field
in which the system is going to be used has to standardize the input according
to the built-in rule application rules and must keep it constant. So the artificial
expert system extends itself to a formalization of its users' activities. This must
be achieved before the use of such systems can yield results useful for subsequent
activities.

138 Klaus Amann

The cleaning process has secondary effects on the use of the respective sys
tems. To what extent can the construction of reality encapsulated in an imple
mented expert system be kept stable within its field of application? Or to put it
differently: to what extent can the data to be processed be kept identical with
respect to the ascription of meanings implemented in the system?10

The fixation of knowledge calls either for the exclusion of modifications or
for mechanisms in the system which can cope with change, i.e., a system capable
of learning and of changing meaning patterns. ll

It then becomes obvious that the social implementation of an artificial expert
system is substantially more than merely substituting an artificial expert for
a natural one. It changes the character of expertise. A new social reality is
produced and natural practices are newly formed and standardized. However,
there is not yet a difference in quality to other technical automation processes. A
difference does not exist until one tries to individualize and automatize expertise
which is based on necessarily local, collective and ambiguous phenomena.

As we have seen above, this kind of expertise requires two types of com
petence on which natural experts can rely: learning competence and discourse
competence. Both types are tied to the social participant role of experts. Learn
ing competence results from the possibility of changing the organization of one's
individual knowledge through one's own and the others' experience, i.e., to mod
ify meaning structures in the course of their use. A prerequisite of discourse
competence is participation in the collective determination of modified mean
ing structures. For both types of competence it can be said that they cannot
be modelled in an artificial expert system but must be incorporated by human
experts' intervention from the outside.

4.1.5 Conclusion

Our discussion of results from research on natural expert systems clearly in
dicates that up to now the social foundation of knowledge systems has hardly
touched upon the thinking about conditions of modelling. This also applies to
critics of such systems, insofar as they share the individualistic concept of knowl
edge.

The introduction of the concept of social expertise opens up the systematic
possibility of interpreting knowledge and activities of experts as socially and lo
cally bound phenomena. This shows that the real problem in modelling expertise
is not the acquisition of knowledge - propositional knowledge and knowledge of
rules - but the fact that the status as an expert is socially constructed. Looked at
from this point of view, the independent existence of 'objective facts' suggested
by the seeming stability of knowledge systems turns out to result from the work
of social stabilizing mechanisms. The attempt to represent a knowledge system

10 'Keeping something identical' or 'stable' does not refer to the technical device but
to the (social) context of action into which it is 'fitted'.

11 A weaker case would be a modification implemented externally and without causing
problems, so that it could be carried out during a user's actual work with the system.

4.1 Scientific Expertise as a Social Process 139

in a machine replaces or externalizes these social construction processes by a
static disambiguation of locally and socially bound meaning structures. So their
usability within natural knowledge systems is restricted to fields of action which
are fixed to such an extent that results of such systems can be treated as valid
results. In this respect they are tools which replace personal action. Their abil
ity to function properly depends on whether their use of incorporated inference
mechanisms can be treated and justified as situationally appropriate. In other
words, it depends on whether in social contexts of use their products are still
regarded as valid interpretations.

A methodological extension in the analysis of natural expert systems is
needed to show where the limits of knowledge systems are. The study of na
tural expert systems will have to include not only the collection of documented
knowledge and the accompanying practices of experts (the latter by interviewing
them) but also the systematic observation and analysis of the social use of local
expertise.12 As to the implementation of artificial expert systems as tools, it will
have to be studied to what extent the future environment of these systems - the
social place of their use - will admit such a formation of expertise and which
consequences this will have on its organization.

12 The methods to investigate empirically natural problem solving which are employed
in the lab studies mentioned above provide a suitable set of methods for such studies.
See [Amann and Knorr-Cetina, 1991].

4.2 How to Communicate Proofs or Programs
Dirk Siefkes

4.2.1 An opening question

Why is formalization so much fun to do or to talk about, and so boring to listen
to? How excited most of us get when we prove a new theorem or develop a
program, or even more when we explain it to someone else! The "someone" may
be a fellow researcher, or a class of students, or the audience at a conference. But
do we show the same excitement if we are the someone, but are not ourselves
involved in the question, or at least active in the field? Why do students shun
mathematical lectures? Why do we fall asleep during a talk? With writing and
reading papers it is not so different. Or am I the only one who loves to do
mathematics, but tries to avoid reading the papers of others?

Any formalization seems to have this effect: it makes things easier, but less
fun. On the freeway we drive smoother than on secondary roads, but have trouble
to stay awake. To follow another person's formal built-up is like that: we go
straight ahead, fenced in, no decisions are necessary or even wanted. When on the
other hand we search for a proof or design a program, we have to be creative. The
situation is similar with writing or talking about a result: When we reproduce a
proof, we re-live the excitement of finding it - or of understanding it if it is not
our own.

So this is an easy answer to the question I started with: Following our own
path is fun, being ordered is not. Gregory Bateson! describes the dual pair of
form and process. Processes happen. They happen in given forms, as cars run
on roads; and they produce forms, as traffic results in freeways, which in turn
allow increased traffic. We formalize to impose order in the world, and thus to
give orders to others. When I present a proof, the others have to believe me;
they even have to follow my way towards the theorem. When I write a program,
it is first the machine that has to follow me. But soon it is the other guy who
has to, especially when I am a theoretician.

There is much effort now in software engineering to replace, or at least to
complement, the product-oriented view by the human-centred view2 • What kind
of anti-thesis is this? How is it possible that people concentrate on products
instead of humans? My product is my baby, that is, an image of myself. In
presenting it, I put myself into the center without having to blush. As Gordon
Pask formulated it in a conversation during this conference : "The prevailing
view in science is the I-I-I-perspective as opposed to the I-you-perspective. This
is what needs to be changed."

1 [Bateson, 1972, Bateson, 1980]
2 See for example [Nurminen, 1988].

4.2 How to Communicate Proofs or Programs 141

How can we hand over what we have learned if not in the form of a product?
Is there a way to induce the processes we have gone through, in the partner?
Again, this sounds like a moralistic question. What has formalization got to do
with morals? It seems that my rash answer to the opening question - as rash
answers tend to do - posed new questions rather than answering the old one.

Let us start afresh from safer ground with a more traditional question.

4.2.2 What is a proof?

Every logician can answer that one: proofs are trees. In a proof we proceed from
axioms, assumptions, hypotheses through logical steps to the statement to be
proved. Thus the proof tree contains the axioms at the leaves, the logical steps at
the branching points, and the theorem at the root. Quod erat demonstrandum.

Such proofs do not occur in praxis, as every logician would admit. In principle,
however, any mathematical proof could be broken down into logical steps, and
thus changed into a tree. We just have to blow away the accidentals, delete the
ephemeral, concentrate on the essentials, work out the underlying structure, and
bingo! there is the proof tree - as illustrated in Fig. 4.2-l.

Mathematicians proving theorems proceed on a different level. Not because
they are careless or lazy, but because by a formal proof they would not prove
anything. We could check its correctness, even by a machine. But we would be
unable to understand it, and thus would not understand the theorem.

Traditionally one distinguishes between rational and rhetorical speech. In ra
tional speech we "prove" something; that is, we proceed from evident axioms to
derived assertions in self-explanatory steps. Everyone in his right mind has to
accept what we say. In rhetorical speech we try to "make clear" our ideas di
rectly, by referring to personal experience, using pictorial language, and drawing
analogies, in order to convince the audience. Whether we succeed depends more
on how we say it than on what we say. In particular we ourselves do not have
to believe in what we say. In the rational tradition rhetoric becomes the art to
fool the audience; a "rhetorical question" is a fake question.

Paul Feyerabend3 mocks the rational tradition when he explains why it has
been so successful. "Proofs are stories that tell themselves" is his definition.
Story-tellers had better have their stories well told if they want people to be
lieve them. Persons proving a statement on the other hand need not take such
pains: The concepts they work with are so general that they already contain the
whole argument; thus it develops by itself. In his books4 Feyerabend demon
strates that the scientist himself does not proceed rationally, but rather like an
artist: following the fashion, subject to partialities, looking for advantages. Is
the mathematician proving a theorem an artist, too?

Obviously, we are never completely rational when we do a proof. The axioms
themselves cannot be proved; we have to "show" them directly, in rhetorical

3 [Feyerabend, 1984]
4 [Feyerabend, 1975, Feyerabend, 1981, Feyerabend, 1984]

142 Dirk Siefkes

Consider a live proof: blow away the accidentals,

delete the ephemeral, concentrate on the essentials,

d Q.t.S).

work out the underlying structure, bingo, there is the proof tree!

Fig. 4.2-1. How to turn a live proof into a proof tree

4.2 How to Communicate Proofs or Programs 143

speech. Therefore - Ernesto Grassi5 concludes - rhetoric is primary; from it we
get the framework onto which to pin the rational arguments.

How about the steps in a proof? Are they logical, formal, rule-governed?
We saw above that such formal proofs do not occur in praxis, since we would
prove nothing that way. Also we could not, even if we wanted, transform a non
trivial mathematical proof into its logical equivalent; it would simply be too
complicated. And if we could, the transformation would not be formal. Thus,
also within a proof we use informal arguments, that is rhetoric.

Finally we cannot find a proof, formal or informal, through formal arguments.
This is the problem with unrestricted automated theorem proving. One tries to
program an activity that is not formalized and, in my opinion, not formalizable.
Even if one day such a program should produce a non-trivial theorem, few math
ematicians would believe it, since they could not follow the proof. To date, many
mathematicians do not believe in the proof of the four-colour-conjecture, since
a good part of it is carried out by computer. This does not imply, however, that
automated theorem provers could not be helpful tools for checking assumptions
in restricted applications.

What then are formal proofs good for? A formal proof is a mathematical
object, and thus can be investigated mathematically. For example, in order to
prove that something is not provable 1 have to use a formal notion of proof, and
thus a logical formalism. To prove that something is provable, however, 1 just
have to set up a proof by which I convince the others. How do I convince another
person?

4.2.3 When does a proof make sense?

Before I can convince someone, 1 have to make her or him understand what I
want. "I do not understand what you say. It does not make sense to me." is the
worst answer I can get. Only if my proof is understood, my audience can agree.
Or disagree, and I can try again, or take back what I said. Understanding comes
first, truth or falsity later. When does a statement make sense?

In his logical writings Gottlob Frege distinguished between 'sense' and 'mean
ing' 6. 'Meaning' is easy in mathematics: The meaning of a name is the person or
thing named; the meaning of a program is the function that we compute by it;
the meaning of a statement is its truth value. With 'sense' Frege is less explicit.
Two names for the same person have the same meaning, but one of them might
be affectionate, the other insulting; thus they differ in sense. Similarly the same
proof may make sense or not, depending on the way it is set up or told. But
what is this 'same proof'? And why can a proof, really the same one, make sense
to someone, and make no sense to someone else? 'Sense' does not seem to reside
in the proof, but to flow from its communication.

5 [Grassi, 1980]
6 See his paper "Sinn und Bedeutung" [Frege, 1892]. 'Bedeutung' is often translated

in a more technical sense as 'denotation' or 'reference'. Like Frege, I stick to the term
'meaning' as used in everyday language to catch the informal connotations.

144 Dirk Siefkes

"Sense appears in the form of a surplus of references to further possibilities
to experience and to act", defines Niklas Luhmann in "Social Systems" 7. My
partner says something. If it does not make sense to me, I have three standard
ways to react: to ask for an explanation, to pretend understanding, or to break
off the conversation. If I understand, however, there are numerous possibilities
to continue. The situation has become richer. A piece in a conversation makes
sense, if it enables the partners not only to follow but to go ahead.

Thus, the elementary actions in a proof are not the logical steps, but infor
mation that enables or induces the partner to take a step himself. We could call
these pieces the sense-bearing units of a proof. They are not part of the proof,
but of our attempt to communicate the proof. They have to be recreated each
time I tell a proof, between the audience and myself.

Not enough possibilities to continue a conversation is one extreme. Too many,
another: my statement makes no sense, because 'the audience cannot connect with
it. Between these two extremes, the conversation has to flow. In my papers8 I
call such a way to give a proof the 'small systems way'. Not the proof itself is
small nor the group I talk to, but the way we communicate. What makes sense
depends on what we want and like, what means we use and what rules we obey,
as much as on what we know. Excess or defect in any of these bearings makes
the system too big or too small, respectively. Which way we go depends on us,
whether we are many or just two or one.

A long proof is always hard to understand; or to find, for that matter. I have
to break it into pieces which the audience can digest. This way I can induce in
my partners the processes I experienced when I first did the proof. Only then
can they change the proof. And only what can be changed makes sense. Recall
the thesis in the beginning: Nothing is fun if we are just ordered, if we cannot
act ourselves. I have to tell the proof in such a way that it opens the view of the
listener. Knowledge just thrown on someone can be a burden. Questions are a
better present.

Normally we speak locally: about a situation at hand, within a system. Some
times we speak globally: about the world, in general terms. In particular we speak
globally in science, philosophy, religion, art, and when we are drunk; we want to
say something that applies everywhere, to everyone. Only global concepts can
be formalized. If we forget that, we produce not formalism but confusion.

For example, 'true' is a local concept, 'true in a situation' is global. We
cannot determine by a general rule whether what people say is true. If we trust
them, we believe. If we do not, we look for a proof. "True is what is the case" ,
says Wittgenstein. We look out of the window to see whether it really rains.
But this ptinciple of logic works only for the global concept 'true in a situation'.
If we cannot inspect reality directly, we have to ask for a proof, and are back
to the local problem. Can we trust what other people say? The less we do, the
more we force them to make global- logical- steps. 'True' and 'trust' have the
same Indo-European root: 'deru' - 'to last' - 'dauern' in German. 'Tree' has the

7 [Luhmann, 1987, p. 93, translated by the author]
8 [Siefkes, 1991]

4.2 How to Communicate Proofs or Programs 145

same root. This is different in German, 'wahr' is what lasts in court - "was sich
bewahrt"; the only tree here is the juridical oak.

When I globalize my statements I end up in a language where I have to follow
fixed rules in order to maintain the desired universal meaning. Such languages
come clothed quite differently: There are the ritual languages of religion and
sports, the esoteric languages of philosophy and science, the "artificial" languages
of art, and the formal languages of mathematics. They all fall under the same
contradiction: Intended to be global they are restrictive. Using them I have to
obey their rules, and can address only the initiated.

What I have learned in a small system on the other hand should be useful
everywhere where I manage to build up another small system. How then can
we apply global concepts in small systems? We have to learn that 'global' and
'local' like the closely related 'big' and 'small' are not properties of concepts, but
ways of usage.

4.2.4 Techniques of proving

In a social system we continuously have to reduce the complexity - of the system
and of its environment - to stay alive9 . Complex is anything that we do not
understand. If we make ourselves understood, we reduce the complexity, and
increase our ability to communicate. Thereby we create subsystems, and thus
a richer structure. For a proof this means: carve out parts that make sense in
themselves, then combine them sensibly. Let me make these observations more
concrete by collecting a few principles which mostly will be common ground, but
are rarely stated explicitlylo.

First, do not do the proof bottom-up. In computer science trees grow upside
down: root in heaven, leaves on the ground; a brain-made reality as shown in
Fig. 4.2-1. Computer scientists distinguish between bottom-up and top-down
programming. When one works top-down, one starts with the meaning (as un
derstood by Frege), with the function to be computed. One breaks this goal
into sub goals which are somehow related, works on those in turn, and so on
downwards, until on the lowest level one writes the actual programs, which then
only have to be connected. Working bottom-up one proceeds just the other way
around: one starts by writing pieces of code which one glues together by more
code until the program is finished. A bottom-up proof starts with numerous
little definitions and lemmata, which are pieced together by propositions and
further lemmata, until at the end one states the theorem and proves it by com
bining lemmata 7, 17, and 27. Quod erat demonstrandum. Of course, nothing is
demonstrated that way. When reading such a proof all the way up one is busy
with statements one does not understand, since one does not know where they
lead to. After one is through, one has to go over the proof a second, and likely

9 This is [Luhmann, 1987] again.
10 Donald Knuth has lectured extensively on this theme; see his "Mathematical

Writing" [Knuth et al., 1989].

146 Dirk Siefkes

a third time. Or one reads the proof backwards, which makes for hard reading.
Why not do the proof top-down in the first place?

Second, do not do the proof purely top-down either. Indeed, reading top
down one has to carry along concepts that have no meaning yet; one has to
accept statements that are not yet proved; one has to understand techniques
with which one has not yet worked.

How then are proofs to be done if neither top-down nor bottom-up? A fa
miliar technique is depth-first top-down: Single out a concept or a substatement
of the theorem, explain that, and go down locally with that technique. One
cannot go very deep, however, since then one loses the connection, vertically
and, what is worse, horizontally to the other mine shafts. In his nice little book
"u topies realisables" 11 the architect Yona Friedman introduces the idea that
communication chains have a maximal length (and branching width), and on this
ground calculates the maximal size of communicating groups. Another architect,
Christopher Alexander, uses these principles, although in a quite different spirit,
when he investigates the problem of designing large projects12 .

Another technique is to proceed from the particular to the general. Do spe
cial cases first, not for a superficial motivation, but completely. Then generalize
stepwise. The completeness proofs for logic programming in my book13 are an
example of this method. Again, if the special cases are not general enough, they
might not be typical, and the chains become too long and will be difficult to
deal with.

The best way then is to combine the bottom-up and the top-down approach.
In accordance with the remarks at the beginning of this section select units and
give them sense: explain the concepts, try the methods on comprehensible cases,
work out the details. Combine such units in a similar way. This happens regularly
when (and only when!) you try to communicate with others on the proof, since
then you have to change your view on the matter. Proceeding in an analogous
way in software engineering is called 'prototyping'. In my paper"Prototyping is
Theory Building" 14 I investigate prototyping in art and in mathematics, and
propose to use it in theory building.

Third, beware of technical lemmata. If you cannot name and formulate what
you want to do, you may not have understood it yourself. If you cannot describe
the underlying principle so as to make the lemma self-contained, how shall it
make sense to anybody else?

Fourth, do not begin with a list of preliminaries and notations. Nobody will
read it beforehand anyway. Introduce these things where they are needed, and
collect them in an appendix if you feel like it. As somebody (Feyerabend?) once
remarked, the sections "What every reader ought to know" often are the dumps
for material the author himself does not want to think about.

11 [Friedman, 1976]
12 See his book [Alexander, 1964].
13 [Siefkes, 1990]
14 In [Siefkes, 1991].

4.2 How to Communicate Proofs or Programs 147

Fifth, show courage, be negative! It is customary in science to write "on what
there is" , and not on what there is not. Every good fiction writer gives his hero
some bad properties, and some good streaks to the mean guy. This technique is
important to give shading to the persons, and thus depth to the picture. Why
should a scientific paper be shallow? In a proof state not only the truth, but
also what is false; why you took this turn and not that one; why you define a
concept this way and not the other; tell which paths led you astray. Work out the
non-theorems as carefully as the theorem. Thereby you save the reader wrong
steps, and keep them documented for your own sake as well. Show him the paths
you did not take; maybe he is the one to succeed on them. Read what Rudolf
Arnheim writes in "Visual Thinking" 15 about figure and ground.

Finally, be careful about how you write. "The proof shows ... " Nonsense!
Have you ever seen a proof raise its hand, and point at something. By using the
phrase "By the proof I show ... " (or "we ... " , or "she shows ... ") I leave no doubt
who does the job. If "the program computes the function" or "the computer
solves the problem", who gets the merits? And who is responsible? Even more
nebulous is the passive form: "By the proof it is shown ... " . Now the subject has
vanished altogether, and the action with it. By a verb I describe what happens,
by a noun who or what makes it happen. But how can I, if I do not choose the
actor as the subject of the sentence, and do not let the verb reveal the action?
We scientists are guilty more than anybody else if everyone's sentences stagger
from too many too heavy nouns and suffocate from too few verbs. We love to
describe states instead of talking about actions, and everyone's reality changes
accordingly. To counteract this tendency the physicist David Bohm in his book
"Wholeness and the implicate order" 16 proposes to speak in the "rheomode": to
turn all words into verbs, to "re-levate" the relevant.

4.2.5 Proofs and programs

Can we apply to programs what we have learned about proofs? Is there an
analogy? - By a proof we prove a theorem, by a program we compute a function.
Wrong, says the software engineer; a program serves to help to solve a task by
computer. But, says the mathematician, the computer is a deterministic machine,
and thus produces a unique output to each input; in this sense a computation
realizes a function, and the program defines this function. Thus, this first analogy
between proofs and programs rests on a mathematical abstraction.

We saw above that a mathematical proof is never formally given, since it pur
ports to convince other people. By contrast, a program has to be executed on a
machine, and thus is completely formal. From this contrast springs a deep differ
ence between mathematics and computer science. In mathematics there is "the"
mathematical language, which everyone acquires and uses in different styles. And
then there are logic formalisms as extreme formalizations of this language. The
connection between the two levels is quite unclear, as discussed in the beginning.

15 [Arnheim, 1969]
16 [Bohm, 1983]

148 Dirk Siefkes

Actually there is no need to clarify it, since logic formalisms are not practically
used. In dealing with computers on the other hand one uses many levels of for
malization, from the highest-level programs down to the machine code. These
computation formalisms correspond directly to the logic formalisms discussed
above, where the elementary units now give rise to computational steps instead
of logical ones, and the levels are formally related through compilers. They need
not concern us here unless we want to design or discuss programming formalisms
and compilers. The relation between problem situations and high-level programs
is relevant for our discussion. Since these programs are still formal and have to
be correct in every detail, computer science abounds in methods, ideas, and
theories how to get there from informal description: diagrams, documentations,
mathematical formalisms.

In the 1970s the catchword was "structured programming". A well structured
program is less likely to contain errors, or to be misinterpreted by the user. This
structure, however, is formal, is part of the program. In this approach, therefore,
attention is paid mainly to the product - the structured program - and not to
the process of programming or communicating about the program. In his paper17

Donald Knuth claims an era of "Literate Programming" to follow the decade of
structured programming. He develops a system, WEB, by which informal writing
in programming is as well supported as the development of the formal program.

How to write sensible programs has become a big issue in software engineer
ing. How to write programs sensibly seems to me the actual question. When one
really wants to communicate about the program and the programming task, one
cannot go top-down from the task to the finished program. Thus this "waterfall
model" is replaced by the "cycle model" where one cycles through alternating
phases of writing the program and trying it out, to enhance its quality by com
municating about it18 . "Prototyping" is of great help here. This is the technique
of singling out a self-contained unit - horizontally or vertically, see above - and
doing it first. This way one learns about the project as a whole, in particular
through communicating with others, for example with a potential user. As the
software engineer said in the beginning of this section: A program is important
not in itself, but as a means to solve a problem. The main task is not to write
correct programs, but to convince others and oneself that the program works as
wanted. Programming is discourse, resulting in texts that we call software, is the
view of the linguist Dafydd Gibbon19 . It is a literary activity then. Program
ming in this way can only be done in small systems20 . It will result in smaller
programs, too, since nobody understands the large ones.

Some computer scientists say that a program counts for nothing without
a correctness proof. Since programs are formal, they use formal methods for
programming. Thereby they make programming a mathematical activity. This

17 [Knuth, 1984]
18 See for example [Floyd, 1987, Keil-Slawik, 1987b, Floyd and Keil, 1983] and Chap.

4.4.
19 See Chap. 8.3.
20 See Sect. 4.2.3.

4.2 How to Communicate Proofs or Programs 149

may be helpful for explaining abstract programming languages. But it is a mis
take to believe that the communication problem might be alleviated that way.
Whether programs are understandable depends less on the characteristics of the
programming formalism than on how it is used. "Until we acknowledge the di
alectical, creative, and living dimensions in programming, we shall be doomed to
participate in software processes that are unwieldy, unpleasant, and ineffective,"
formulates Joseph Goguen21 . As early as 1979 Richard DeMillo, Richard Lipton,
and Alan Perlis22 maintained that formal proofs do not help much in convinc
ing others of the correctness of our programs (and theorems); rather we have
to argue convincingly, repeat our points, gain credit. Programming is a social
activity.

It is an inherently human activity, Peter N aur says in his paper on "Program
ming as Theory Building"23. What programmers know about their work cannot
be recovered from the program nor from the documentation. Too much is gone
into the programmers' heads and finger tips, into their way of using programs
and writing new ones, into the theory that lives and dies with them.

So this is the analogy between proving and programming: both the mathe
matician and the computer scientist work towards a formal product, and both
are in danger of loosing contact with their environment by doing their work in
a formal way. In both areas prototyping as described above is helpful: Learning
and talking about the formal goal by considering a special case, a representative
aspect, or a typical example. Mathematicians have always done this without
talking much about it; today they could learn from computer scientists: become
conscious about the problem at hand, do something about it.

Whatever part of a proof I really understand, I can wrap up as a unit, and
talk about it separately. And conversely: By identifying and naming sensible
parts of a proof, I understand better both the parts and the whole proof. This is
common mathematical experience: A proof first found is poorly understood, and
as a rule contains errors. Only by discussing it with others I comprehend it better;
lecturing and writing on the proof provide still higher levels of understanding.

4.2.6 Why formalization anyway?

Now I can try to settle a misconception which may have loomed in the back
ground with many readers: that I disdain formalization, and would rather see
it thrown out. I do not. Recall the Bateson pair of form and process. We ex
perience processes, but we cannot communicate them (not even to ourselves).
We have to formulate (sic!) them first. This need not happen verbally. We hu
mans have a wide range of ways for communication available, ranging from the
secretive whisperings of our bodies, or even thoughts and dreams, through the
pronouncements of art and the chatter of everyday conversation to the formal
statements of science. Formal mathematics is just on one end of this range. But

21 See Chap. 5.1.
22 [De Millo et al., 1979]
23 [Naur, 1985b]

150 Dirk Siefkes

in every act of communication we wrap up an experience, and by this very act
- whether verbal or not, conscious or not - give it a unity, and thus make it an
element of our communication system. For this reason, there are always experi
ences we do not communicate about, since we do not want to endow them with
this special status24 .

Formalization thus is a special case of formulation. It provides a sharp tool
without which mathematics would not have evolved. Formalization is the vehicle
on which science rests, computer science in particular. We divest a word of the
meaning it has acquired through our experience, and instead set up rules about
how to use it25 . We separate form from process, by giving a new precise meaning
to the word. Thereby we can be sure that other people use it the way we want it,
and thus compactify our communication. To use a tool with such skill is much
fun. I often tell my students that the only reason not to like mathematics is to
be afraid of it. And rightly one should be afraid of a sharp tool if one has to use
it without really knowing how.

This is only one side of the coin, however. I may change the meaning of a
word, but I have to take care not to throw out the sense along with the meaning.
Human communication is sense-bearing and sense-born. Luhmann goes as far as
to say that for a sense-carrying system nothing can be without sense. If what
I say does not make sense to my audience, they will get bored. Being bored
makes sense, too, for a while, but before long they will start to play games, or
get afraid. I would spend my time better if I played games, too.

The English language is helpful here: what I say has, or has not, meaning;
but it makes, or does not make, sense. Meaning is a property. I can change it,
take it away, assign it to programs(!), hand it over like a coconut. I cannot lay
my hands on the sense. Sense happens. In a communication it happens between
the partners, and thereby constitutes the communication. Thus, following again
Luhmann26 , communication is self-referential: by talking and listening the part
ners create a sensible conversation, but no talking and listening is possible in a
situation that does not make sense already. Therefore an act of communication
always refers back to itself as being a communication.

This self-referential balance is especially rickety in a formal environment, say
in proving a theorem. When someone tells me a story, I connect what I hear to
familiar experiences. Thus, I engage in creating the experiences while listening.
When I listen to a proof, I have to connect to an artificial world of man-made
meanings. This is hard work, which takes time. A formalism is reality coded
through long chains of formal steps. What we gain in space - compactness of
speech through precision - we spend in time for coding and decoding.

Again this is common ground: One cannot learn mathematics by listening.
While listening one has to follow the steps being told, thus recreating the expe
riences the teacher went through. Only in this way one can re-live the fun, too.

24 See [Luhmann, 1987].
25 This is how Ernesto Grassi [Grassi, 1980] formulates it, following the Italian humanist

Vieo.
26 [Luhmann, 1987, Chap. 4]

4.2 How to Communicate Proofs or Programs 151

Of course, it is not the same fun. If I induce my partner to work on a problem I
solved, he knows that I know the solution. Thus, as in a good story, it is not the
solution which matters but the way towards it. First the steps on the way, and
then the whole way, have to be comprehensible. Then neither the talker nor the
listener have fun on their own; the fun is in the joint going. Never write 'Quod
erat demonstrandum' under a proof! admonishes Imre Lakatos27• The proof is
first, and you create the theorem through it. By QED you can only signal: This
way I convinced myself of the theorem. Now what do you make of it? But always
start a proof with DEQ: Demonstrandum estne?

A conversation does not follow a planned course, thus it seems to have no
structure; it is structured by the themes the participants choose. What themes
do we follow when we prove a theorem? In a good conversation people talk and
listen in turns. Similarly, when designing a system, the designers have to listen to
the users explaining what they want, the users have to listen when the designers
explain a prototype, the designers have to listen when the users "play" with it,
and so forth. Gordon Pask28 calls his theory of learning systems a 'conversation
theory'. The value of a program is not its low complexity or high elegance, but
the understanding we gain of it. The value of a theorem is not its truth, but its
proof. And a proof is valuable if it makes us listen.

The aim, then, in telling a proof is not to hand it over to the audience, but
to aid in solving a problem. We communicate to reduce the complexity of a
situation; only what we do not understand looks complicated. Thus, before you
can teach me anything, you have to convince me that I really have a problem
there. To listen to your lecture is boring if you try to inflict information on me
for which I feel no need. "You are always welcome if you want to talk about the
weather", says Annie Dillard29 . You are welcome to me if you want to talk about
trees, or splinters, or small systems, or completeness proofs, or nonambiguous
computations, or on formal communication. For other themes knock before you
enter!

4.2.7 Change and chance

The best exercise in proving is to find a proof. The second-best exercise is to
change one. I can change only what I have understood. You tell me a proof. In
order to do so, you have to structure it: you select themes on which we can talk
sensibly, and you divide the proof accordingly. Thus, you change the big proof
into smaller units which I can comprehend. This helps you to understand the
whole proof better. Now I can rework the bits, reshuffle the pieces, and get a
new proof. This way we both learn. Sense is a surplus of possibilities. Only what
I can change makes sense, makes fun.

Now we are at the very center of the seeming contradiction of formal work.
I stated in the beginning that we use formalization to narrow down the freedom

27 [Lakatos, 1976, p. 41]
28 [Pask, 1980]
29 [Dillard, 1974]

152 Dirk Siefkes

of other people, explicitly by giving orders, implicitly by introducing order. In
replacing sense by meaning, and meaning by rules, we take away possibilities for
change. Thus, when we do a proof we fight against change; when we talk about
it, we work towards change.

Scientists consume time to carve forms out of processes. Processes go on
"all the time" , forms stay unchanged. Or rather they change so slowly that we
experience them as "things". A thing has observable properties which can be
described. This results in the distinction between observable object, which is
taken out of time, and observing subject, which depends on time and therefore
is not part of the observable world. By algorithms computer scientists do not
describe processes, but sequences of states which change in discrete steps. Artists
generate time, through repetition. In rhymes and verses, in recurring colours and
symbols, in creating similarities through their very style, they make us experience
time. They do not describe processes either, but activate processes in us.

Algorithms can be run and copied arbitrarily; the copies and the processes
generated are all the same. Each time you consider an art object, your experience
is different; and if you copy it, something totally different results. Therefore the
scientists' symbol of time is the arrow, which leads from one state to another.
Scientists describe what was before and after the change, they cannot describe
how it happens. The artists' symbol of time is the hoop30. Artists do not describe
states, but try to make you experience the movement yourself. They do it by
creating patterns.

A pattern is a repeated occurrence. For Gregory Bateson to communicate is
to create patterns. I say something, you listen. What I say about my experience
creates a similar experience in you. This induced repetition unites us. We call
the difference between the two parts of the pattern 'information', the whole act
'communication', the difference between before and after the act again 'informa
tion'. In communication we operate with a difference in space and a difference
in time. This sounds abstract. For more concrete information read for example
the chapter on "Style, Grace, and Information in Primitive Art" in Gregory
Bateson's "Steps to an Ecology of Mind" 31.

Thus the seeming contradiction in formal work is easily resolved. We have to
do our work communicating, as it were. At least we should imagine a partner,
if no real one is available. This way we change from the "I-I-I-perspective" to
the "I-you-perspective". We cannot make science more humane by extending
our descriptions so as to cover the observer or the designer. We cannot describe
the observer or designer or user of a system, because this would mean to take
them out of time. Imagine people taken out of time! No wonder we end up
formalizing the user into a module among others. We can, however, take the
user into consideration, if not into the description. Instead of aiming for a perfect
description of a technical system, we should try to make people understand our

30 See the strange book "The Sacred Hoop" by Bill Broder [Broder, 1979], and the
tiny chapter "Untying the knot" in Annie Dillard's book "Pilgrim at Tinker Creek"
[Dillard, 1974].

31 [Bateson, 1972]

4.2 How to Communicate Proofs or Programs 153

visions, and to understand theirs. This would be a truly humanistic perspective.
Markku Nurminen, who coined this last term, compares in his book "People or
Computers,,32 the humanistic perspective with the system-theoretical and the
socia-technical perspective: "Instead of incorporating models of human activity
in the system, let human beings act themselves In other words: use real
intelligence instead of artificial!" .

Of course this is a risky business. People act and react by chance. For this
very reason formalization is used in science: to eliminate chance. Why is this so?
Can we admit chance in science? We look back into the past and use our memory
to understand what is going on by matching events to previous events. We look
ahead into the future and use our knowledge to predict what might happen by
analyzing our present surroundings. From predicting events it is only a small
step to trying to make them happen by establishing the right circumstances.
The hope to become able to predict or even evoke events is the main source in
our struggle as scientists to understand the world. In situations that are not fully
covered by our theories events will happen without our predictions and against
our setups. They happen "by chance" . Thus, chance comes in as a negative force,
which counteracts our work, and thus has to be fought.

Actually, chance can be eliminated only from the "idealized" non-living sys
tems of natural science. A living system cannot be separated from its environ
ment. It operates constantly referring to itself. Therefore it reacts on information
from the outside by autonomous decisions, in contrast to the automatic reac
tions on the physical level. It not only changes continuously, but it changes
"by chance", when viewed from the outside. Humberto Maturana and Francisco
Varela33 call such systems 'autopoietic'.

Man seems to be the only living being who can describe the world to others,
so that they can learn from the descriptions rather than from their own experi
ences. As we saw above this is a misleading statement. One cannot learn from
descriptions, only from experiences. Thus, learning persons have to use the de
scriptions to create events from which they gain new experiences. These events
can be imagined, or they can actually happen as in solving exercises. There
fore, the best a teacher can do is to provide circumstances that induce such
events. Since students are alive, these events do - or do not - happen by chance.
The teacher can only hope for them to happen. Thus, for the teacher chance is
positive. People are creative if they open themselves to chance events34 .

Lately I walked our dog. When Bobby crossed the road without watching for
traffic, a lady explained: "Dogs do not normally recognize moving cars, at least
not by sight. Animals move rhythmically. Therefore, for a dog a car does not
move at all; first it is there, and all of a sudden it is here." I leashed Bobby. -
We are used for a long time to the way cars move, but we miss the exercise.

In a formalism similarly we move, in an ordered, orderly way. But our mind
misses the rhythmical movement of being creative, of going in cycles. Actually,

32 [Nurminen, 1988, p. 116]. See also Chap. 7.2.
33 [Maturana and Varela, 1980, Maturana and Varela, 1987]
34 See the contribution by John M. Carroll, Chap. 4.3.

154 Dirk Siefkes

we easily miss the movement completely; we do not realize how fast we advance
until we hit somebody, or are being hit.

Rudolf Arnheim in his classic "Visual Thinking"35 and Oliver Sacks in his
impressive case studies "The Man Who Mistook his Wife for a Hat,,36 describe
and analyze how thinking rests on body sensations. In a formalized environment
we have to reproduce everything every moment from the description. In a living
system we move continuously. We understand a movement by moving with it,
mentally or factually. We understand an action, since we could do it ourselves, or
imagine that we could. Our brain is a powerful instrument, but without support
from our body and from the people and nature around us it would be of little
help. How then can people think that the brain works like a computer, or hope
that a computer could ever work like a brain?

Rational speech is powerful. But if it were not embedded in rhetorical speech
it would be poor. Let us strive for a rhetoric of mathematics.

Acknowledgements
In the summer of 1988 my colleague Christiane Floyd intrigued me into giving a joint
seminar on the book "Social systems" by Niklas Luhmann. From both her and him and
from the participants I learned much about communication, which enabled me to help
in preparing the conference on which this book is based. In the cleansing atmosphere of
SchloB Eringerfeld the participants grew together investigating and practicing formal
and informal communication. From the discussions then and afterwards evolved the
present paper.

35 [Arnheim, 1969]
36 [Sacks, 1986]

4.3 Making Errors, Making Sense, Making Use
John M. Carroll

4.3.1 Introduction

The relationship of science to design work in a technical area, for example the
design of software and its documentation, is one of those things that gets murkier
as one examines it more closely. What is very clear and simple, however, is why we
want to describe a close relationship between science and design. Our concrete
goal is to design better solutions, better software, better instruction. But we
neither wish to nor expect that we can achieve this concrete goal through trial
and error, through intuition or through magic: We expect that we will have to
understand how we do what we do in design, so that we can do it deliberately
and repeatedly in diverse and novel situations. Moreover, we want to be able to
externalize our understanding of design practice to be able to teach it to others
and to work with it directly to improve it.

Getting from the why to the how is the challenge. Traditional basic science
seeks to develop and externalize an understanding of the world. But its primary
goal is not to alter the world as found. On the other hand, the traditional design
paradigm of craft evolution seeks to alter the world, but does not even address
the problem of externalizing the inherent understanding upon which this design
capability rests! .

4.3.2 Science and design in an ecology of tasks and artifacts

A fundamental and quite classical error in understanding the relation between
science and design is to assume and to seek a deductive basis in science for de
sign work. This idea pervades attitudes towards design from within the scientific
research community, despite a lack of cases of invention, design and develop
ment that were driven by deduction from basic science. Practitioners know that
things are not so neat; applied scientists know that invention and design produce
scientific theory as often as they apply theory.

In actual cases in which design "deductions" are offered, they are logically
underdetermined. For example, Shneiderman2 refers to George Miller's paper
"The magical number seven plus or minus two,,3 on human information pro
cessing limitations to derive the prescription that on-line training options be

1 Cf. [Jones, 1970].
2 See [Shneiderman, 1980, p. 225].
3 Cf. [Miller, 1956].

156 John M. Carroll

presented one at a time. However, there is no possible way to deduce this spe
cific design guideline from the specific research and theory Miller presented on
the span of absolute judgement and immediate memory. The connection is far
more informal: Miller's work called attention to the (perhaps obvious) fact that
humans are limited with respect to the information they can manage, but the
theory he discussed was far more limited (and contentful). Shneiderman was in
spired by the broader theme of limited processing capacity to suggest severely
bounding the number of training options that a user ought to have to consider
at a time. But this was no deduction.

The so-called systems approach to instructional design is a more extensive
example of the same variety. It is remarkable to contrast the Gagne and Briggs
second edition4 of the classic overview of the systems approach with the Gagne,
Briggs and Wagner third edition5 . The two editions both clearly purport a de
ductive relationship to the psychology of learning, but they appeal to rather
different views of what that psychology is: The second edition rests on Skinner
ian behaviourism, while the third edition rests on the more modern information
processing psychology. Amazingly, both come to exactly the same instructional
prescriptions. The reason this can happen is that little or no real deduction was
ever involved. The systems approach to instructional design is pure methodolog
ical discipline. It has no substantive theory content and no user domain content
at all. This is probably why it performs so poorly in producing instruction.

Similar problems are evident in interface design. Newell and Card6 outlined a
"vision" for psychological science in human-computer interaction that amounts
to a systems approach for theory-based design of user interfaces. They place
heavy emphasis on systematic hierarchical decomposition of human behaviour
and experience, and on the production of simple, quantitative, time-and-error
rate descriptions. They wholly ignore the exigencies of human sense-making on
the grounds that such realms of human psychology are not amenable to simple
description, and hence not to design by deduction 7 . This is like looking for lost
car keys under a streetlight, not because the keys are anywhere nearby, but
because the light seems better. Their approach has, perhaps not surprisingly,
produced little impact on user interface design practice.

Why doesn't design-by-deduction help us produce usable software and doc
umentation for people? The answer is partly a general fact about the relation
of science and design, and partly a particular fact about current psychology:
The science base in which design deductions must be anchored is too general
and too shallow vis-a-vis specific contexts and situations in the world. In basic
science, details are abstracted away; in design, they determine success or failure.
Scientists want universal principles; designers need concrete examples. However,
in bridging from science to design, the details cannot merely be "added back."
To a great extent, the science must be redeveloped for each domain of appli-

4 [Gagne and Briggs, 1979]
5 [Gagne et aI., 1988]
6 Cf. [Newell and Card, 1985].
7 Cf. [Carroll and Campbell, 1989].

4.3 Making Errors, Making Sense, Making Use 157

cation. Miller and Shneiderman were both concerned with processing capacity
limitations, but not the same processing capacities or limitations. In detail, their
proposals had little in common.

In the particular case of applied psychology, this mismatch of basic science
and design work is aggravated by the fact that the basic work does not so much
focus on abstract domains as on odd domains. Traditionally, academic psychology
has sought to emulate physics and study abstract domains. However, subtracting
the concrete meaning from domains of human experience turns out to be fun
damentally unlike subtracting gravity from a physical process (in an experiment
carried out in deep space). Extending the results of studies of pigeon pecking,
nonsense list learning, tachistoscopic perception, etc. to the design of computer
applications is hazardous at best, and often just silly. There are thousands of
psychological studies of perceiving and comprehending isolated words, sentences
and contrived paragraphs, but they are only of peripheral relevance to under
standing real communication or, for that matter, to designing usable computer
systems and instruction.

The fact that we do not, and perhaps cannot have a deductive sci
ence base for software design, entails that we must develop empirical
approaches to design: we must identify ourselves less with the roles of
abstract analyst and detached observer and more with the roles of design
participant and user. We must understand the detailed structure of the
software domains we seek to impact through design: the real tasks and
concerns of users. We must codify this understanding in ways that can
realistically find use in design.

A starting point is to recognize that human interaction with software is embed
ded in a task-artifact cycle8 : People want to engage in certain tasks. In doing
so, they make discoveries and incur problems; they experience insight and sat
isfaction, frustration and failure. Analysis of these tasks is the raw material for
the invention of new tools, constrained by technological feasibility. New tools,
in turn, alter the tasks for which they were designed, indeed alter the situations
in which the tasks occur and even the conditions that cause people to want to
engage in the tasks. This creates the need for further task analysis, and in time,
for the design of further artifacts, and so on. Software design, too, is embedded
in this ecology of tasks and artifacts.

An example of a task is sending a form letter to customers in Oregon. This
task has an articulated structure. It involves composing, typing and revising a
text, duplicating copies, putting copies into envelopes, stamping and mailing
them. Analysis of the task suggests classes of artifacts that could simplify it, for
example, a word processor can simplify the subtask of composing, typing and
revising. However, injecting this artifact into the task situation fundamentally
alters the situation itself. For example, there may be a variety of specific us
ability problems in adjusting to the word processor. Analyzing the task of using
the artifact can suggest specific revisions in the artifact itself. And even if the

8 Cf. [Carroll and Campbell, 1989].

158 John M. Carroll

artifact is unproblematic, it may restructure the constellation of subtasks: per
haps stuffing, stamping and mailing each separate envelope will now seem more
tedious. Analysis of this new task situation could suggest further classes of arti
facts, for example, electronic mail and network facilities. Attention can then turn
to the problem of selecting only the Oregon mailing labels from a heterogeneous
listing of mailing labels. This task problem may suggest yet another artifact: a
database retrieval facility, and so on.

The importance of understanding user tasks to the design of software tools
and environments is recognized in recent work that represents user requirements
in user task descriptions. One approach analyzes the nature of specific subskills
users must attain and perform to successfully interact with a system9 • Such
qualitative subskill analysis can be useful in guiding early stages of user inter
face design. Another approach seeks to anticipate aspects of user performance
with new interface technologies by studying simulations, for example, of speech
recognition 10 or intelligent help 11 , before actual applications employing these
technologies are developed.

4.3.3 Making errors

Errors are an extremely important element of user tasks, one that we must take
very seriously if we wish to understand these tasks well enough to design and
redesign them. A point that has become quite salient to me is that we have to
try to understand errors as situated in a multifaceted context of problem-solving,
learning and design, if we are to use them effectively to understand user tasks
and to provide guidance to designers. We need to go beyond any particular error
and understand the context of activity that made the error meaningful, plausible,
intelligent. We cannot design merely to filter errors, there are too many of them:
we must design to address the bases of error in intelligence and activity.

A key on-going activity in our group is the empirical analysis of state-of
the-art interfaces ranging from traditional character-box, menu-based styles12

to raster graphics, direct manipulation styles13. Our goal is to inventory and
describe the most critical usability problems at an appropriate level of detail to
provide guidance for software and documentation designers. To a great extent,
the problems people have in learning computing systems depend on idiosyncratic
details of the particular system. However, we have found that from a moderate
level of abstraction, a class of fairly general problem-types emerges. Some of
these are listed below:

9 Cf. [Carroll and Rosson, 1985]. For example, Furnas, Landauer, Gomez and Dumais
[Furnas et aI., 1983] characterized the need for rich aIiasing in the subskill ofreferring
to things by name.

10 See [Gould et aI., 1983].
11 See [Carroll and Aaronson, 1988].
12 Cf. [Mack et aI., 1983].
13 Cf. [Carroll and Mazur, 1986].

4.3 Making Errors, Making Sense, Making Use 159

1. People tend to jump the gun. They tend to learn about a system by plunging
in and using it. This can work well, if a person has appropriate background
knowledge or access to a more experienced user. But it can also be problem
atic. In our study of the Lisa™ system, we saw several users switch the
system on before inserting the tutorial LisaGuide diskette. Switching the sys
tem on seems like a good place to start, but in this case it was jumping the
gun: to use the tutorial, the system must be booted from that diskette and
not from its hard disk. The user who selects Print before having created any
data that could be printed, or who selects Application Customizing before
having tried the application at all, is similarly jumping the gun.

2. People are not always careful planners. As new users, they often become
intrigued by functions irrelevant to their actual concerns or take actions
without analyzing even their immediate consequences. For example, in our
studies of the IBM Displaywriter, we often noticed people selecting Program
Diskette Tasks from the initial menu (instead of the more appropriate Typing
Tasks, which is the gateway to editing and printing functions). This selection
led them away into system maintenance functions that they did not need to
use and could not in general understand. In the Lisa system, we saw people
place system applications in the Wastebasket, some of them were motivated
to confirm that an application had in fact been deleted by throwing away
several more. (We saw one learner repeat a relatively simple error sequence
over 40 times.)

3. People are not good at systematically following instructional steps. New users
often very rapidly skip among several sections of a manual, or among several
volumes in a training library, following what in essence is an Ersatz proce
dure that was never intended or designed. They attempt to execute section
previews (jumping the gun) and reviews (just to make sure they really un
derstood the section) even though previews and reviews are meant only to
be read. More fundamentally, people have trouble following instructions that
are ordered extrinsically, that is, sequenced in the sense of labeled and num
bered steps, but without clearly motivated prerequisite relationships.

4. People's reasoning about situations is often subject to interference from what
they know about other, superficially similar situations. Learners may sponta
neously refer to prior knowledge about typewriters, and erroneously deduce
the operation of keys like Spacebar and Return (which often alter text as
well as moving the input pointer). Conversely, prior knowledge can override
an interpretation that the designer intends. The Lisa system used a Tear off
command to generate new objects from templates. Users were able to ap
ply this with some difficulty to stationery pads; some had trouble stemming
from their prior experiences of writing on a pad before tearing off the current
sheet. However, applying the Tear off command to folder objects caused se
rious confusion: people had never encountered a folder pad before, nor the
idea that one obtains a folder by tearing it off from something. Under such
uncertainty, users often reach incorrect conclusions about cause and effect
relationships in an interface.

160 John M. Carroll

5. People are often poor at recognizing, diagnosing and recovering from errors
they make. New users may queue multiple print jobs or alter the print queue
itself without recognizing the consequence until much later when they try to
operate the printer and are surprised by the number, sequence and appear
ance of their output. In the Displaywriter, mistyping a diskette name in an
edit or print command had the consequence that the system would prompt
for the erroneously-named diskette to be inserted. It was quite unlikely that
the user would have already formatted and named a diskette with that par
ticular typo as its name, hence the whole command had to be cancelled. The
problem was that the command to cancel that command was itself quite ex
otic and new users were never taught it. Hence the only remedy they could
avail themselves of was to switch off the system and reboot. This error re
covery entailed some side effects of its own (any open file would be saved
incompletely and with errors necessitating a subsequent diskette recovery
procedure).

These are not the sorts of results that standard systematic instruction advertises!
Textbooks on the design of systematic instruction14 present an overwhelming
edifice of common-sense psychology: instructional objectives should be clearly
articulated, hierarchically decomposed into successively finer requirements for
an instructional curriculum; in designing the curriculum, instructional events
(previews, practice exercises, tests, reviews) should be carefully sequenced to
build skill and understanding, foundations first and then extensions. The basic
problem is that mere hierarchy and logical dependency do not provide appropri
ate constraint: they more or less guarantee the sorts of problems we found, and
other problems as well (they entrain very fat books that are expensive to write
and to print).

This understanding of user errors is only the starting point for the kind of
understanding we need for use in design. We need to get beyond the "misper
formance" aspect of the errors to the "intelligent intention" aspect of the errors.
For though some user errors arise out of carelessness, in general users are dili
gently trying to make sense of the situations they are in, and their errors must
be seen as part of this activity. In understanding user tasks, we must be no less
diligent. We must try to make sense of what the users are trying to do. Unless we
understand error in this context and at this depth, it can be of only limited use
in design. To seriously design for error, we cannot merely patch over problems,
we must understand and solve problems.

4.3.4 Making sense

We find that users are always fundamentally motivated to get something done.
Both the organizational context for learning new software and the internalized
standards that adult learners have for determining what is worth spending time
on bias users against a "learning for the sake of learning" attitude. New users
want to get started fast; they like to jump the gun (executing a procedure when

14 For example [Gagne and Briggs, 1979].

4.3 Making Errors, Making Sense, Making Use 161

it is merely mentioned in an overview); they like to skip around on their own in a
training sequence. People want to learn by doing, to reason things out instead of
merely reading about them. They resent rigidly structured exercises that often
compel them to copy text character for character and then subject them to
insincere praise for these forced accomplishments: "Excellent!" They like to test
hypotheses that they generate on the fly and to make use of their prior knowledge
and reason by analogy. This "active" orientation to learning often badly misfits
training designs which are predicated on instructional models that begin with a
logical analysis of what needs to learned and then successively decomposes each
learning objective into a step-by-step sequence of preview, practice, test, and
review15 .

We have considered five characteristic user errors. But we can turn the tables
a bit on these five and see them also as indicators of specific human propensities
in learning and reasoning. Viewed in this way, the characteristic problems become
evidence of a powerful learning strategy. Instead of merely seeing these problems
as reflecting deficiencies in systematic instruction, we can ask what they can tell
us about human learners that we might use to develop more effective approaches
to the design of instruction. The five characteristic problems correspond to five
components of a powerful learning strategy, one that covers most cases of human
learning quite well:

1. People learn by doing; they try to act in order to learn. Psychologists some
times lean too heavily on the metaphor of writing to a disk when they speak
about learning, and quite often this metaphor can be innocuous. Clearly,
though, there is far more involved. A person learning to use a complex tool
like a computer will not succeed by "writing to disk" myriad previews and
exercise steps. The person will learn only if he or she can integrate knowing
with doing, and ipso facto this can only occur through meaningful action.

2. People learn by thinking and reasoning; they generate and test hypotheses in
order to learn. The level and kind of activity required for effective learning
necessarily involves self-directed thinking and reasoning. Following a num
bered set of exercise steps is neither active nor challenging enough. Indeed,
it places people in a double-bind: try to learn, think about what you are
doing and you will get off the track, but try to stay on the track and you will
mentally go to sleep and learn nothing. Even when our learners attentively
followed their training exercises successfully, they sometimes were uncertain
about what they had done or why, as one person put it "What did we do?"

3. People seek to work in a meaningful context and toward meaningful goals. A
desire to get something done is what makes people want to learn a computer
tool in the first place. It orients learning effort to practical progress. Perhaps
the worst thing instruction can do is to place an obstacle of numbered steps
and well-decomposed learning objectives in the way of practical progress.
People learning to use an office application system want to do real work -
immediately. One learner, using an on-line tutoring facility, complained: "I
want to do something, not learn how to do everything."

15 For example, see [Gagne and Briggs, 1979].

162 John M. Carroll

4. People rely on their prior knowledge when they try to manage and assimilate
new experience. Relating what someone already knows to new things makes
it vastly easier for him to remember and be able to use new knowledge in
appropriate contexts. This enables the rapid extraction of meaning from
new situations that is perhaps the most potent aspect of human learning.
However, when situations conflict with prior understanding, when they are
difficult to interpret given what is already known, then learning is impaired:
this powerful effect may not be significantly mitigated by providing a purely
structural organization, like learning hierarchies.

5. People use error diagnosis and recovery episodes as a means of exploring
the boundaries of what they know. Errors playa far richer role in learning
than that of problems. An error can be the touchstone for an intellectual
exploration, a vehicle for discovering what is known and what is not cur
rently known. In a serious sense, errors are prerequisite conditions for all
learning. For such error-based learning to succeed, however, people need to
be able to recognize when they have made an error, they need to be able
to reason about what caused the error and how it can be dealt with. Sys
tematic instruction typically assumes that learners will follow instructions
errorlessly and thereby deprives itself of even confronting the key situation
for real learning.

There is a simple, albeit paradoxical way to summarize these points: just the
things that make people good learners (for example, a desire to make sense
and to accomplish meaningful work) also create the learning problems that ruin
systematic instruction. People need to make sense in order to learn, but they need
to learn in order to make sense16 . The challenge of designing usable instructional
systems is to allow people to make sense of their own learning activity and
thereby to refine what they already know and discover new things as well.

These findings called for a new approach to online training, one that seeks
to provide an "exploratory environment" for the new user, an environment that
affords active involvement in the learning process, one that encourages initiative
and hypothesis testing. A major consideration in this approach is user error.
Error is a major consideration for any training model, but the standard rote
practice model typically just ignores the problem, printing steps in bold-face
and imploring learners to be careful. From an active learning perspective the
problem is completely different: errors are expected; they are unavoidable; they
are opportunities to learn. If learners are going to take initiative in directing
their own learning, they are going to make errors. The problem for designers of
training is to manage the consequences of errors so that the greatest possible
learning benefit obtains.

A training model appropriate for active learners simply cannot demand that
the learner sit at the interface and read. People don't want to do this, and
they in fact don't do it. The Minimalist training model we developed takes this
hard reality as a starting point. The sheer volume of training material must be
minimal: the ever-present sales pitch should be cut (the user has already bought

16 [Carroll and Rosson, 1987]

4.3 Making Errors, Making Sense, Making Use 163

the system), section overviews, previews, and reviews should be drastically cut
(users often try to execute them), far less how-it-works information should be
presented (new users don't have to know details of magnetic recording to use
diskettes). Installation should be simple (e.g., loading a single diskette). System
and tutorial screens should differ as little as possible (tutorial screens often get
confusingly cluttered). The overhead of learning the jargon of the training itself
should be minimized (e.g., eliminating fine distinctions between "topics" and
"chapters" or between "message lines" and "information lines").

Our five characteristic user problems and five aspects of powerful, general
learning strategies can be recast as five design prescriptions for usable instruc
tion:

1. Allow the user to get started fast. Cut down overhead and repetition; cut
down nonessential verbiage; reject the notion that every function must be
covered; people never master every function even when every function is
covered. Offer the learner meaningful activities as soon as possible.

2. Rely on the user to think and to improvise. Encourage but guide user infer
ence; leave out material that can be inferred. Don't try to give the user an
understanding when you can allow the user to create an understanding.

3. Direct training at real tasks. Introduce real work immediately. Instruction,
no matter how well-organized, will fail if it does not support the goals people
bring to the learning situation.

4. Exploit what people already know. Even if it is possible to learn without
analogy, it is too abstract and cumbersome.

5. Support error recognition and recovery. Errors cannot be avoided in learning,
but they can confuse and frustrate learners. If they are properly managed
they may play useful roles.

These principles follow from our studies of user error. But like most design guide
lines they are extremely abstract with respect to the context of design. Much of
our work in the past decade has been directed at situating these design principles
by embodying them in example designs. Our design work provides an existence
proof for the principles: that is, it shows that the principles can support design
work. More importantly though, our design work provides a communication
medium for more concretely communicating what the abstract design principles
are all about. In this way, we try to meet the most difficult requirement on
research that seeks to impact design practice: to codify understanding in ways
that can realistically find use in design.

One line of this design work has been directed at providing explicit, task
oriented guidance in training and help. It has focussed particularly on supporting
error recovery and learner-initiated activities17. Another line of work has been

17 We developed a kind of quick-reference card for learning by doing (Guided
Exploration cards; [Carroll et al., 1985]), a self-instruction manual that stressed
learning via inference (the Minimal Manual; [Carroll et al., 1988]), and a (simu
lated) intelligent help system that provided advice on error recovery (SmartHelp;
[Carroll and Aaronson, 1988]).

164 John M. Carroll

directed at providing more suitable software environments for new users18.
Our studies of learner problems were revelatory for us, but we were not the

only investigators to notice these problems and we did not develop the deepest
understanding of the problems. Indeed, from the standpoint of knowledge what
we learned was both more and less than a basic science approach might have
produced. We did not describe a detailed learning mechanism, but we learned
a lot about word processing tasks, and more perhaps than we ever wished to
know about the particular systems and applications we worked with. Our un
derstanding was successfully applied because we drove it to application, because
we developed the design implications of the work. Better basic science under
standings of learning have in general produced far less application.

Our understanding of user learning tasks, via understanding user errors, and
our design principles, embodied in design examples, have allowed us to effectively
communicate our design approach to others. The minimalist approach is in wide
use today in a variety of companies and in a variety of application areas19 .
We believe that it is because our approach is so concretely empirical, because
our analysis of errors, of learning and of minimalist design is so closely tied to
example designs and activity directed to real work tasks, that we have been able
to make sense of user tasks for designers.

4.3.5 Making use

The work we are all engaged in as software developers and researchers studying
software development is making use: we are designing tools and environments
that facilitate tasks, and even create new possibilities for tasks. I have argued
that to do this we must understand in detail the user's task in ways that can
efficiently find use in design. We must have one foot in abstraction: providing
endless detail about particular user errors would yield neither an understand
ing of the user's task nor any insight into how to design a more appropriate
software environment for the user. But we must also have one foot securely in
the empirical details of the software domain we seek to impact: general learn
ing mechanisms without domain-specific detail and design guidelines without
exemplary applications will not help us.

This tension is to an extent endemic to complex activities like design. Conven
tional science provides uncertain and indirect support to such practical endeav
our20 . However, without some sense of science and abstraction, we are doomed
to become lost in the morass of domain-specific, even case-specific details. What
kind of science can we have in software development? What kind of science is

18 We developed an interface overlay that blocks typical and difficult errors (the Train
ing Wheels interface; [Carroll and Carrithers, 1984)), a window-management scheme
in which task-related data and applications are displayed adjacently (TaskMapper;
[Carroll et al., 1987)) and a programming environment for Smalltalk that coordinates
multiple views of the user's task (the View Matcher; [Carroll et al., 1990)).

19 [Carroll, 1990]
20 See [Basalla, 1988, Hindle, 1981, Laudan, 1984, Morrison, 1974].

4.3 Making Errors, Making Sense, Making Use 165

appropriate and useful to the sort of endeavour we have been discussing? In my
recent work, I have been exploring the proposal that the important scientific ob
jects in our domain might be the same objects that are of practical importance,
namely, software artifacts embedded in their situations of use21 .

Software artifacts necessarily incorporate psychological assumptions about
their own usability, about their suitability for the tasks that users want to do.
Chalkboard systems, for instance, have been introduced on the assumption that
users already understand how to use physical chalkboards, and that the chalk
board metaphor will make such systems easier to learn and easier to use than
existing systems. Such artifacts have falsifiable empirical content22 : chalkboard
systems could turn out to have specific features that impede rather than facili
tate learning and performance. By the same token, artifacts support explanations
of the form "This system feature has this consequence for usability." In these
respects, artifacts embody implicit theories of human interaction with software.
Indeed, they embody theory of a sort that melds the need for some abstraction
with the need for task details and design examples.

Though this proposal is radical, it is also quite parsimonious. It advises that
the scientific ontology of a design domain be no more elaborate than the practical
ontology that effectively supports design work. It collapses the socially alienat
ing, and usually pointless, distinctions between "developers" and "researchers."
In software development, researchers who do not participate as designers and
users are in no position to offer useful results; conversely, developers who do not
ceaselessly ask how they can improve design practice should not be designing
things for people to use. This view of artifacts and their function in software
science also opens up new possibilities for usability research. Conventionally, us
ability research is seen as providing evaluations of usability or descriptive theories
of the user23. Neither of these conceptions, however, acknowledges the central
role of software design in software research.

If there is any precedent for this claim about artifacts, it would be the view
that computer simulations of task performance are theory-like. Simulations are
often held to embody psychological theories24 . In a number of senses, simulations
are the nearest neighbour to human-computer interaction (HCI) artifacts. Both
depend on computer technology; both embody psychological theories, but are not
themselves theories; both are formal entities requiring conceptual interpretation.
There are, however, some deep differences. Simulations are used by psychologists
for specific research purposes; artifacts are used by a wide range of people to
do real work. Simulations and artifacts are also interpreted in different ways.
Simulations are interpreted and evaluated by criteria of descriptive adequacy25:
a simulation of problem-solving behaviour may be judged on the basis of how
closely it fits the sequence of moves in a verbal protocol, whether it predicts all

21 See [Carroll and Kellogg, 1989, Carroll and Rosson, 1990].
22 [Popper, 1965]
23 [Carroll, 1989]
24 Cf. [Fodor, 1968, Newell and Simon, 1972].
25 [Chomsky, 1965]

166 John M. Carroll

and only the kinds of errors that are observed, etc. Artifacts are interpreted and
evaluated by criteria of usability.

If artifacts are appropriate media for the expression and development of
psychological theories in HeI, the question can be raised whether making the
implicit theory explicit leaves the artifact with any distinctive scientific function.
On a weak version of the claim, artifacts are a provisional medium for HeI, to
be put aside when HeI theories catch up. On this view, we can imagine, at some
point in the future, everything important about the workings and the usability
properties of an artifact being extracted as an explicit theory in propositional
form. Not, of course, that the theory will capture every detail of the artifact;
rather, the workings of the artifact can be understood without serious distortion
in terms of a central psychological theory or of theories, plus some auxiliary
details of implementation.

On a strong version of the claim, artifacts are in principle irreducible to a
standard scientific medium such as explicit theories. The strong version would
hold, for instance, if artifacts truly cannot be understood apart from the sit
uations in which they are used26 . Small details of user interfaces often have a
major impact on usability. Winograd and Flores27 and Whiteside and Wixon28

claim that it is impossible in principle to anticipate the effects of such details;
many can only be recognized empirically.

The importance of contextual details for usability suggests that HeI may be
dealing with complex phenomena, as in Hayek's analysis of economics29 . Eco
nomic phenomena are complex because they have many different kinds of deter
minants. More tellingly, economic phenomena are embedded in history, which
Hayek regards as an unbounded, context-dependent process unfolding in time,
consisting of unique events. Historical events, in effect, have an unbounded num
ber of types. Finally, economic phenomena essentially involve human preferences,
which are subjective, unpredictable, and constantly changing. Hayek concludes
that economic theories must be sharply limited in predictive power. The phe
nomena of HeI appear to meet Hayek's criteria of complexity.

4.3.6 Invention and interpretation as a paradigm for HeI

Where do we go from here? The lesson that we do not and perhaps cannot have
a conventional deductive science for software development is an important one.
The consequent refocussing of effort on more directly empirical approaches has
already proven productive. Merging the roles of researcher, developer and user
makes possible the kind of rich and action-oriented understanding we need to
have in what is after all a design domain. I described our work taking errors
seriously as specific misperformances, as indicators of powerful human learning
strategies and as the starting point for design principles embodied in exemplar

26 Cf. [Winograd and Flores, 1986, Suchman, 1987].
27 [Winograd and Flores, 1986]
28 [Whiteside and Wixon, 1987]
29 [Hayek, 1967]

4.3 Making Errors, Making Sense, Making Use 167

designs. Much current work has this character. I believe we are serving the user
better and that in the future we can do better still.

I am personally excited to see that software researchers are learning how
to work with artifacts in situations of use as media for developing theoretical
ideas about usability. Invention has become a standard research activity. Thus,
investigations of naming and reference tasks have produced specific tools and
techniques for keyword information systems30 . Patterns of spontaneous interac
tion with an electronic mail application have served as the basis for more usable
command languages31 . Analyses of programming plans32 have been embodied in
intelligent tutoring systems33 • Stu Card and Tom Moran, the original architects
of the rather unsituated GOMS model34 , are now also well-known as inventors35!

Each of these inventions has evoked considerable theoretical interpretation,
and interpretation has also emerged as a new standard research activity. Nor
man's interpretation of key aspects of the U nixT M operating system is a partic
ularly influential example36 . Another example is our interpretation of the Lisa
interface and on-line tutorial37 . This type of work has developed rapidly, as is
evidenced by contrasting Shneiderman's interpretation38 of direct manipulation
interfaces with that of Hutchins, Hollan and Norman39 , produced only a few
years later. In our research group at the Watson Center, we have found that
developing interpretations is becoming increasing central4o .

Our hope is that structured interpretations of HCI artifacts in their situations
of use offer a vehicle for capturing the psychology of humanly usable software
at the right level of abstraction for this design science. Taking artifacts in sit
uations of use more seriously as embodiments of scientific theories and results
brings more of practical activity into the purview of scientific analysis. Conceiv
ing of the task-artifact cycle as a basic structure of research activity in software
development entrains a new view of science and design. It fundamentally chal
lenges the conventional division of labour, and directs software research, not
toward abstract or merely eccentric domains, but toward the real world.

30 [Furnas et al., 1983]
31 [Wixon et al., 1983]
32 For example [Soloway and Ehrlich, 1984].
33 [Bonar and Cunningham, 1988]
34 [Card et al., 1983]
35 See [Card and Henderson, 1987, Halasz et al., 1987].
36 See [Norman, 1981].
37 [Carroll and Mazur, 1986]
38 See [Shneiderman, 1982]'
39 See [Hutchins et al., 1986].
40 Cf. [Rosson and Alpert, 1990].

4.4 Artifacts in Software Design
Reinhard Keil-Slawik

4.4.1 Introduction

"A scientific discipline emerges with the - usually rather slow! - discovery of
which aspects can be meaningfully 'studied in isolation for the sake of their own
consistency'."! This statement made by E.W. Dijkstra was meant to express a
specific desire, namely, to achieve basic improvements in software development by
means of mathematical tools and concepts allowing us to express algorithms and
data structures in an increasingly precise, unambiguous, consistent and complete
manner. The question is, however, whether isolated mathematical properties
provide the only - and a sufficient - basis for establishing a scientific discipline.

More than twenty years after the term software engineering was coined, the
aim of turning the development of software into an engineering discipline based
on sound scientific principles has only been partially achieved. Despite some
progress in the development of more powerful tools and mathematically based
specification techniques, the results have often been less promising than ex
pected. Still, the quality of software is only revealed to its full extent once it is
in use. Software projects fail to live up to the expectations of developers and
managers or the domain experts who ultimately have to use the product. Fre
quently, up to three or four versions of a software system have to be delivered
before it is considered reliable and sound enough to support performance of the
tasks in question.

In order to understand and deal with the problems involved here, we can
not view software and its components merely as isolated mathematical objects.
Behind such a strict engineering perspective lies the implicit assumption that
thinking is a more or less rule-based process performed by our brain on some in
ternally stored representations that embody our knowledge of the outside world.
Once we are able to express this knowledge symbolically in the form of docu
ments or machine-executable programs, these artifacts are said to represent or
process (create, delete, modify, etc.) it. Thus, a 'transfer' of knowledge can be ac
complished by exchanging artifacts, and, by the same token, human information
processing can be replaced by machine operations.

However, this view does not reflect the idiosyncrasies of real software develop
ment processes. This, as C. Floyd has already pointed out in her introduction2 ,

involves going beyond what she has termed the traditional scientific paradigm
of computer science. And this I shall attempt to do, by reflecting on the role

1 [Dijkstra, 1982, p. 60]
2 See Chap. 1.1.

4.4 Artifacts in Software Design 169

of artifacts in design processes, in particular how they serve to support com
munication and learning. In order to do so, I shall have to touch on some basic
philosophical questions concerning how humans acquire knowledge and how they
construct and communicate meaning(s).

I argue that thinking does not take place inside our heads but is an activity
that we perform with our heads. Most of our mental activities need external re
sources, and very often thinking is merely a grouping or regrouping of objects
in our environment. This perspective emphasizes that humans basically use ar
tifacts to acquire knowledge and create meaning rather than to represent it.
Knowledge and meaning are attributes of cooperative social processes; they can
neither be located in an artifact, nor are they stored in the brain. A document
or piece of software can only be said to represent knowledge to the extent that
a common framework for interpretation has been established among the parties
involved. I present some guidelines for the design of artifacts that are meant to
support the establishment of such a framework rather than to represent knowl
edge.

4.4.2 Engineering software

The technological achievements of our western civilization are chiefly built on the
ability to store, modify and retrieve symbolic representations. Without the in
vention of mathematical formulas, specification standards or technical drawings,
engineering disciplines would be practically non-existent. With the invention of
symbolic representations, artifacts can be designed that would be too large to be
made by a single craftsperson3 . An important part of any engineering discipline
is the development of tools and techniques and the definition of standards al
lowing us to create suitable design representations. To distinguish the models or
representations produced while employing these means from the artifact being
designed, I will call the former design artifacts and the latter products. With
respect to the actual design process, the design artifacts can be said to embody
the knowledge about the product being designed.

The material of which the design artifacts consist is usually different from
that used for the construction of the product. With the exception of physical
models or prototypes, they are symbolic representations serving two purposes:
They allow the designers to explore the design space and communicate the knowl
edge about the product that is acquired in the course of design. Since symbolic
representations can normally be created and changed with less effort than is
required for the construction of their physical counterparts (i.e., the products or
physical models), it is often not recognized that design artifacts can only be un
derstood to the extent that the corresponding physical changes are understood.
Essentially, this is also true of software engineering.

There is, however, one essential difference: traditional engineering focusses
primarily on material structures and their physical effects, whereas software
engineering is mainly concerned with symbolic structures and their cognitive

3 [Jones, 1979, p. 124]

170 Reinhard Keil-Slawik

effects. The reason for this is that there is only one sort of material: the design
artifacts and the product itself are both symbolic representations. Furthermore,
programming languages are flexible and powerful means that provide an infinite
variety of ways to embody system functions. Hence, the problem was to develop
professional standards governing how certain phenomena should be expressed so
as to enable them to be generally understood and communicated. Consequently,
one of the main concerns was to get rid of the designers' or programmers' indi
viduality and make programs and documents more accessible to other members
of the project team.

Phase models and abstract machines

As a matter of fact, ever since goto's were considered harmful, the overriding
concern has been to turn the art of programming into a manageable activity
that uses powerful tools and formal techniques and is performed by increasing the
division of labour, achieved by assigning specific functional roles to the members
of a project team. This means that the knowledge embodied in a program, a
program component or document must be accessible by looking at the design
artifact or product in question without having to refer to the programmer who
wrote it. Only then can the knowledge embodied in a design artifact or the final
product be 'transferred' by handing over the relevant document.

In software engineering, the so-called phase model provides the means for
combining this view of 'knowledge transfer' with the scientific ideal put forward
by Dijkstra. The aim was to dissect the problem domain into isolated chunks
with a view to managing software development projects as well as developing
research strategies for this emerging discipline4 .

F. Selig first used a phase model to define the specific problem domains
with which software engineering is concerned, namely, analysis, design, imple
mentation, installation and maintenance5 • B. Boehm subsequently introduced
the phase model as a project management tool, later advocating its use as the
first of seven basic principles of software engineering6 . Using the phase model as
a management principle involves three activities, according to Boehm, namely,
devising and maintaining a phase plan for the project; combining this plan with
a sequential development approach; and finally, using the plan to control the
development. This is basically achieved by associating a document (for instance,
a program or a specification) with each phase, its completion serving as a mile
stone in the development process7 . To allow systematic treatment and separation
of the distinct phases, specific tools and techniques had to be developed. Phases
became independent domains of scientific enquiry.

4 Software engineering as a discipline matured roughly along the lines of the phase
model. Cf. [Freeman, 1979, p. 44].

5 Cf. [Naur and Randell, 1969, p. 21].
6 Cf. [Boehm, 1976, p. 1227] and [Boehm, 1977].
7 The reader should bear in mind that a variety of different phase models can be found

in the literature. Since I am here more concerned with the general idea than a specific
instance or refinement, I will continue to use the term the phase model.

4.4 Artifacts in Software Design 171

With respect to the design process, the milestones or documents of the phase
model are the design artifacts, the installed software representing the products.
Since software can be regarded as a mathematical object, the idea is, then, to
develop mathematical tools and techniques that allow the designers to specify
the behaviour of software in a precise, complete and unambiguous manner. Once
such a specification has been written, it is possible to verify whether the imple
mentation meets the specification. Consequently, a specification of this sort can
be regarded as an abstract machine, since it already determines the input/output
relation of the software under development. This notion was originally introduced
by Dijkstra as a way of devising a hierarchical software structure by designing
complex general operations which are successively transformed into a combina
tion of simpler and more specific operations9 .

The desire to arrive at a hierarchical structure by designing layers of abstract
machines implies developing these abstract machines in a specific sequence of
steps, because a more abstract machine defines the constraints for realization
of the next-lower (abstract) machine(s). Each such step can be interpreted as
a transformation from a behaviour specification (i.e., what should be achieved)
to an implementation (i.e., how it is achieved). This top-down approach has
been advocated with a view to creating design artifacts or programs (functional
decomposition) as well as creating a sequence of design artifacts (phase model).
According to the latter, an initial set of requirements that defines the problem
space is transformed and refined into successive documents until, finally, a system
is implemented, tested and installed.

However, a closer look at the idiosyncrasies of software developmentlO reveals
that the design artifacts cannot represent the knowledge about the product in
the way suggested by the traditional engineering perspective.

Top-down considered impossible

According to our modern scientific ideal, knowledge about natural phenomena
and physical structures is largely independent of its creating act, i.e., the creators
and the specific setting of its creation. The experimental philosophy is a means of
ensuring that the observations made and insights gained are independent of the
observer. Thus, as long as the phenomena being studied are stable (repetitive)
and all those involved adhere to a common framework of interpretation - such
as is established, for instance, by education and training - this ideal can, to a

8 In a strict sense, the program code would be a design artifact, and the indispensable
user manual(s) would be neither nor. To avoid confusion, I will in most cases refer
to both of them explicitly, using the term document to denote any of these artifacts.

9 See [Dijkstra, 1968] and [Dijkstra, 1969, pp. 181-182]. Note that Dijkstra did not
combine this document structure with a temporal development structure, i.e., a
sequence of transformational steps. In his example of the T.R.E. Operating System,
the hierarchical structure was achieved by restructuring the already finished program
code.

10 See also the detailed account given in [Budde and Ziillighoven, 1990] and their sum
mary in Chap. 6.2.

172 Reinhard Keil-Slawik

considerable degree, be maintained. The same holds for the use of design artifacts
in traditional engineering disciplines. But, as I will go on to show, it does not
hold for the development of software.

Traditional engineering focusses primarily on material structures and their
physical effects, whereas in software engineering we are mainly concerned with
symbolic structures and their cognitive effects. There are two main reasons for
this difference, which are closely related to each other:

• the highly dynamic nature of the relationship between the form or artifact
and the usage context, and

• the high degree of uniqueness on various levels of development and use.

As D. Parnas has pointed out, software in general lacks the degree of repeti
tiveness which is so characteristic of materials or artifacts in other engineering
disciplinesll . This is due in part to the complexity and dynamic nature of the
context.

Traditionally, engineering problems consist in finding a new technical solu
tion for a given function. The functionality of the automobile, for instance, has
remained almost the same for more than a hundred years, but the technical
implementation has improved tremendously. In contrast, a critical step in the
development of software is defining and agreeing upon the required function
ality of the future system. In most cases, there are different parties and user
groups involved - with different roles and perspectives, and with conflicting
interests12 . Consequently, the specification of requirements may be the result of
a complex process of bargaining, negotiation and evaluation. The requirements
emerge as a trade-off between various interests and alternatives rather than as
a self-contained specification of a technical solution to a well-known problem.

First, initial proposals are prepared and rejected. Then specifications are
written and revised. Finally, programs are implemented, tested, corrected and
partly restructured before the first version of the envisioned product is released.
By the time the system is installed, people's behaviour and their requirements
may have changed or will change once the system is in use and its quality is
experienced by its users. In general, experience gained in using the system re
sults in new insights and demands. This, M. M. Lehman argues, gives rise to a
constant pressure for correction and improvement, and he concludes, "the need
for continuing change is intrinsic to the nature of computer usage" 13.

If we regard software as a mathematical object that is interpreted by a ma
chine, its semantics are a static attribute of the program text. Once the instruc
tion sequence is fixed, the behaviour of a program is determined solely by the
input. The crucial point for the developers as well as for the users, however, is
determining whether a given instruction sequence is appropriate for supporting
execution of the task in hand, i.e., finding out which input sequence will pro
duce the desired output in a suitable and comprehensible manner. In addition

11 [Parnas, 1985]
12 See the personal account given by K. Nygaard in Chap. 2.4.
13 [Lehman, 1980, p. 1061]

4.4 Artifacts in Software Design 173

to understanding what the system should do or actually does, it is indispensa
ble to understand what it should not do or what it does not do. Since software
embodies a variety of claims and assumptions about the context and the nature
of the problems to be solved by introduction of the system at the workplace14,
these properties describing the relations between software and the usage context
cannot be expressed in terms of formalisms. Too many mutually influential fac
tors have to be taken into account. The nature of the problem as it is perceived
by the designers changes with every new insight, and very often incompatible
requirements lead to design conflicts that have to be resolved.

The knowledge required for design, then, has to be built up in the course
of a tedious and often painful learning process in which the designers learn
which aspects fit into their already developed framework and which ones require
redesign, correction or restructuring of already existing design artifacts and pro
grams. The reasons and motivations behind such changes, and the arguments
concerning how these changes are achieved while maintaining the overall quality
of the design, are not part of a program or its specification, and they cannot
be documented in their entirety. Programming, P. Naur argues, should not be
regarded basically as an activity concerned with producing program text and its
associated documentation, but as a human endeavour in which the programmers
build up a theory of how the problems in hand can be solved by program execu
tion. N aur concludes that" ... reestablishing the theory of a program merely from
the documentation is strictly impossible" 15. Therefore, he argues, the meaning
of a program can only be revived as long as there is at least one member of
the original development team available. Merely handing over documents does
not transfer the knowledge. However, if a document fails to adequately represent
the knowledge required to construct the product, then neither a top-down nor a
bottom-up approach will be appropriate for design.

We thus face a dilemma. Design artifacts play an essential role in every en
gineering discipline and therefore in any design process. In software engineering,
though, they cannot play the same role as in traditional engineering disciplines.
Hence, besides recognizing the problems on a phenomenological level, we must
find a way to resolve this dilemma by going beyond the traditional engineering
perspective.

Limits of the traditional research strategy

The idiosyncrasies outlined above reveal that software development must be
regarded basically as a cooperative learning process. According to J .C. Jones,
cooperative learning should be the primary purpose of any design process16 .

But if learning and communication play an essential role, we must deal with
this phenomenon in a more systematic way. Tools, techniques and guidelines
which are meant to document the result of a learning process are not necessarily

14 See J. Carroll, Chap. 4.3.
15 [Naur, 1985b, p. 258]
16 Cf. [Jones, 1986, pp. 120-122].

174 Reinhard Keil-Slawik

equally well-suited for supporting the learning process as such. To provide a
general framework for this discussion, C. Floyd has introduced the notion of
the complementarity of product- and process-oriented views, arguing that the
traditional engineering perspective is basically product-oriented17. To illustrate
the impact and limitations of an exclusively product-oriented research strategy,
I will introduce the notion of learning cycles and adapt the waterfall model to
depict the ideal of this strategy.

The waterfall or phase model shown in Fig. 4.4-1 suggests that there is a
'flow' or 'transfer' from the most abstract kind of knowledge to the increasingly
specific details of everyday affairs. The actual knowledge generated within each
domain is embodied in artifacts such as textbooks, tools, models or specific
experimental settings. Since we are normally used to talking about knowledge
only when it is explicitly given, a learning cycle can be characterized as the
updating or revision of the respective artifacts. A learning cycle in software
development may thus be identified with the production of a new version; in
software engineering it may be the development of a new generation of tools
or methods. We may also regard the notion of paradigm as denoting a specific
instance or kind of learning cycle within a scientific discipline in general. Roughly
speaking, a learning cycle corresponds to the restructuring of knowledge about
a certain domain that is embodied in an artifact.

Theoretical
Computer Science

Domain

Fig. 4.4-1. The waterfall model of learning cycles and artifacts

17 Cf. [Floyd, 1987].

4.4 Artifacts in Software Design 175

In order to be able to use methods, tools or a formal specification technique,
specific knowledge about the origin and inner structural relations or working
principles of the utilities employed should not be required. In other words, the
application of a formal specification technique should not require the competence
to develop, improve, and maintain the algebraic calculus. Conversely, such com
petence can only be acquired with sufficient experience in the respective domain.
Programmers may be capable of employing a method in which they have been
trained, but they may not have the competence to develop methods on their
own. And the domain experts may use word-processors to write scientific arti
cles, but they do not have the competence to develop such systems. Hence, the
development and maintenance of knowledge within a specific domain is gener
ally associated with a specific role. The general knowledge required for applying
this knowledge is acquired through training and education by those professionals
who develop and maintain the respective knowledge of that domain.

The waterfall model, as outlined here, highlights the general advantage of
any scientific endeavour. In software engineering, however, a crucial problem
arises when this model is combined with the notion of abstract machines and
a top-down development strategy. If it can be said that a design artifact is
indeed a consistent, precise and complete specification of the product to be
built, it has to represent all the knowledge required to construct the product.
Only implementation details, i.e., aspects that do not alter the specification,
would have to be added. Consequently, no learning is required for implementing
the specification. In this case, it is, in principle, possible to execute the remaining
transformational steps mechanically or automatically - i.e, to replace the human
implementor by a machine.

In the course of design, where, by definition, these conditions are not given,
human operations cannot be prescribed by formal procedures or replaced by
machine operations. If, however, the replacement strategy is still in effect, human
beings are invariably forced to perform machine-like operations that fit into
the overall machine-oriented execution scheme. The typical the-machine-always
performs-better argument actually acquires validity then, because machine-like
operations can be better and more reliably executed by a machine. Hence, it
should come as no surprise that in software development the above guideline
turns out to be counterproductive18.

We need another perspective; the traditional product-oriented view only al
lows us to develop replacement strategies. To improve this situation, we have
to think about how to support human learning and communication rather than
replacing it. Instead of taking it for granted that a design artifact represents the
design knowledge, we have to study "how to inform the material with meaning
and to extract meaning from the form" 19. The traditional perspective does not
provide an adequate epistemological platform for tackling this problem, because
it restricts us to viewing machines and machine-related features as the only frame

18 Various facets of this problem are presented by D. Siefkes in Chap. 4.2 and in
[Hoare, 1981, Naur, 1982, Celko et aI., 1983, Floyd, 1986, Keil-Slawik, 1989].

19 [Kay, 1984, p. 41]

176 Reinhard Keil-Slawik

of reference. In contrast, I will attempt to outline an ecological perspective by
reference to our biological and cultural heritage. In particular, I will examine the
role of artifacts as means for acquiring knowledge in an individual and cultural
context.

4.4.3 On -the evolution of meaningful forms

The notion of meaning is an inherent feature of any life form. The biologist
J. von Uexkiill was the first to emphasize that the recognition and creation of
meaningful forms is of primary importance to every living being. Uexkiill in
vented the concept of the functional circle20 to denote that the meaning of an
object is only established through the activities of a living being and has no in
dependent existence of its own. A man, for instance, who is used to climbing up
palm trees and has never seen a ladder in his life will not recognize the specific
function of this device (its meaning) unless he sees someone using it or tries to
use it himself. Uexkiill has also pointed out that each living being is adapted
with the same degree of perfection to its environment. The simple organism has
a simple environment, the complex organism a complex one. Hence, the com
plexity and richness to which the environment may be differentiated is crucially
dependent on the organisms' own inner structures.

These structures originate in an evolutionary process, which means that the
more complex structure emerges from the simpler one through an adaptive pro
cess with random variations in its reproductive cycles. On the molecular genetic
level, Nobel prizewinner M. Eigen and his co-workers have developed an evo
lution model that describes the origin of biological information as a process of
selective self-organization2l . On a broader level, cyberneticians such as H. von
Foerster have developed theoretical models for self-organization and explored
their epistemological consequences with respect to a broad range of scientific
domains such as biology, psychology, philosophy22.

In what follows, I will argue that the essence of perception, human learning or
design is to create meaningful forms, and that this creation can be characterized
as a process of selective self-organization23.

Creating meaning

On the psychological level, this can be illustrated with reference to the notion of
gestalt. A gestalt is often treated as a static entity or object. Its theoretical foun
dation, however, ties in with the notion of self-organization. W. Kohler writes:
"wherever a process dynamically distributes and regulates itself, determined by
the actual situation in a whole field, this process is said to follow principles of
gestalttheorie." 24

20 [v. Uexkiill, 1957]
21 Cf. [Eigen and Schuster, 1979, Eigen et aI., 1981, Eigen, 1987].
22 See the selected articles in [v. Foerster, 1985] and Chap. 3.1.
23 A more detailed account is given in [Keil-Slawik, 1990].
24 [Kohler, 1935, p. 201]

4.4 Artifacts in Software Design 177

A gestalt emerges when certain objects or phenomena in the environment
are related to each other in a meaningful way. Unrelated physical stimuli are or
ganized to form a coherent whole which can be distinguished from other wholes.
The relation or organization as such is not present as a physical stimulus - the
perceived gestalt is a construction of the observer. In general, it can be said that
we perceive the world by constructing meaningful relations (gestalten). Conse
quently, we can only perceive what we construct.

However, these constructions are by no means arbitrary, and often not even
the individual choice of the observer. The way we relate certain distinct physical
stimuli to each other may be part of our subconscious body processes, i.e., fixed
action schemes which we cannot influence by our will. The so-called Kanisza
triangles25 for instance, are virtual contours, i.e., they have the power to invoke
this gestalt, and have been created to serve exactly this purpose. Why this is
possible becomes apparent when we acknowledge that as human beings we have a
common history and act with the same bodily means in a common environment.
Hence, what is a well-adapted perceptual structure for one individual may serve
the same need for any other. And what has proved to be useful in an evolutionary
process may become some sort of embodied standard repertoire which does not
need to be constantly learnt afresh by every individual.

Selection implies that there is a trade-off: we gain effectiveness by being
able to react immediately, but pay for this with a loss of flexibility. An optical
illusion, for instance, does not disappear when we know that it is one. But we can
transcend this limitation. We are able to recognize an illusion through our action,
by changing some part of the context and observing how these changes affect
our perception of the phenomenon. We provide the required variation through
our activities. As J.J. Gibson has pointed out, it is through our action that we
can distinguish between what is imagined and what is real, because every close
examination of real objects provides new information, reveals new features and
details. A mental examination of an imagined object cannot pass this test26 •

Through our activities we are able to create ever new meaningful relations
and develop cognitive structures aimed at increasing our ability to relate to the
environment such that we can satisfy our needs and pursue our goals in a more
flexible manner. A new cognitive structure that is formed neither by imitation
nor by trial and error27 has been called insight by the gestalt psychologists, and
the process is called insightful learning 28.

Insights can be characterized as a restructuring of the perceptual field. For
instance, once an ape has come to realize that boxes can be stacked on top of
each other or two sticks put together to get a banana which would otherwise
be out of reach, it is capable of applying this solution repeatedly, without any
hesitation and to any kinds of objects which can be stacked or put together in

25 Cf. [Rock, 1984].
26 Cf. [Gibson, 1979]. A more elaborate discussion of human action as a validation

criterion for reality is given by A. Raeithel in Chap. 8.4.
27 It should be noted, however, that productive thinking can only take place when all

these forms of learning act together.
28 A brief description can be found in [Hilgard and Bower, 1966, pp. 229-263].

178 Reinhard Keil-Slawik

any similar situation. What has been learned by the ape is not how to stack
specific boxes, but the general relation that boxes can be arranged on top of
each other so as to enable it to climb up and get what it wants.

The same holds for human learning: the meaning of a form - the gestalt
- is a construction of the observer. Consequently, it is not the environment
that changes, but the wayan individual relates the objects and phenomena
in its environment to each other to form a meaningful whole - a gestalt, an
organization, an architecture, or whatever.

Once an insight has emerged, we have not created yet another cognitive
structure, but have revised, modified or enhanced the way we relate the things
in our environment to each other. The new cognitive structure supersedes the old
one29 • Hence, gaining experience, learning to better adapt to the environment in
order to achieve a goal or to satisfy a need, is not merely a matter of storing more
and more cognitive structures in the same way as data is stored in a computer.
And problem-solving is not a question of finding an internally stored structure
that matches the problem structure. If this were the case, it would take longer
and longer to search for the appropriate structure, the more experienced we
were. Eventually, we would be unable to react at all; evolution would be a dead
end.

Instead, the reverse is the case: the more expert we become in a particular
domain, the faster we are able to identify a problem and the closer we come with
our first 'guess' to the final solution. This ability is the result of an evolutionary
process. Knowledge is historical in the sense that we can only make it explicit
and communicate about it properly if we are able to study the learning process
which established this knowledge, i.e., the way the individual being related to
its environment in its complete course of events30 . Since we are unable to make
such knowledge explicit by expressing it in terms of our actual environment and
how we relate the entities (which include, of course, symbolic representations) in
this environment to each other, we characterize it as a different kind of knowl
edge. Basically, it can be characterized as the difference between knowledge and
competence (or skill)31. In a sense, it can be said that intuition and feeling are
our most advanced means of intelligent behaviour32 .

29 This is the same characterization T.S. Kuhn has given (in the addendum of the
second edition) to characterize the effect of a paradigm [Kuhn, 1970].

30 The same holds for biological information. B.-O. Kiippers points out that the infor
mation embodied in the genes cannot be derived exclusively from the genetic code;
it is only given in relation to the environment. In an evolutionary process, it is selec
tively evaluated against the external information embodied in the environment. Cf.
[Kiippers, 1983].

31 Other authors have made this distinction by contrasting different notions, such
as tacit and articulate knowledge [Polanyi, 1967], knowing that and knowing how
[Ryle, 1983], symbolic reasoning and intuition [Dreyfus, 1979], or by referring to the
paradigmatic and the narrative modes of thought [Bruner, 1984].

32 On the role of intuition see [Dreyfus and Dreyfus, 1986] and, with respect to software
development, [Naur, 1985a].

4.4 Artifacts in Software Design 179

To sum up: although we characterize an insight in terms of a specific relation
of objects or phenomena in the environment, it is always the construction of an
individual person. Strictly speaking, knowledge and meaning are neither qualities
of the external world, nor are they stored in our brain in the same way as data
is stored in a computer. Knowledge and meaning are the ways we relate to our
environment. Since they are constituted as self-organizing processes, the creation
of knowledge or meaning can neither be controlled nor prescribed. And there is
no direct way of transporting meaning or information, giving it to another person
as one hands over an artifact, a book or a technical drawing. We can only provide
an environment in which the entities that have to be related to each other are
present in the perceptual field or within reach.

However, merely relating things in our environment to each other in a spe
cific way does not allow us to transcend the constraints imposed by the given
environment and the restrictions of our bodily capabilities.

Artifacts as external memory

To perform so-called mental operations, we are much more dependent on our
physical environment, and consequently on our bodily actions, than is generally
acknowledged. Our perceptual faculties, for instance, are quite limited. By di
rect perception, i.e., without starting a counting or calculation process, we can
only distinguish up to four items. As G. Ifrah points out, all additive numbering
schemes (symbolic representations of the tally system) of different cultures intro
duce a new symbol by the fifth position at the latest33 . This allows us to group
the symbols on a higher level, thus enabling us to perceive greater numbers more
easily under the same perceptual constraints.

Almost every calculation or counting process, however, requires the use of
perceivable physical means, be they visible symbols or tangible objects. To begin
with, a tally or small calculating stones were used, later on the abacus, the
Indian decimal number system (IONS), and finally algebraic formalisms, Turing
machines, formal languages, etc. The word calculus, for instance, stems from the
greek calculi which means chalk pebble. And the notion of a formal language is,
according to S. Kramer, already misleading. What mathematicians and computer
scientists develop and work with are, strictly speaking, formal typographies'34.

The modifications of the physical appearance (states) of artifacts - such
as the positions of the pebbles on a calculating board, the marks on a tally
or symbols on paper - are an indispensable part of our mental activities. The
states of a tool, as well as the calculations performed with a pencil on paper,
serve as an external memory which allows us to check the (interim) results, and
to reflect on the process as such. Calculating reliably on an abacus, for instance,
becomes increasingly cumbersome, the greater the numbers are. Without storing
intermediate results, i.e., making them perceptible beyond the performing act,
checking may become impossible because, with every calculation, the previously

33 [Ifrah, 1987, pp. 169-183]
34 [Kramer, 1988, pp. 176-183]

180 Reinhard Keil-Slawik

achieved result will be destroyed. The only way to check a calculation is to store
the result and compare it with another calculation. This problem changes with
the introduction of (formal) typographies such as the Indian decimal number
system.

When we perform an arithmetic calculation with pencil and paper, we spa
tially arrange digits on the paper in a systematic fashion to form numbers and
columns of numbers representing intermediate results. Where necessary, sym
bolic operators are inserted. Once we have these physical traces of the process,
it is possible to discover structural relations and invariants by relating different
calculations to each other. At the end ofthe 16th century, the invention of algebra
and, parallel to this, the construction of the first calculating machines served to
represent the then accomplished gestalten and insights by physical means. Both,
the replacement of numbers by letters as well as by gears, shafts and cogwheels,
are physical embodiments of a relation which formerly had to be established by
the human mind for every single calculation.

Now, it is possible to reason on the level of structural relations and make the
respective consequences visible. The commutative law, for instance, represents
an invariant of the calculation process and can be visualized in the written form:

This expression asserts that the equation holds for all possible instances of a and
b within a given mathematical framework. By defining operations that preserve
the validity of an equation, this kind of physical representation and its respective
operations of generating and arranging symbols in a specific way open up a new
realm of thinking. With the invention of boolean algebra, for instance, it became
possible to calculate logical deductions.

Finally, a concept such as the Turing machine provides the means to represent
the physical operations of transforming and arranging the symbols according to
an explicitly given set of rules in the same symbolic medium. Once we are able
to describe the symbol manipulation operations as a composition of elementary
(atomic) symbol transformation processes, this sequence of transformations can
be performed by a machine composed of elementary mechanisms resembling the
atomic symbol transformations.

What is replaced by the machine, however, are not the mental activities of
forming meaningful relations, i.e., the creation of gestalten, but the physical
operations that modify the appearance of the respective artifacts. Once we can
describe the invariants of the physical transformation processes that are part of
our mental activities, we can try to devise more efficient means to express and
technically accomplish the corresponding state transformations.

According to A. Leroi-Gourhan, it can be generally said that the evolution
of the human mind is basically the evolution of its expressive means35 . These
expressive means or artifacts embody a new quality. As the result of insightful
learning, they are more than the sum of their parts. Neither the invention of
zero nor that of the bow and arrow could have been achieved by imitating

35 Cf. [Leroi-Gourhan, 1988].

4.4 Artifacts in Software Design 181

something which already existed. And there was no sequence of development
steps or interim results that enabled the artifact to be deduced systematically.

Again, the notion of external memory is crucial to communication and learn
ing. One essential difference between animals and human beings is not the con
struction of tools - that animals do as well - but their preservation. This is
essential, because only then does it become possible to compare a previously
built tool with a new one, to communicate about tools, and to use them as
a means for education. All these aspects are essential prerequisites for making
progress in the design of new tools. There is no straightforward way to derive a
tool which will satisfy a certain need merely by individually performing internal
mental activities.

So far, I have emphasized that, owing to their physical nature, artifacts func
tion as external memory, thus facilitating communication and learning. They
evolve as part of a functional circle which I have characterized as a process of
selective self-organization on various levels, ranging from individual problem
solving through cooperative learning to the evolution of culture. As I have men
tioned before, selection implies evaluating a trade-off. I will now discuss this
trade-off function in order to identify the features of an artifact that provide the
selective advantage.

Flexibility versus iconicity

Two subsections earlier, I have given an example of a trade-off function with
respect to embodying human capabilities - for instance, organizing physically
unrelated stimuli as action schemes. Such schemes cannot be influenced or con
trolled intentionally; greater effectiveness is paid for by a loss of flexibility. One
could say that, in an evolutionary process, these schemes represent the mem
ory, preserving stereotype behaviour, i.e., fixed action schemes that have proved
successful in the sense of leading to a selective advantage in the past.

However, there is only a pay-off as long as the meaning of the scheme is fixed.
With respect to the functional circle, this implies that the environment does not
provide unanticipated events that would require changing the action sequence
embodied in the scheme. If this happens, such an action scheme would lead to er
roneous behaviour that might have serious consequences for the individual. But
if, as I have pointed out, these schemes are embodied in a more flexible frame
work of learning, they will enhance the overall flexibility. When they are part
of an individual's response to changing environmental conditions, they reduce
the amount of cognitive effort required for controlling and performing the over
all action, thus freeing the human mind to concentrate on the change pattern.
In general, they decrease our dependence on environmental conditions because
they give us free time which the human mind can use to develop artifacts. And
this - besides offering the already mentioned advantages - may also help us to
transcend the limitations and constraints imposed by the inflexibility of these
schemes.

If we now view artifacts as the (external) memory of our cultural evolution,
we will find that they serve the same purpose. With every new artifact - from

182 Reinhard Keil-Slawik

the tally to the abacus, the Indian decimal number system, and finally algebra
and Turing machines - the sequence of bodily operations required to obtain a
result has been reduced. With the tally, every act of making a mark corresponds
to the act of counting an object. With the abacus, the spatial arrangement of
beads allows us to move one bead into a specific position to replace the respective
number of counting acts. The sequentialization of the counting process is reduced
by introducing a new spatial structure. With the symbolic representation of
numbers, the handling of any number of one to nine beads is reduced to the
manipulation of one single symbol (digit). This also allows us to represent the
concept of zero as a physical symbol like any other number. Finally, with the
invention of algebra it becomes possible to embody the structural properties
of an infinite number of calculations in terms of a single symbolic description.
By expressing these structural properties through physical forces, it becomes
possible to mechanize and later - with the invention of Turing machines and
computers - to automate them, i.e., to perform a calculation by pushing a button.

As a result, more powerful operations can be performed in less time, with
greater flexibility and reliability. But there is also a new quality: enforced or
prescribed sequences of operations that do not allow us to create a gestalt, but
which nevertheless have to be performed, are condensed into single objects or
operations that can now be flexibly arranged anew and related to each other
to form new gestalten or insights. In this sense, the selective advantage in the
evolution of artifacts is that prescriptive temporal structures are dissolved by
creating physical objects and corresponding spatial structures, or - in more
abstract terms - by providing a state space that allows us to find out how we
have to relate the states to each other to form new meaningful wholes. With
respect to human actions, this cultural achievement can be stated as a general
guideline for the design of artifacts:

MINIMIZE THE AMOUNT OF ENFORCED SEQUENTIALITY NEEDED

TO ACCOMPLISH A TASK OR SET OF TASKS.

Enforced sequentiality means either that unnecessary actions have to be per
formed to form a gestalt or embody it with physical means, or that there is
a requirement for certain actions to be performed in a given order. Either one
impedes the formation of a gestalt.

Consequently, we can say that artifacts that are meant to support learning
must put the user in control, i.e., enable him to plan, control and initiate the
sequence of state transformations to be performed. In some cases, however, we
may also learn something by following a given sequence such as is imposed by
imitation36 • The individuals still have to create the meaning, but they choose not
to control the state transformation of the external memory. This may help stim
ulate unanticipated insights, but it is too inflexible to provide general support
for the learning process.

36 A prescription only works if the individual is willing to follow it, which again is some
kind of imitation. We may put pressure on individuals to enforce such a decision,
but we cannot enforce insights.

4.4 Artifacts in Software Design 183

The same holds on the symbolic level: the notion corresponding to imitation is
iconicity. We speak of iconicity when the pronunciation of a bird's name closely
resembles the sound of its voice, as in the case of the cuckoo. Another more
widespread example is the use of icons or pictograms representing an image of
the object they denote. Pictograms may promote understanding by referring to
an already known visual gestalt, but they do not provide sufficient flexibility for
creating new meanings and embodying them in physical means. Thus, part of our
cultural development has been the shift from pictorial expressions to languages
based on an alphabet consisting of arbitrarily chosen symbols.

This is the price we invariably have to pay for flexibility, namely, that the
artifacts we employ become less and less meaningful in the sense that the degree
of iconicity is reduced. Each mark on a tally, for instance, represents a counted
object. This is no longer the case when arranging beads in a two-dimensional
structure by using a calculating board or an abacus. And a digit is of an arbitrary
shape that in no way reflects the amount it stands for. Letters in an algebra or
cogwheels in a calculating machine dissolve the notion of number and amount
even further. And finally, the concept of the Turing machine reduces everything
to a sequence of elementary operations by which arbitrarily chosen symbols (the
alphabet) are read from and written on to an endless tape.

At every stage in this historical process, the human mind first has to find
a way of arranging the visible or tangible objects to form meaningful relations
in the specific context of activities. Once we are able to express these relations
as perceivable objects by writing down rules and structural expressions, we can
perform the physical operations for manipulation in a mechanical way. To ob
tain the result and to perform the operations, no conscious interpretation is
needed, no gestalt has to be established or insight acquired for completion. The
operations performed have become meaningless, and they only acquire meaning
insofar as they are executed as part of other human activities.

This general view is in accordance with the careful distinction between data
and information as defined by the IFIp37. Data can be transmitted and multi
plied, but the process which establishes the meaning, i.e., produces the respective
information, has to be carried out by every individual anew. Furthermore, data
can only be interpreted by establishing conventions and standards. The social
processes of defining, revising, applying, reading and teaching such standards
and conventions establish a common history among the parties involved; it be
comes part of their cultural environment and fosters mutual understanding.

Information, meaning, gestalten or insights are invisible by their very nature
and are brought to the surface only through human activity. In order to support
this activity, we have to provide artifacts which help us to make the invisible
visible38.

37 A thoughtful account of this definition is given in [Naur, 1974, pp. 18-31]. See also
the extensive characterization of information by K. Fuchs-Kittowski in Chap. 8.5.

38 A. Kay has used the notion of visibility slightly differently, namely, to highlight the
difference between the program text (visible) and what will happen during program
execution (invisible). Cf. [Kay, 1984].

184 Reinhard Keil-Slawik

4.4.4 Designing software

The ecological perspective presented here emphasizes that artifacts are indis
pensable means for creating meaning and supporting learning and communica
tion. Conversely, the design of a product is basically a process of cooperative
learning39 . To highlight the differences between this and the traditional engi
neering perspective, I will again use the notion of learning cycles to characterize
the research strategy associated with this ecological perspective.

An ecological approach to software development

The basic difference between the ecological and the traditional engineering per
spective is that learning cycles within software development and use are now
acknowledged as primary means for promoting understanding and supporting
communication. Its frame of reference is not based on the idea of context-free
knowledge that is transferred by the exchange of (design) artifacts, but on the
concept of person(s)-acting-in-settings as a specific instance of the functional
circle4o . We can then reconstruct the waterfall model into an ecological model
of nested learning cycles as depicted in Fig. 4.4-2.

rr
~I!) ~r9/ 42 ::i....l:l:,.

& 'A Exploration & ~
- ~ Communication Under.standlng-

~!~~I . ~. nqulry
DesIgn

Iterative

Scientists

Fig. 4.4-2. The ecological model of nested learning cycles

39 Cf. the definition of design as "the interaction between understanding and creation"
in [Winograd and Flores, 1986, p. 4].

40 This concept has been employed in particular by J. Lave to study and describe
everyday cognition. See [Lave, 1988] and [Rogoff and Lave, 1984].

4.4 Artifacts in Software Design 185

In the ecological model, the subjects of study are the processes into which
the artifacts are to be embedded, and not the inherent properties of artifacts
as isolated entities. To better understand what actually matters in a specific
situation and to find better ways and means of supporting the design process,
we have to study the human activities of developing and using software.

This is also the basic philosophy underlying the methodological framework
STEPS (Software Technology for Evolutionary Participative System develop
ment)41 developed by us at the Technical University of Berlin. In STEPS, it is
acknowledged that the quality of software cannot be defined without reference
to the development and usage context. This is not only essential for qualitative
approaches such as case studies, but for quantitative investigations as well. Soft
ware measurements, for instance, can only be understood and interpreted with
respect to a specific design setting42.

The ecological perspective emphasizes that the result of self-organizing pro
cesses such as cognition, learning, design, or evolution can only be fully un
derstood by reference to their history. What this means in terms of design is
establishing a common history among those who are meant to understand the
product. And, since learning and communication are essential for design, a par
ticipative development approach is advisable. This requires that the participants
are - to a certain extent - able to pursue the matter according to their individual
goals, objectives and personal needs. Thus, finding ways of sharing responsibil
ity, as explored by G. Bjerknes43 , and developing a subject-oriented approach, as
does M. Nurminen44, are not only promising attempts at dealing methodically
with the social aspects of design, but also provide ideas on how to improve design
of the products.

In his book "Notes on the Synthesis of Form", C. Alexander states: "the
ultimate object of design is form". In real-world situations, he points out, the
problem with design is that we are trying to invent a form to fit into a context
which we do not fully understand. This is especially true of the development of
software. Consequently, it is not just a form but a variety of forms which are
developed, revised, enhanced, or rejected in the course of software development.
Basically, these may comprise the design artifacts which are produced by apply
ing different tools and techniques, prototypes, and eventually the product and
its documentation. These forms are related to each other in various ways, and
changes in one form have consequences for one or several others. In addition, dif
ferent people may be responsible for developing and maintaining different forms.
Thus, C. Floyd's characterization of design as "a web of design decisions"45 gives
a more appropriate account of the actual process. This web, as it is physically
embodied in the design artifacts and products or prototypes, normally changes
very dynamically at the beginning, and becomes then more and more stable,

41 An overview is presented in [Floyd et al., 1989b] and [Keil-Slawik, 1987a], see also
the contributions of C. Floyd in Chap. 3.2 and M. Reisin in Chap. 7.3.

42 Cf. [Basili and Perricone, 1984] and, in particular, [Basili and Rombach, 1987].
43 See Chap. 7.1.
U See Chap. 7.2
45 See Chap. 3.2.

186 Reinhard Keil-Slawik

until, at the end of the development process, the final product is released. The
general guideline for the development of design artifacts and tools that are meant
to support this process is to provide means to embody and maintain the web of
design decisions such that the amount of enforced sequentiality is minimized.

On the basis of this view, I will now discuss how this general guideline trans
lates into features and attributes of design artifacts and products.

Improving design

Our task is to devise design artifacts and tools so as to provide sufficient support
and sufficient orientation without prescribing the course of actions to be taken.
This requires means which allow us to embody gestalten in such a way that
they provide a constructive basis for establishing a common understanding of
the problems in hand and the desired solution.

Unlike the traditional engineering perspective, where a design artifact is sup
posed to be unambiguous, consistent, precise, and complete, the general guideline
only demands that design artifacts - especially at the beginning of the design
process - allow us to embody only those gestalten or items of information which
are necessary in the specific situation to continue the (cooperative) learning pro
cess - and nothing more. Process-oriented development models46 , prototyping
strategies, the development of a project language by establishing a dictionary
containing the technical terms of the participants' domain languages - all of
these serve this goal, as does the use of base lines or reference lines instead of
phase model milestones47 . They provide the opportunity to iterate on specifi
cally chosen problem domains or aspects independently and on various levels of
detail. In contrast, the phase model approach is transformational: each iterative
step comprises the transformation of the whole problem domain.

This difference also applies to the design of products (tools) for the develop
ment of design artifacts. A tool may either only accept consistent data records as
input, or it may provide a function for checking the consistency or completeness
of a specified set of records whenever it seems necessary. The former allows the
designer to enter only complete data records that fit into the already developed
framework, whereas the latter allows him to store partial results which are not
yet consistent, but may nevertheless be useful for exploring the problem.

What all these examples have in common is that they provide means to utilize
the external memory to the extent required by the actual needs of the people
involved without prescribing the form or structure that should be achieved or
the way in which it should be achieved. In the traditional phase model approach,
the latter is derived from the structure of the product.

The same idea has been expressed in a slightly different way by D.E. Knuth
who has developed a tool called WEB allowing programmers to separate the
final structure of the code as required by the programming language from the
structure they choose during development to suit their needs and preferences.

46 See [Floyd, 1981, Floyd and Keil, 1983].
47 See [Andersen et al., 1990, Floyd et al., 1989b].

4.4 Artifacts in Software Design 187

According to Knuth, the basic idea is to write programs not in order to instruct
the machine, but rather to explain to other people what we want the machine
to do for US48 . The point is that now the grouping and sequencing of what
forms meaningful wholes in the course of design is left to the designers and their
understanding. Thus, the structures as required by the programming language
impose less sequencing on their activities.

On a more general level, principles such as user control49 or minimalist in
struction50 are design guidelines that serve the same end. And they can be
applied to the product as well as to the design of user manuals51 .

As regards development of new products, I wish to point out that the explicit
goal of providing support for individual problem-solving and information orga
nization lead to the notion of interactive systems and, eventually, to two basic
innovations: hypertext technologies and object-oriented systems. In particular
the definition of hypertext as non-sequential text processing explicitly confirms
the guideline for reducing enforced sequentiality. Both technologies implement
the same basic idea: they allow domain experts to easily embody mentally es
tablished relations in physical terms (links, shared code) and build on these
embodiments later on. However, besides assessing the essential quality of in
novative technologies, the general guideline presented here can also be used to
derive more specific design criteria that can be fruitfully applied in the design
of use interfaces52 .

4.4.5 Summary

The ecological perspective presented here seeks to provide guidance and orienta
tion in identifying problems and to help direct the search for solutions. It is not
meant as a theoretical framework allowing us to deduce or determine the desired
properties of either specific design artifacts and products or specific development
methods53 . Nevertheless it does provide some ideas on how to improve the design
process.

I have characterized design as a cooperative learning process. The result or
outcome of this process cannot be described precisely until the product is fin
ished. The value of any innovation can only be defined once it has been realized
and appraised, whether it be a new function or algorithm that is to be imple
mented, a new method to be used, or a new system to be developed. The same
holds for user actions in a learning situation. In a more general sense, it can
be said that the meaning of any activity cannot be described precisely until the
action has been completed54 .

48 Cf. [Knuth, 1984, Bentley, 1986]; an elaborate example is given in [Knuth, 1986],
see also Chap. 1.2.

49 See W. Dzida, Chap. 7.4.
50 [Carroll, 1990]
51 Cf. [Carroll et al., 1987].
52 A more extensive discussion can be found in [Keil-Slawik, 1990, pp. 47-70].
53 This substantiates the arguments of J. Carroll in Chapter 4.3.
54 This is also the central theme in [Weick, 1979].

188 Reinhard Keil-Slawik

Since learning is regarded as an evolutionary process of selective self-organi
zation, artifacts that are meant to support this process must provide means to
flexibly create and embody gestalten according to the insights acquired by the
parties involved. Thus, it is no longer the mathematical attributes of the product
that constitute the frame of reference, but the cooperative learning processes that
are part of design. Artifacts are viewed as embodying the external memory of
human cognitive processes. By studying the evolution of artifacts in a cultural
context I was able to derive a general guideline for their design, namely, to
minimize enforced sequentiality.

As is the case with all design principles, this guideline can neither be consid
ered in isolation, nor can it simply be optimized along a one-dimensional scale:
the more flexible, the better. It is dialectical in its nature because everyembod
iment of a gestalt - such as the fixation of a problem, the choice of a certain
function to be implemented, or a selected module structure - imposes constraints
on the subsequent actions and limits the possible choices. On the other hand,
without any such fixations no progress could occur. Thus, the crucial question
is where and when to draw the line so as to find the right balance between
flexibility and stability.

This question can be generally answered by the ethical imperative of H. von
Foerster: "Act always so as to increase the number of choices." 55 And this is
exactly what should be achieved by minimizing enforced sequentiality. On a
practical level, however, it can only be answered with respect to a given context.
In the course of developing or employing interactive systems, for instance, this
is the analysis of the work environment. However, even then, as I have already
pointed out, it is not possible to deduce a solution purely from the needs or
requirements. We need the traditional engineering perspective as well. Without
the results being produced along these lines, we would not be able to pursue
our goals. Every single interactive step, for instance, embraces already a vast
amount of formal operations embodying general insights that are invariant with
respect to the specific setting or problem - and thus, may not have been derived
from the specific context.

Both perspectives - the traditional and the ecological - must be regarded
as indispensable for our scientific endeavour. Any practical design activity re
quires that they be productively combined. Only by their combination can we
find appropriate ways of minimizing enforced sequentiality with respect to the
development and use of software.

Acknowledgements
I would like to thank Christiane Floyd, Rodrigo Botafogo, Kim Halskov Madsen, and
Ben Shneiderman for their constructive criticism throughout the various versions of
this article. They have been instrumental in shaping my ideas. My thanks also go to
Phil Bacon for polishing up the text idiomatically and stylistically.

55 [v. Foerster, 1984, p. 308]

Part 5

Computer Science and
Beyond

5 Computer Science and Beyond 191

Heinz
So this is where we find the thinker supplanted in the first illustration -
studying computer science. He is becoming a master of the art of building
abstract models.

Reinhard B.
The mathematician sets out to express reality in terms of formal, largely
context-free models. The mathematical notion of truth pertains to their in
ternal consistency and correctness.

Christiane
For the engineer, models are related to specific purposes. Accuracy, suitabil
ity, testability - these are the criteria that are applied to models.

Reinhard K.-S.
But we also know that such models are set against a human background.
On one hand, they embody the interests as well as the insights of the people
involved. On the other hand, they are re-interpreted wherever they are used.

Heinz
The models we build for software development have an interesting construc
tivist aspect as well. By our very analysis of reality we are intervening in
this reality.

Christiane
Computer science, traditionally, aims at reflecting reality. But, we must
aware that we cannot live up to this claim. Owing to the inherent selec
tivity of our formalisms, we are only capable of building distorting mirrors,
highlighting certain facets of reality and eclipsing others.

Reinhard K.-S.
We are all familiar with the elegance of the upside-down trees used in com
puter science. We must find ways, though, to properly implant the systems
developed by us into their social context.

Christiane
And the cyberneticians' popular adage "data sunt capta" may be of help to
us here. It means that we should not view the information we collect during
systems analysis as "data" - given to us - but rather as "capt a" - seized by
us.

Reinhard B.
This leads us on directly to the contributions that go to make up this part of
our book. Joseph Goguen, a theoretician in the field of formal specification,
demonstrates the limits offormalization and the omnipresence of error. What
he has to say sets the scene, as it were, for a critical appraisal and further
development of computer science.

192 5 Computer Science and Beyond

Heinz
Heinz Klein and Kalle Lyytinen's contribution translates the "data sunt
capta" adage into more concrete terms, illustrating the distorted images of
traditional data modelling and proposing ways of minimizing such distortions
as are inevitable. The analytical part of their reflections is of particular
importance for us as software developers, having to wrestle as we do with
the same difficulties in requirements analysis.

Christiane
And, presumably, we should find similar abysses concealed beneath each
ostensibly well-defined area of computer science. On closer scrutiny, we find
accepted concepts to be hollow; what appear to be established facts turn
out to be merely adopted conventions; basic assumptions need questioning.
Our work as both scientists and practitioners does not stand on firm ground
but on our own constructions. It is a social process borne along by us, like a
dance unfolding from nowhere.

Reinhard B.
Pentti Kerola and Jouni SimiUi. discuss the way computer science sees itself
as a discipline. They show how discussions about a paradigm change in com
puter science already have a tradition in the countries of Northern Europe.
The different interpretations of the notion of Information Science give a good
idea of the variety of approaches being pursued by the different schools of
thought in these countries.

Reinhard K.-S.
The chapters included in this part take up many of the ideas - formulated
in more theoretical terms in the previous parts - on human learning and
communication processes and on the interlacement of practical action with
theoretical reflection.

Heinz
One point they fail to address is our call - in line with the holistic principle
- for an artistic view of the world to take its place alongside those governed
by practical action and theoretical analysis.
There is much talk today about the beauty of fractals and computer graph
ics. What is lacking, in my eyes, is a look at other aesthetic dimensions
of computer science - from the elegance of algorithms to the aesthetics of
system interfaces and computer art as an independent field.

Christiane
At all events, this part of the book contains a draft for a self-critique and a
process of self-reflection by computer science as a discipline. This must be
complemented by an enrichment of computer science's domain of discourse
and methodology so as to include consideration of the interactions between
humans and artifacts.

5.1 The Denial of Error
Joseph A. Goguen

5.1.1 Introduction

This paper claims that the modern world has developed a kind of arrogance
which is damaging the very projects that it seeks to sustain: in proposing method
ologies to guarantee the absence of error, we deny the incredible richness of our
own experience, in which confusion and error are often the seeds of creation; in
this way, we limit our own creativity.

This arrogance is not an isolated phenomenon that is found only in computer
science. Indeed, I claim that it arises in a natural way from our preoccupation
with and immersion in science and technology, which are strongly oriented to
ward control. The obsession of Western culture with control can be seen in many
different areas, including the following:

1. In myth; for example, if you know a demon's name, then you can control its
behavior (we may relate this to the phrase "knowledge is power").

2. In science, which is based upon the idea of the controlled experiment (this
is control of the intellectual process, rather than of its result).

3. In our theories of behavior; for example, the psychiatrist Ernest Becker has
said that "All social life is the obsessive ritualization of control" 1; see also
point 5. below.

4. In technology, which seeks to control nature through the application of sci
ence, as discussed in more detail later in this paper.

5. In our theories of information and knowledge; for example, in the "Represen
tational Theory of Meaning", which says that our minds contain represen
tations of external "objects", or in current Cognitive Science theories which
posit explicit goals to control behavior, in the same way for both machines
and humans2 •

Aspects of the viewpoint common to these items have been called "instrumen
tality", "teleology", "rationalism", "selfishness", "objectivity", "analysis", "sub
jectivism", "ego", "positivism" and "conceptualism", depending on the author
and the context. The obsession with control is also one aspect of what has come
to be called "modernism".

The denial of error, that is, the denial of deviation from announced goals,
seems to be closely associated with the attempt to maintain control, especially for
phenomena that are actually difficult or even impossible, to control. For example,
consider the economy of a country, especially one that is highly collectivized.

1 See [Becker, 1973]
2 See Sect. 5.1.2 below.

194 Joseph A. Goguen

The history of science contains many instances of accidental discoveries, for
example, that of penicillin. These are often taken as surprising, embarrassing,
or amusing, but they actually point to a serious and important facet of scientific
knowledge, indeed of all knowledge: its basis is the free play of the mind against
the unexpectedly rich worlds revealed within each real situation. The following
quotation from Heidegger3 may be relevant:

The area, as it were, which opens in the interwovenness of being, un
concealment, and appearance - this area I understand as error. Appear
ance, deception, illusion, error stand in definite essential and dynamic
relations which have long been misinterpreted by psychology and epis
temology and which consequently, in our daily lives, we have wellneigh
ceased to experience and recognize as powers.

Formalism is also a form of control: it attempts to control the use of language,
and through that, to control behavior. The tighter and more rigorous the for
malism, i.e., the more circumscribed its syntax and semantics, the smaller the
domain to which it is applicable. The ultimate in this development may be the
attempts of mathematical logic4 to formally capture the notion of Truth; yet
the manipulation of uninterpreted tautologies literally tells us nothing, about
nothing5 •

Section 5.1.2 below attempts to describe the essence of modern science and
technology, loosely based on ideas of late Heidegger, and illustrated with some
quotations from Bacon and Newell. Section 5.1.3 discusses the goal of error-free
programming, using some work of Dijkstra as an example. Section 5.1.4 consid
ers the goals of software quality, using U.S. Department of Defense procurement
procedures as an illustration. Finally, Section 5.1.5 suggests that software de
velopment projects could be considered holistically, using some ideas from the
so-called New Biology.

5.1.2 Science and technology

At the dawn of modern science, Francis Bacon was obsessed with the concept of
what we now call an experiment, using what now seem rather extreme metaphors
of torture and the inquisition6:

... if any expert Minister of Nature shall encounter Matter by mainforce,
vexing7 and urging her with intent and purpose to reduce her to nothing;
she contrariwise ... being thus caught in the straits of necessity, doth

3 See [Heidegger, 1959].
4 For example [Tarski, 1944].
5 See Chap. 8.1 for some further discussion of meaning, truth and logic along these

lines.
6 [Bacon, 1968]
1 At the time of this translation, "vex" had much more the connotation of torture,

from the Latin vexare.

5.1 The Denial of Error

change and turn herself into diverse strange forms of things the reason
of which constraint or binding will be more facile and expedite, if matter
be laid hold on by Manacles, that is by extremities.

195

Today, this language seems a bit shocking, and of course, no reputable con
temporary scientist would want to sound quite so gleefully sadistic about his
work. But perhaps we should give Bacon credit for a degree of honesty that has
been lost to us, as the passage of time has dulled our sense of surprise at the
methods of science and technology. For scientific experiments on animals can be
quite gruesome, and technology has much to answer for in its destruction of the
environment.

The fundamental problem here is not that there are some isolated, unfortu
nate incidents (e.g., strip mining in the Brazilian rainforest), nor even that there
are potential massive dislocations looming on the horizon, such as the effects of
global warming and deforestation. Rather, the fundamental problem is that man
has come to view nature as a "resource", as something to be used, for his con
venience and comfort, or against his enemies, or to enhance his prestige through
the acquisition of knowledge. As Heidegger8 says,

The hydroelectric plant is not built into the Rhine River as was the
old wooden bridge that joined bank with bank for hundreds of years.
Rather, the river is dammed up into the power plant. What the river
is now, namely, a water-power supplier, derives from the essence of the
power station. In order that we may even remotely appreciate the mon
strousness that reigns here, let us ponder for a moment the contrast that
is spoken by the two titles: "The Rhine" as dammed up into the power
works, and "The Rhine" as uttered by the art work, in Holderlin's hymn
by that name. But, it will be replied, the Rhine is still a river in the
landscape, is it not? Perhaps. But how? In no other way than as an ob
ject on call for inspection by a tour group ordered there by the vacation
industry.

In this way, we lose the capacity to be in the world with a sense of harmony, joy,
or wonder.

The dark edge to science, so clear in the writing of Bacon, has to do with this
fundamental alienation, that is, with man's will to what Bacon called "Dominion
over the Universe" , more than it has to do with the subject/object split, or with
any particular difficulties. Bacon was as much the prophet of technology as he
was of science. Let us listen to Heidegger9 again:

Today science is admonished to serve the nation, and that is a very nec
essary and estimable demand lO , but it is too little and not the essential.
The hidden will to refashion the essent into the manifestness of its being
demands more. In order to recapture the pristine knowledge that has

8 See [Heidegger, 1977c].
9 See [Heidegger, 1959].

10 Note that in this 1935 passage, "the nation" refers to Nazi Germany!

196 Joseph A. Goguen

degenerated into science, our being-there must attain a very different
metaphysical depth. It must again achieve an established and truly built
relation to the being of the essent as a whole.

Let us now consider an example closer to home, from Artificial Intelligence. Allen
Newellll proposes a theory of mind based on what he calls a "physical symbol
system", which is essentially an automaton, that is, a (mathematical) machine,
intended to model the use of symbols. Newell claims that this notion is "the most
fundamental contribution so far of Artificial Intelligence and Computer Science
to the joint enterprise of Cognitive Science" , and that it is "what the theory of
evolution is to all biology, the cell doctrine to cellular biology, the notion of germs
to the scientific concept of disease, the notion of tectonic plates to structural
geology", namely, it is (he hypothesizes) "adequate to all symbolic activity this
physical universe of ours can exhibit, and in particular to all symbolic activities
of the human mind". The basic definition of "symbolization" is as follows12 :

An entity X designates an entity Y relative to a process P, if, when P
takes X as input, its behavior depends on Y.

In this case, X is a symbol for Y. I do not wish to dwell on how this definition is
too permissive for many applications to science, nor on how it radically excludes
most of the symbolism that is important in the arts, humanities and religion,
nor on the arrogance of attempting to reduce symbolism in general to causality,
but rather, I wish to relate this theory to the themes of control and error which
are central to the present paper. Newell says,

A general intelligent system must somehow embody aspects of what is
to be attained prior to the attainment of it, i.e., it must have goals
A general intelligent system must somehow consider candidate states of
affairs (and partial states) for the solutions of these goals (leading to the
familiar search trees).

But in order to use the familiar method of search trees, one must not only have a
goal that is fixed in advance, but one must also be able to enumerate the possible
solutions. Thus, we are dealing here with a form of top-down control that is even
less flexible than feedback control, and less able to deal with errors. Thus, despite
Newell's desire that his ideal physical symbol system should "behave robustly in
the face of error" and "learn from its environment" , it is far from clear that it
could do so with anything like human intelligence; in particular, it is unclear how
it could devise entirely new conceptual organizations in response to its errors,
let alone learn such things as compassion.

I do not believe that rigidly mechanistic models, with top-down goal struc
tures, are adequate for explaining human cognition, nor even for explaining how
to do science. Although this approach is characteristic of "modern" explana
tions of science, from the seventeenth century into the twentieth - the so-called

11 In [Newell, 1980].
12 Ibid.

5.1 The Denial of Error 197

"Received View" - there is an emerging "post modern" view of science and
technology which advocates more flexible organizations, less rigid logics, and
more natural control structures. Examples include the so-called New Biology of
Bateson, Maturana, Varela and others13 , hermeneutics and other movements in
linguistics and philosophy14, and fuzzy logic and fuzzy control15 . Within com
puting, neural nets, highly distributed and open systems, and hypermedia and
hyperprogramming may also fit this emerging paradigm.

5.1.3 Error-free programming

What we may call the "Dijkstra School" aims for error-free programming. For
example, Djikstra claims that

we have ... "a calculus" for a formal discipline - a set of rules - such
that, if applied successfully: (1) it will have derived a correct program;
and (2) it will tell us that we have reached such a goal. 16

From a narrow point of view, Dijkstra achieves its aim, modulo certain technical
difficulties17. But its fundamental difficulty is that it attempts to control the
programming process by imposing a rigid top-down derivation sequence, working
backwards from the initial top-level specification (the "postcondition") to the
final code, in which each step is derived by applying a "weakest precondition"
(hereafter, "wp") formula.

Perhaps not unexpectedly, this "wp calculus" requires significant human "in
vention" at exactly the most difficult points, namely the loops. And for most
programs that go much beyond the trivial, the insights needed to write the loop
invariants are tantamount to already knowing how to write the program; more
over, these insights are more difficult to achieve in the wp context than they
would be in a more operational context. Indeed, I have seen good students who
had been taught that the wp calculus was the right way to program, become so
discouraged over the difficulties that they experienced, that they came to believe
that they could never learn how to program and should therefore seek some other
profession! In general, such a rigid, top-down ideology inhibits experimentation,
the exploration of tradeoff's, accidental discoveries, and so on. Moreover, it can
be harmful to students, wasteful of time, reinforcing of an inflexible view of life,
and inhibiting to intuition and creativity.

13 See the discussion in Sect. 5.1.5 below.
14 Again, see Sect. 5.1.5.
15 For example [Goguen, 1969, Pedrycz, 1989].
16 [Dijkstra, 1975]
17 These include the following: (1) there is a gap in the logical foundations, in that the

first-order logic used for expressing conditions is not actually sufficiently expressive -
something like the infinitary logic proposed by Erwin Engeler in the 1960s is needed;
(2) many important programming features are not treated, including procedures,
blocks, modules, and objects - in general, all large-grain features are omitted; and
(3) data structures, types, variables that range over programs, and variables that
range over specifications are all treated in a loose manner.

198 Joseph A. Goguen

But we must not get carried away with criticism: It is not that the wp calculus
is entirely mistaken or useless, but rather that claims have been made for it that
do not take adequate account of its limitations. For example, the wp calculus
can be very useful in getting initializations right (many real bugs arise at this
point), as well as for simple loops, and I have also found it useful in convincing
students that coding can be treated with mathematical precision. Moreover,
Dijkstra's style is very elegant and careful, his examples are very well chosen,
and personally I admire and have learned from these qualities. However, it seems
very difficult to scale up Dijkstra's approach beyond programs of more than a
few dozen lines.

Let me be clear that I am not criticizing formal methods as such - in fact, I
believe that they can be very useful in practice, especially for large programs18,
and have myself done research in this area19 - rather, I am criticizing the ten
dency to apply formal methods in a rigid, top-down hierarchical manner. In fact,
I believe that if appropriate formal methods are used in a flexible, non-ideological
way, they can lead to better programs, with greater efficiency and fewer bugs.

But bugs are inevitable. If they don't occur in coding, they will appear in
design, specification, requirements, or use; they may arise by misinterpretation
of what the customer says, by inadequate modelling of the situation in which the
program must run, by inadequate documentation or understanding of the tools
being used (such as a compiler for a high-level language), and in many other
ways.20

Of course, no one wants bugs, or wants to spend any more time than necessary
on debugging, because it is difficult and unpleasant. But nevertheless, bugs are
interesting and important in themselves: they define the boundary between what
is understood and what is not. Hence, they show us where our weaknesses are,
and provide opportunities for us to learn and grow.

5.1.4 Software quality

The Brooks Report21 notes that the procurement process generally used by
the U.S. Department of Defense for large software systems is inappropriate for
such systems (although they might be reasonable for buying boots, hats, or
even rifles): bids are invited on a contract to build a system that meets a given
"requirements document" , which tends to be excessively elaborate, specific, and

18 This can be achieved by providing formal specification for the interfaces between
program components, thus greatly enhancing the accuracy of communication be
tween different groups working on different components, and providing a "fire wall"
to protect each group from purely internal changes made by other groups. Also, suf
ficiently powerful mechanisms for parameterization and modularization can greatly
improve the reuse of both code and specifications.

19 [Goguen, 1986, Goguen and Meseguer, 1987]
20 An overview of some recent debates on the philosophical foundations of formal meth

ods is given in [Barwise, 1989].
21 [Brooks, 1987b]

5.1 The Denial of Error 199

optimistic. There is also a tendency for lower bids to win, whether or not they
are realistic; and once the contract is let, large cost over-runs are common.

It is important to note that we are not talking here just about the processes
used internally by a software vendor, but rather about the procurement process
as a whole, including those processes internal to the client as well as those in
ternal to vendor(s), and of course those processes of communication that occur
on the interfaces among them. It is convenient to use the terminology of process
models in this discussion, even though it was originally developed to describe
just vendor processes22 . To be more precise now, it is the government processes
of requirements generation and procurement that are rigidly top-down, based
on assumptions formalized in the linear structure of a so-called stagewise model,
which says that a software development project begins with requirements, which
then "fall" without essential error into specifications and finally into code. Once
the processes internal to a vendor are reached, it is not unusual to see a more
sophisticated process models in use, at least a so-called waterfall model, which
allows feedback between contiguous stages, and perhaps also a single (non-rapid)
prototype, or even a spiral model23 , which can be sufficiently adaptive to be con
sidered a meta-process model. (Also, note that software procurement is generally
less rigid in the commercial sector than in the government sector.) All this sug
gests that an important topic for further research might be the development
of multi-party process models, which would allow for different processes within
different parties, and for multi-stage interaction between parties.

For large, complex systems, especially if they are unlike anything previously
constructed, we can hardly expect to know what is possible or impossible, what
is adequate or inadequate, what is expensive or inexpensive, or more generally,
what are the design tradeoffs for that class of system. Moreover, it has been
found far more expensive to correct errors during the maintenance stage than
during earlier stages (by up to a factor of 100)24.

Thus, it would seem very desirable to debug requirements until they reflect a
reasonable compromise between what users want and what is achievable within
reasonable cost. The Brooks Report25 suggests that integrating rapid prototyp
ing with the procurement process might achieve this goal, and thus save vast
amounts of time and money. It could also lead to discovering useful capabilities
not anticipated in the original requirements document, which are nonetheless
relatively easy to provide. It seems very reasonable to suppose that some such
more adaptive approach could yield better results than trying to control the en
tire process of production in advance of exploring the basic pitfalls and tradeoffs
that are involved.

The failure of U.S. Government procurement processes to acknowledge the
possibility of error in setting requirements is a shocking example of arrogant
teleological thinking run wild; even some crude form of feedback control would

22 See [Boehm, 1988] for an overview of this field.
23 [Boehm, 1988]
24 Cf. [Boehm, 1981].
25 [Brooks, 1987b]

200 Joseph A. Goguen

be an improvement, and it is amazing that large Department of Defense systems
come close to working correctly as often as they seem to.

I think it is fair to say that Software Engineering is presently more like a
medieval craft than it is like a modern engineering discipline. This is because
modern technology26 involves the construction of causal calculative theories, and
we are only now beginning to develop such theories for Software Engineering.
In particular, the relatively neglected, and sometimes maligned, field of formal
methods is still at an early stage of development. A promising approach, I believe,
is to integrate formal methods with software process models in a way that better
supports flexibility and adaptation, rather than mere competition and control.

It may be that such revolutionary techniques as hyperprogramming27 , which
involve the multimedia exploration of program structure by visualization and
explanation, based on technology developed for formal specification and veri
fication, can be developed to the point where they can be used in a routine
way.

What is crucial is to provide environments for software development in which
the overall vision of the program can be clearly felt at all times, and used flexibly
in organizing the programming task. Such a vision is not at all the same thing
as a top-down hierarchically structured system of goals, but rather should have
an adaptive living quality, in roughly the sense discussed in the next section.

5.1.5 The being of software development projects

Anyone familiar with multi-person software development projects knows that
there is a sense in which such projects "have a life of their own": some projects
seem healthy and vibrant from the start, and overcome even unexpected obsta
cles with enthusiasm and intelligence, while others always seem to be disorga
nized and depressed, suffering, for example, from such symptoms as unrealistic
goals, inadequate equipment, poor planning, (seemingly) insufficient funding,
faulty communication, indecisive leadership, frequent reorganizations, and/or
deep rifts between internal factions.

A software development project is not primarily a formal mathematical en
tity. Perhaps it is best seen as a dialogical or linguistic process, an evolving
organization of certain informational structures, continually recreating itself by
building, modifying, and reusing these structures. In the language of Maturana,
this might be described as "development through mutually recursive interactions
among structurally plastic systems" 28.

In this view, computers, printouts, compilers, editors, design tools, and even
programmers, can be seen as supporting substrates, just as body parts are sup-

26 See [Heidegger, 1977c].
27 [Goguen, 1990]
28 See [Maturana, 1978].

5.1 The Denial of Error 201

porting substrates for a person29 • Maturana and Varela30 define an autopoietic
system to be

... a network of processes of production of components that produces
the components that: (i) through their interactions and transformations
continuously regenerate the network of processes that produced them;
and (ii) constitute it as a concrete unity in the space in which they exist
by specifying the topological domain of its realization as such a network.

For example, an unhealthy project may struggle for survival by reassigning re
sponsibilities, redefining subprojects, and even trying to reconstrue the condi
tions that define its success. On the other hand, a healthy project may develop
new tools to enhance its own productivity31.

Autopoietic systems are about as far as we know how to get from rigid
top-down hierarchical goal-driven control systems; autopoietic systems thrive
on error, and reconstruct themselves on the basis of what they learn from their
mistakes. Since organizations naturally strive for their own survival, it would
seem natural to study autopoietic software process models.

It is interesting to notice that the discourse which is the life blood of a
software project is conducted in a variety of languages, which differ in both
their level of abstraction and in their degree of formality. Most discussions are
conducted in a kind of pigeon natural language, infused with technical terms and
technical ways of thinking. But there are also requirements documents, designs
(which may involve graphics), specifications, code, and much more.

I believe that a promising research direction is to apply techniques from
hermeneutics to the "softer" areas of the software development process, and
particularly to the so-called "requirements acquisition" phase, in which an an
alyst attempts to determine what the customer really wants. Hermeneutics is
concerned with the interpretation of "texts" in a very broad sense which can
include programs, dialogues, contracts, live interaction, specifications, history
files, proofs, and so on. Another promising application of hermeneutics might be
to study the social dynamics of the entire life cycle, or of selected parts of it32 .

5.1.6 Conclusions

Important avenues for further progress in Software Engineering seem to be
blocked by our inadequate understanding of the processes involved in devel
oping software systems. It seems that formal methods, despite their power, are

29 Of course, I do not intend these remarks to imply that the group has moral or
spiritual priority over the individual, or that people should be viewed as components
of systems in anything like the same way that Ada packages can be.

30 See [Maturana and Varela, 1980].
31 See [Bateson, 1980, Thompson, 1987, Maturana, 1978, Maturana and Varela, 1987]

for more information, and see [Goguen and Varela, 1979, Varela and Goguen, 1978]
for some possibly ill-advised attempts at formalization.

32 See [Palmer, 1969] for an overview of some theoretical aspects of hermeneutics, and
Chap. 2.2 for some further discussion along the lines of this paper.

202 Joseph A. Goguen

not applicable to some of the most significant aspects of such processes. But it
also seems possible that a better understanding may be attained by using some
insights from the New Biology of Bateson, Maturana, Varela and others, and
from the hermeneutics of Heidegger, Gadamer, and others. A basic step in this
direction is to recognize the important role that error plays in any process of
construction. The surprisingly widespread belief that it is both desirable and
possible to go from requirements to specification, to code, without making any
errors, would seem to be a major inhibiting factor to the successful application
of formal methods.

Although formal methods can be very powerful when they are properly ap
plied, they also have definite limitations, and formal, rationalistic understanding
is only one of many approaches to understanding. Intuition and spiritual under
standing are alternatives that seem more important in certain ways. For example,
formal methods will never tell us why the U.S. Department of Defense persists
in its manifestly wasteful practices. Nor will they explain the success of object
oriented programming.

Some specific proposals for further research mentioned earlier in this paper
include: the application of hermeneutic techniques to the software development
process, both as a method of study, and also as a specific technique for use
in the requirements acquisition phase; the development of multi-party process
models; the study of autopoietic process models; and the integration of formal
methods with such more "organic" process models, through techniques like hy
perprogramming.

By some such route, we might go further than merely recognizing the in
evitability of error - we might learn to experience our errors as a path that leads
to deeper understandings and to better relationships. We must make the pro
gramming process not merely tolerant of error, but also able to take advantage
of the creative possibilities inherent in the interplay between concept and per
ception. Until we acknowledge the dialectical, creative, and living dimensions in
programming, we shall be doomed to participate in software processes that are
unwieldy, unpleasant, and ineffective. The denial of error is the denial of life.

Acknowledgements
I wish to thank my wife Kathleen for assistance with preparing this paper, including
reading several drafts, undertaking some library research, and providing many helpful
comments and conversations. I would also like to thank both the N aropa Institute
in Boulder, Colorado, and the Center for the Study of Language and Information at
Stanford University for providing stimulating environments in which to think about
the kind of issue discussed here.

5.2 Towards a New Understanding of
Data Modelling
Heinz K. Klein and Kalle Lyytinen

This paper reviews the fundamental assumptions of current data modelling ap
proaches in the light of the recent debate on conflicting research paradigms. The
following four questions are used to identify paradigmatic assumptions about the
ontology, language, epistemology and social context of data modelling: (1) What
is being modelled? (2) How well is the result represented? (3) Why is it valid?
(4) How are data models used in practice? It is concluded that the pursuit of
these four questions amounts to a new research programme in data management
and that the appropriate metaphors for data modelling are not fact gathering
and modelling, but negotiation and law-making.

5.2.1 Introduction

All system developers approach their work with certain assumptions in mind.
In data modelling these assumptions concern the nature of the universe of dis
course, the nature of the user system, and the role of language and interpretation
(sense making) in data modelling. The implications of these assumptions on the
outcomes, impact and process of data modelling have not received sufficient at
tention in research. The goal of the paper is threefold: to raise the awareness of
practitioners and researchers about the basic assumptions underlying the prac
tices, tools and methods of their work, to promote reflection on the appropri
ateness of these assumptions in research on system design methods and tools
and to suggest alternative assumptions that can guide research and practice in
future with a different set of outcomes l .

The paper is organized as follows. Section 5.2.2 introduces four basic ques
tions that help to pinpoint fundamental assumptions of different data modelling
approaches and explains why these are called "metatheoretical". Section 5.2.3
uses these four questions to analyze the metatheoretical assumptions of current
mainstream approaches to data modelling. Section 5.2.4 examines a set of alter
native assumptions. It thereby illustrates that the assumptions of data modelling
are by no means given and self-evident and therefore they can be subjected to
critical re-examination. The conclusions point to the importance of critical re
flection on metatheoretical assumptions for further work in data modelling.

1 It has been recognized for some time in the literature that data modelling and knowl
edge representation are essentially similar. Therefore they share the same funda
mental assumptions and the following analysis is of equal importance to both data
modellers who build databases and knowledge engineers who build expert systems.
But for the sake of simplicity, in the following we speak only of data modelling.

204 Heinz K. Klein and Kalle Lyytinen

5.2.2 Metatheoretical assumptions defined

The purpose of data modelling is to design a conceptual schema to organize
the storage and retrieval of data. The term data model is either a synonym for
conceptual schema (as in the phrase "this is our data model for the inventory
control system") or it refers to the language in which the conceptual schema is
formulated (as in the phrase "we use the relational model"). Typically a data
modelling language consists of constructs for expressing data definitions, op
erations for manipulating data and constraints (such as integrity and privacy
constraints). Data modelling is the activity of constructing a data specification
by applying the generic abstraction concepts of a data model (language) to a
particular application domain. In this paper we are mostly concerned with the
assumptions that underlie different conceptual schema (or data modelling) lan
guages and their use in designing a conceptual schema.

In order to identify the assumptions of different approaches to data modelling,
we look upon the construction of a data model as building a limited theory of
its application domain. This point of view is not new2 and a number of people
have noted that there are important relationships between perception, data,
reality and knowledge3 . Based on this prior work, we can examine the existing
approaches of data modelling with regard to four assumptions.
(1) What is being modelled? (ontological question) - This question points to
the fundamental assumptions of data modelling approaches about the modelling
domain, i.e., about the nature of the universe of discourse. More specifically, by
ontology we mean a set of assumptions about the nature of the objects with which
software development must deal. There is no accepted terminology for talking
about the ontology of software development. Examples of terms used to describe
ontologies in software development are entities, relationships, messages, actors,
inference rules, facts, speech acts, etc. The ontology of software development
also includes some fundamental assumptions about the nature of the application
domain, i.e., whether there is a single or several user systems or no "system" at
all, whether the primary constituents of each user system are operations, roles,
decisions, social action, or speech acts or something else.
(2) How well is the result represented? (linguistic question) - This question points
to the assumptions that are made about the nature of the symbolic constructs
that are most appropriate and effective to represent the universe of discourse.
For example, the relational model recommends normalized tables over record
types or sets.
(3) Why is the result valid? (epistemological question) - This question points
to the fundamental assumptions that are made on how one can obtain valid
interpretations and knowledge about the universe of discourse to be modelled.
Experimental modes of schema construction (like prototyping) can be compared
with the specification approach as is associated with many versions of the so

2 [Kent, 1978]
3 [Churchman, 1971, Checkland, 1981, Stamper, 1987, Goldkuhl and Lyytinen, 1984,

Lyytinen, 1987]

5.2 Towards a New Understanding of Data Modelling 205

called waterfall model or systems life-cycle approach4. The question of how to
cope with uncertain knowledge during system development is, of course, not the
only consideration that is important in comparing prototyping and system life
cycle approaches, but it is a good example to demonstrate that different methods
sometimes imply different assumptions about knowledge and inquiry in systems
design5 .

(4) What is the social context of data modelling? (sociological question) - This
question points to assumptions about the relationship between data and action.
First, data are related to action because they are used to achieve purposes which
in turn are shaped by the context of the social community in which data mod
elling takes place. Purposes can be latent, which is seen when data are used
to supply rationalizations for decision taken with ulterior motives6 . Second, the
relation of data to action is revealed if we interpret the use of data analogous to
the use of language.

"the efficiency of language requires that utterances always be anchored to
the unique and particular occasion of their use. In this respect, language
is indexical: that is, dependent for its significance on connections to spe
cific occasions, and to the concrete circumstances in which an utterance
is spoken." 7

The same should hold for the efficiency of data. These kinds of socio-linguistic
assumptions are not made explicit in the classical approaches to data modelling.

A set of mutually reinforcing answers to these four questions amounts to
a metatheoretical position. The term "metatheoretical" is here used to refer
to fundamental criteria and standards that support a choice between different
methods and tools. This usage follows Oliga8 who proposes a distinction between
methods and methodologies. Methods are concrete procedures for getting things
done. A methodology is a higher-level construct which provides the rationale
for choosing between different methods. Metatheoretical assumptions are the
stipulations and norms built into methodologies9 .

Hence system methodologies are concerned with criteria and principles that
help in choosing among different system design methods1o. The next two sec-

4 Cf. [Davis, 1982, Parnas and Clements, 1985, Agresti, 1986, Boehm, 1988].
5 Cf. [Churchman, 1971], Gougen, Chap. 5.l.
6 Cf. [Kling, 1980].
7 [Suchman, 1987, p. 184]
8 [Oliga, 1988]
9 This distinction applies equally to the domain of research as to building systems.

A classical example of a metatheoretical debate in research is the conflict between
Spinoza (there are four types of knowledge) and Locke (all knowledge comes from
experience). This debate continues between the advocates of a realist truth theory
and unified ideal of science on the one side and by the proponents of discourse or
coherence theory (such as [Habermas, 1973] Truth Theories) on the other.

10 Examples of system methodologies are [Churchman, 1971] or [Checkland, 1981] and
an example of a metatheoretical debate about systems design can be found in
[Jackson, 1982b, Jackson, 1982a].

206 Heinz K. Klein and Kalle Lyytinen

tions articulate the metatheoretical assumptions that support the prevailing ap
proaches to data modelling and the possible alternatives to this as developed in
recent researchll .

5.2.3 The mainstream view and the metatheoretical debate

Most current data modelling approaches answer the ontological question by pre
suming that the world is given and made up of concrete objects which have
natural properties and are associated with other objects. "Given" means that
the world is prior to the existence or appreciation of humans, it is not something
which is created through social intercourse. Therefore, this kind of world exists
beyond beliefs and social practices of users. The universe of discourse is that
part of the real world with which the data model is concerned.

"A data model is a specification language for representations of the real
world." 12

Similar views have been expressed in the notion of an enterprise model free
of bias13 , the van Griethuysen report on "Concepts and Terminology for the
Conceptual Schema and the Information Base" 14. It is also typical of most
contributions to the so-called information system proceedings15 . It should be
noted that the above is a specific version of realism, namely one that is based on
Tarski's correspondence theory of truth16 . Whenever the word realism is used
without qualification in the following, we mean it in this sense. Otherwise it will
be qualified.

The linguistic question focuses us on the quality of data models which has
been analyzed from two competing angles: linguistic rigor and ease of use. Lin
guistic rigor emphasizes that data models should be complete, consistent and
fully formalized to eliminate ambiguity and allow rigorous inference. From this
perspective the ideal data model provides a formal calculus to answer all ques
tions about the universe of discourse. Answers should follow from the axioms
and inference rules17 . To a limited extent this has been achieved for example
by the studies on relational completeness18 . Based on the work of Russell and
Whitehead, the Principia Mathematica predicate calculus-based formalisms ap
pear very promising to achieve this. It therefore is not surprising that many

11 A similar metatheoretical analysis for the broader area of information sys
tems development is presented in [Hirschheim and Klein, 1989]. [Iivari, 1989] and
Kerola/Simila (Chap. 5.3) argue for a reappraisal of the foundations of "information
science" as a whole building on related categories.

12 [Mylopoulos, 1981]
13 [Chen, 1977]
14 [v. Griethuysen, 1982]
15 [Olle et al., 1982, Olle et al., 1983, Olle and Sibley, 1986]
16 This is explicitly recognized in [v. Griethuysen, 1982, p. 3-7].
17 [Bubenko, 1983]
18 [Codd, 1971]

5.2 Towards a New Understanding of Data Modelling 207

data modelling formalisms were proposed which provided constructs for directly
representing the objects, properties and associations of the universe of discourse.
One widely used language represents the universe of discourse as entity, attribute
and relationship instances19 , but similar ideas exist in the relational model. Data
modelling languages also include a simple theory of types in which each instance
belongs to exactly one type. The difficulties with this have recently become more
widely realized and the type theory has been expanded to include "categories" 20.

However, the semantics of orthodox data modelling approaches are still limited
to denotational theory in which the meanings of each term corresponds to the set
of objects for which it stands21 . Consequently, attempts to include more mean
ings into data models focus on defining constraints that are supposed to reflect
real-world structures such as temporal order of events, existence dependencies,
object identity and the like22 .

As noted above, the second quality criterion of data models is ease of use.
The ease of use characteristic has been applied to explain the popularity of
certain types of formalisms such as the E-R model. The ease of use issue has
been investigated empirically in a number of studies23 • However, the criterion
has been recognized difficult to apply in that no clear procedure for choosing
among different data modelling languages has been proposed24 .

The epistemology of current approaches assumes that valid data models can
be built by applying proper observation and data collection methods to the
application domain (universe of discourse). The data model is like a picture of
the universe of discourse. It may have more or less grain to allow for selection,
but its accuracy can be determined by checking how well it corresponds to the
reality of the universe of discourse. By observing the deficiency of the application,
one can infer the likely cause in the specification and correct it. In this way the
data model can be tuned over time to improve its correspondence with reality.
The same procedure can also be used to adjust it to changing requirements.
Whereas data modelling does emphasize user participation in this process of
continuing correction and adjustment, the user's role is seen to be limited to two
contributions: (i) providing input to the data modellers in form of "raw" data and
definitions, (ii) validating the formal specification in the sense of assuring that
it corresponds to the true state of affairs. Various devices have been proposed
to improve the efficacy of user participation in this sense, for example graphical
respresentation aids and walk-throughs. But the application of such tools does
not change the fundamental assumption that validation is an accuracy test in
line with the correspondence theory of truth.

The social context of data modelling is seen as unproblematic. The first as
sumption is that organizational processes are primarily oriented to maintaining
organizational stability and order. The second assumption is that data models

19 [Chen, 1976, Teichroew et al., 1980]
20 Cf. [ElMasri and Wiederhold, 1985].
21 [v. Griethuysen, 1982]
22 For details d. [Codd, 1979].
23 See e.g. [Batra and Davis, 1989, Batra et al., 1988].
24 Cf. [Tsichritzis and Lochovsky, 1982].

208 Heinz K. Klein and Kalle Lyytinen

are to contribute to given organizational goals through helping with purposeful
interventions which serve organizational efficiency and effectiveness. The third
assumption is that organizational policy is consistent and well-defined. Policy
makers know what they want and how to communicate it well so that policies
establish rational preference orderings. Under these assumptions it is reasonable
to believe that if data models consistently represent the organization and its en
vironment, this will improve the information that can be used for organizational
control. In spite of the emphasis on control, data models are deemed to be polit
ically neutral. If there are conflicts, then it is assumed that they will be resolved
by the powers that be. The analyst has no mandate for policy definition.

In summary, the analysis of many current methods and tools of data mod
elling reveals the influence of "functionalism" 25. There are two principle sets of
assumptions in which this is revealed: a realist ontology coupled with a positivist
epistemology and an unproblematic order and regulation view of human orga
nizations. However, from the beginnings of data modelling, these assumptions
have not been universally shared26 . In particular, if we turn to the literature
on information systems development in general, we note a lively debate on the
dangers of these assumptions27.

In the research literature on information systems development, it has been
recognized for some time that the assumptions made in information systems
development are of fundamental practical and theoretical importance, because
assumptions affect the way information systems are developed (the process), the
design features (the product) or the way they are used (contributing to system
success, undesirable consequences or even failure). However, earlier work tended
to focus on very specific assumptions28.

Of special importance for this paper is that the debate has recently also
taken a new turn by recognizing the need to explore the most fundamental levels
from where assumptions arise. Whereas some fundamental works addressing this
points are classics in the field29 , the debate has recently intensified by focusing
more clearly on the assumptions that characterize different paradigms or schools
of thought in systems development3o.

25 [Hirschheim and Klein, 1989]
26 [Kent, 1978]
27 [Capurro, 1986, Winograd and Flores, 1986, Blair, 1990]
28 For example, [Hedberg and Mumford, 1975] examined the analysts assumptions

about users and themselves using the theory x, theory y framework [McGregor, 1960].
[Bostrom and Heinen, 1977] focused on the causes of system failures and identi
fied seven specific assumptions that designers tend to make about users and the
scope of analyst's responsibilites and a similar line of thinking was applied in
[Lyytinen and Lehtinen, 1987]' Many other thorough analyses of assumptions have
been contributed (for a concise review see [Hirschheim and Klein, 1989]).

29 [Churchman, 1971, Kling, 1980, Checkland, 1981]
30 [Winograd and Flores, 1986, Hirschheim, 1986, Klein and Hirschheim, 1987,

Lyytinen, 1987, Oliga, 1988, Hirschheim and Klein, 1989, Iivari, 1989], and
Goguen, Chap. 5.1.

5.2 Towards a New Understanding of Data Modelling 209

In principle one side in this debate seeks to develop a science of software
engineering in the image of the established natural sciences. Their belief is that
the success of the natural sciences can be repeated in the area of applied sys
tems development if software engineering emulates the methods of the natural
sciences "a more geometrico" . To a very large extent, this view is still held by the
majority of computer scientists, industrial engineers and academics in the area of
information systems. This is reaffirmed by the recent report of the "Task Force
on the Core of Computer Science" 31. It identifies three "major paradigms, or
cultural styles, by which we approach our work" . The first of this is theory, and
rooted in mathematics. The second is abstraction and rooted in the experimental
scientific method, and the third is design and rooted in engineering.

The discipline of computer science is the systematic study of algorithmic
processes that describe and transform information: their theory, design,
efficiency, implementation, and application. The fundamental question
underlying all of computing is "What can be (efficiently) automated?" 32

This report appears to presume a unified ontology by ignoring that qualitative
differences may exist in different application domains; if this were true it would
imply that software development can follow the same principles regardless of
whether the design requirements arise from physical or human-social applica
tion domains. In a unified ontology there is no fundamental difference between
operators whether human, machine, or animal, as long as the same function
is performed. A prominent supporter of similar views for the areas of AI and
knowledge representation, is the Nobel prizewinner Herbert Simon.

However, the view of software development as a branch of applied mathemat
ics that is primarily concerned with the study of algorithms is in conflict with
several well established lines of research. For example, a transaction cost anal
ysis of organizational behaviour suggests that data are used opportunistically
to influence colleagues and superiors33. Hewitt and Gerson and Star34 show the
need to manage ambiguity, inconsistencies and conflict in system specifications.
Empirically, the political nature of software development has been demonstrated
in Keen35 through documented cases of counter-implementation strategies. An
impressive base of facts and theory gives ample evidence for the social character
of software development36 •

Therefore the opponents ofthe above view37 argue that the objects of inquiry
in information systems development are different from those in the natural sci
ences, because users, developers and other stake-holders are not natural objects
but conscious subjects. Consciousness is a quality which the natural sciences so
far have not dealt with. Consciousness is important for data modelling because

31 [Denning et al., 1989]
32 [Denning et al., 1989, p. 12]
33 [Ciborra, 1987]
34 [Hewitt, 1986, Gerson and Star, 1986]
35 [Keen, 1981]
36 [Kling, 1980, Hirschheim, 1986]
37 The view is well expressed in the report [Denning et al., 1989].

210 Heinz K. Klein and Kalle Lyytinen

information system design is aimed at developing social communication systems
and these are always sense-making systems. They are formed around shared
meanings. Therefore, the design of information system is like the design of human
communities, which requires a different approach than that practiced in mathe
matics and the natural sciences because they cannot deal with the significance
and ethics of differing forms of life. A similar point of view emerges from modern
systems theory in that natural systems as studied in physics and chemistry or
artificial systems (machines) as studied in traditional engineering or computer
science are not "self-referential", that is they do not rely on communication with
peers to maintain images of themselves, to maintain their internal structures and
to distinguish themselves from the environment. For self-referentiaPS systems,
either communications or actions are the fundamental building blocks, and this
differs from the "elements" and subsystems as typically defined in engineering
and the natural sciences. Recent systems theory makes very clear ontological
distinctions between machines, organisms, and social and psychic systems39 . In
the following we build on the results that the recent radicalization of this debate
has produced.

5.2.4 Four alternative metatheoretical assumptions

The idea that metatheoretical assumptions exist as legitimate objects of scientific
investigation is itself controversial and may not meet with universal approval.
Metatheoretical statements are only meaningful if one accepts that there is no
unified ontology for software development.
(1) The ontological question raises two issues with regard to data modelling.
The first is whether the universe of discourse is "given" (is ontologically prior to
any human perception or communication) or socially constructed. The second is
what sort of "things" one chooses to see in the universe of discourse. Earlier it
was noted that the mainstream views tend to view the universe of discourse as
given and postulate that the kind of things existing in the universe of discourse
are objects with attributes and relationships.

In response to the first question, symbolic interactionism suggests that the
universe of discourse is socially constructed through processes of communication
in which individuals define their situations. The basic premise is that regardless
of whether there are real things out there, they become only accessible through
interpretive processes. Often users and analysts may subjectively believe that
organizational reality exists, because they have forgotten its human authorship.
The process by which this objectivization comes about is called reification4o .

Habituation, language tradition and institutionalization through roles and norms
playa key role in this.

Building on these ideas, Boland drew a distinction between the decision
model and action-based approach to systems design. The former relies heavily

38 Or autopoietic: d. Goguen, Chap. 5.1.
39 Cf. [Luhmann, 1987].
40 [Berger and Luckmann, 1967, p. 106], see also Dahlbom, Chap. 3.3.

5.2 Towards a New Understanding of Data Modelling 211

on objective representations and algorithmic manipulations. In the action-based
approach,

"the design of an information system is not a question of fitness for an
organizational reality that can be modelled beforehand, but a question
of fitness for use in the construction of an organizational reality through
the symbolic interaction of its participants. In essence, the information
system is an environment of symbols within which a sense making process
will be carried out." 41

Applying this basic idea to data modelling suggests that data models should try
to model the language by which users communicate in the application domain.
This may be called "the formal language development view" which contrasts
with the "reality mapping view" of the mainstream approaches42 • Language is
used for several purposes such as reaching agreement, clarification, concealing
or misleading, etc. Much of language use is concerned with interpretation and
making sense of one's environment to understand what is happening.

From the formal language development perspective, data models are models
of user languages rather than models of reality. User languages are languages,

"used in a work situation, with the purpose of supporting or changing
the working process, the organization of work, the shared knowledge and
values, and the social relations constituting the situation." 43

The notion of a user language coincides neither with a language with special pur
poses nor with a sociolect (ibid.) but may include elements of both. An example
of user language terms are the many acronyms coined by large corporations but
also words borrowed from the national language and given a special meaning.

User languages are complex rule systems, many of which are implicit to the
speakers. A shift in the modelling focus directs attention to modelling rules that
define the syntax, semantics, intentions of messages and, to a certain extent,
pragmatics (use situations) rather than given objects and properties. However,
it would be unrealistic to expect that complete models of language can be devel
oped, because user languages evolve from the ordinary speaking practices which
evade complete specification. The special nature of an information system is
that it is built around a language which is more structured and formalized than
user languages44 . Typically, this implies restrictions for the functionality of the
information system. Taking this into account, data models partially reconstruct
the language by which users understand each other and make sense of their
environment.

41 [Boland, 1979, p. 262]
42 [Lyytinen, 1987]
43 [Holmquist and Andersen, 1987, p. 348]
44 [Lyytinen, 1987, p. 15]

212 Heinz K. Klein and Kalle Lyytinen

A fundamental issue for language modelling is to decide upon the basic build
ing blocks in the universe of discourse (which is the users' language) 45.

Two obvious possibilities are sentences or speech acts. The former is in line
with Frege's view of language who proposed that human language can be mod
elled with predicate logic. If one uses sentences as the basic ontology of language,
one could use an entity-attribute notation to model user languages. This would
correspond to Frege's sentence view of language, because entities and attributes
relate to subjects and predicates in logic. A sentence view of language restricts
modelling to individuation, reference and predication.

If language is seen to consist of speech acts rather than sentences, then the
focus of data modelling is broadened. A speech act is a basic unit of speech by
which a speaker accomplishes some extralinguistic purpose such as obtaining a
piece of information (using the speech act of a question) or signalling a com
mitment (using the speech act of a promise). Searle has hypothesized that there
are five basic types of speech acts46 : questions, promises, assertions (claiming
something to be true), declarations (example: giving notice), and expressives (to
communicate feelings of the speaker). Basically, modelling a speech act requires
respresenting three aspects: what is referred to (predication and reference), intent
(illocutionary point) and likely consequences or behavioural outcomes (perlocu
tionary effects). Entity and relationship models capture at best predication and
reference.

From the speech act perspective, data models are models of linguistic dis
courses that are made up of basic "moves" which correspond to speech acts47 •

Some formalisms for data modelling have been proposed to capture the seman
tics of simple speech act sequences48 . An important research issue is how to
extend this into more complicated domains, such as policy debates49 •

(2) The linguistic question is concerned with the quality of data models (in the
sense of representation languages and conceptual schemata). It interacts with
the presumed ontology in the following way. If realism is assumed then data
models are means of representing reality. Under this assumption, different data
models can be evaluated by applying such criteria as accuracy and completeness.
This becomes impossible if the data model co-determines what will count as
reality and what is legitimate evidence50 • This is the case, because from the
constructivist perspective data models are one of the means by which a social
community makes sense of the environment. It is used to filter the meaningful
and important from the unitelligible or insignificant. By helping to maintain
a socially constructed reality, a data model guides action through constraining

45 The idea of fundamentaIlinguistic structures has been subject to serious suspicion
within the recent post-structuralist criticism: see, e.g., [Hopper, 1987, Tagg, 1989,
Macksey and Donato, 1972]. However, this issue is beyond the scope of this paper.

46 Cf. [Searle, 1979].
H [Auramaki et aI., 1988]
48 [Lehtinen and Lyytinen, 1986]
49 An example of a system designed around the speech act of making commitment is

given in the last chapter of [Winograd and Flores, 1986].
50 [Boland, 1979]

5.2 Towards a New Understanding of Data Modelling 213

and channelling perceptions, influencing the availability of evidence, suggesting
preferred types of evidence, alerting, masking, etc. This would also apply to
actions aimed at validation of the data model which thereby becomes circular.
Therefore validation can no longer be phrased in terms of finding representations
that minimize distortions of true situations or that filter too much or too little
of an underlying given reality.

The implications of this for data modelling or choosing appropriate data
models have not been discussed in the literature. The suggestion that comes
to mind is that the role of data models should be seen in a similar light as
the role of a theory for a scientific community - a rather controversial topic.
Tentatively one might suggest that data models should be formulated in such
a way that they help social communication. Ideally, good data models should
facilitate communication that is sincere, relevant, clear and well-informed, i.e.,
it should encourage people to say what they mean, pertinent to the situation at
hand, expressed in a way that is congenial to the listeners frame of mind and
based on good, defensible reasons. However, such a view is rather idealistic and
misses some important points to be discussed next. We will return to it in the
concluding part of the paper.
(3) The epistemological question concerns the question in what sense of the word
a data model can be more or less accurate or more or less appropriate. We will
address this question by way of analyzing data modelling from the perspective
of interpretation and sense-making51 •

Hermeneutics is concerned with the problem of interpreting and understand
ing the meanings of "texts". Anything that potentially has meanings can be
considered as a text including "the book of nature". Hence the scientist reading
the traces in a cloud chamber is involved as much in a hermeneutic (interpre
tive) task as the archeologist trying to decipher the famous Rosetta stone. The
complex issues raised by the interpretation of natural data are well illustrated
by the historical example of Tycho Brahe who was unable to make sense of his
own observations on planetary positions. Kepler approached the same data with
a different pre-understanding and was able to support his heliocentric theory of
the solar system with them52 •

Of particular interest for data modelling are socially created texts. These
include "reading" user activities and utterances. Hermeneutics considers the
philosophical issues of text interpretation when these are difficult to "read", i.e.,
opaque or "alien". Organizations and life-forms are such texts (as is well illus
trated by the phenomenon of culture shock). Specifically, reading (understand
ing) an application problem is like reading an alien text, because the analyst has
to make sense of things with which he is more or less unfamiliar.

In the following we leave aside further consideration of the implications of
hermeneutics for a realist ontology. The reasons for this are practical. While so
phisticated versions of realism can be maintained, it is rather difficult to see how

51 Cf. for an earlier treatment [Langefors, 1977, Capurro, 1986]; also related are the
references to Heidegger by Goguen in Chap. 5.1 and Chap. 8.l.

52 Cf. [Kuhn, 1970].

214 Heinz K. Klein and Kalle Lyytinen

they can be transformed into a practical approach to data modelling. Therefore,
we shall not try to defend or refute the viability of more sophisticated positions
of realism in data modelling. Rather we will build on the premise that data mod
elling can fruitfully proceed from a constructivist position. With this in mind,
hermeneutic insights suggests that all data models are limited in the following
three fundamental ways. The first is that all data models are inescapably biased
even though the understanding of bias can be improved through "bracketing".
The second is that data modelling involves a meeting of at least two horizons of
meanings: it always involves a double hermeneutic. Third, the number of hori
zons of meanings in complex organizations cannot be predetermined. Hence data
modelling has to remain open-ended.

In order to discuss the first limitation, we need to return to the notion of
"pre-understanding" which was already used informally in the above example
of Tycho Brahe. According to hermeneutics, all interpretation begins with some
preliminary ideas or notions (Gadamer likes to call these "prejudices") which
amount to a pre-understanding.

From a hermeneutic perspective, there is no difference between pre-under
standing, bias or prejudice. Whenever we try to understand something new,
like reading the organizational context of system development, we simply start
with what we take for granted. Taken-for-granted is what is transmitted to
us through culture and its institutions. More specifically, in an organization,
the prevailing policies and management ideology will heavily influence the pre
understanding. Further important influences are the professional practices of
expert communities which are socially sanctioned through peer norms of differ
ent degrees of formality, in the most extreme form through standards. Based on
whatever pre-understanding we have, through dialogue, analysis and reflection,
we can reach a new understanding. When such a new understanding has been
reached, one "hermeneutic cycle" has been completed. In data modelling the
pre-understanding is reflected in the fundamental assumptions of the conceptual
schema, in particular in the type definitions, integrity constraints and so-called
semantic rules (dependency rules).

Interpretation is a continuing process. Each new understanding (not neces
sarily better) becomes the pre-understanding for the next interpretation and
the hermeneutic cycle repeats itself. There is no stopping rule as the mean
ings of texts constantly changes - as the legal process of law interpretation
clearly demonstrates. Furthermore there is no way to assess the quality of pre
understanding, because there is no anchoring point. However, we can try to
elicit some of the presuppositions upon which the pre-understanding rests. This
is called "bracketing".

An example will help to clarify the idea of bracketing. Assume you are reading
a map and have difficulty matching the landmarks that you see to the map. You
may say to yourself, well maybe I am not here, but have already overshot my
destination. You have now "bracketed" a fundamental assumption. This means,
you have identified a fundamental presupposition on which your map reading up
to this point rested, put it aside "into brackets" and "pealed it away" so to speak.
By attempting to do this systematically, particularly in social communication

5.2 Towards a New Understanding of Data Modelling 215

where different minds look at the same "text" from slightly different viewpoints,
several layers of presuppositions may be revealed and bracketed. Again there
is no guarantee that this converges or any implication that this leads to an
"approximation of reality" .

These ideas suggest the following principles that should guide practice, re
search and methods of data modelling53:

a) All data models have a fundamental bias that can be traced to the contin
gent pre-understandings with which they were built.

b) To some extent, the bias can be made transparent through bracketing, a
form of self-critical, reflective dialogue.

c) Bracketing must not be seen as a procedure to decide between funda
mentally conflicting preconceptions. Therefore a hermeneutic approach to
data modelling is very skeptical of the idea that bias can eventually be sub
stantially reduced or even be eliminated by a process of evaluative error
elimination. Gadamer says that complete clarification is an illusion54.

In applying these principles, the practice of data modelling must take into ac
count the fundamental differences between the separate and unique "horizons of
meanings" of such different communities as analysts and users. The "horizon of
meanings" is a metaphor that connotes on the one hand openness, as one may
gain new horizons by travel, and on the other hand structure, as when we look
out towards the horizon things that are close are clearer than things that are
further away. Different communities have unique horizons in the sense that when
they meet, each faces the problem of interpreting the other in terms of their own
horizon and therefore mutual understanding is at risk. However, there exists
the possibility of fusing the two horizons and thereby overcoming some of the
likely misunderstandings because both horizons are open; i.e., each community,
through symbolic interaction, ("being with each other" and "orienting towards
their shared problems") can broaden their horizons and "fuse" them to some
degree. Applying the notion of horizon of meanings to data modelling leads to
two further conclusions55 •

a) Each data model merges or "fuses" at least two horizons. Even if users are
excluded from the process of analysis, the developers will have to bridge
two understanding contexts or "horizons of meanings" ,i.e., meanings that
are shared by two distinct communities, such as users and developers.
Both groups have internalized different language games. The situation is
symmetrical for the users. If they undertake the development themselves,

53 Cf. [Capurro, 1986] for the area of information retrieval.
54 Cf. [Gadamer, 1980, pp. 78].
55 The horizon concept bears some similarity to the term "context of meanings" which

is more commonly used, but there are some important differences. Context does not
connote the increasing diffuseness of our understanding which becomes vaguer as we
move away from the centre of gravity of our life. Neither does context connote so
well the openness of the horizon.

216 Heinz K. Klein and Kalle Lyytinen

they must cope with the fixed horizon of meanings that is embedded in
the specification language and modelling tools that they use.

The fusion of horizons in data modelling involves three steps. In step one, the de
velopers must try to capture some of the meanings that are shared by the users
and which, initially at least, are "alien" to the developers. In step two, they
must translate their understanding into some appropriate formalism. These for
malisms carry the implicit claim that, at least in part, they are valid substitutes
for the users' existing language games. In step three the formalizations must be
retranslated into the users' horizons of meanings and thereby become part of
their everyday practices (that is if the fused horizon is accepted as appropri
ate, otherwise the cycle must repeat itself based on the new pre-understanding).
Each step is fraught with many risks that need careful attention and are insuf
ficiently addressed by the usual concepts of walk-throughs, documentation and
user "training".

b) The fusion of horizons can be facilitated through systematic "bracketing".
The reason for this is that bracketing can be expected to be more effec
tive if it is based on a dialogue between users and developers rather than
on internal discussion within each group. This has been realized in par
ticular by Checkland56 with the concept of constructing alternative "root
definitions" that must precede any conceptual modelling. It appears then
that the double hermeneutic of users and developers is not only a threat
to create rigidities and misunderstanding, but also a chance for improving
mutual understanding through dialogue.

There are as many horizons of meanings in an organization as there are distinct
user groups. Distinct in this context means that the users have distinct education
and professional training and therefore share different kinds of expertise with
their own specialized languages and practices. In other words, the centre of
gravity of their life interests must be sufficiently different. A good example is
that of doctors and nurses in hospitals. Hence the double hermeneutic must be
expanded to include multiple hermeneutics. The risk of misunderstandings exists
not only between analysts and users, but between different user communities.

This leads to the conclusion that there cannot be overall consistency in an
enterprise-wide data model. Of course, there can be a strategic data model of
the organization and its horizon can include all of the organization. This simply
provides another horizon of meanings, typically that of high-level planning staff.
As such, it can provide a basis for a dialogue with other user groups and lead to a
fusion of horizons and thereby to organizational learning. In practice, enterprise
models may have always been intended to be used in this way. We mention
it here only, because some of the data modelling literature suggests otherwise.
There have been proposals to construct a consistent enterprise schema whose
conventions are to be enforced. In a similar spirit, unambiguous definitions of
an enterprise vocabulary and global validity tests of local data bases have been

56 [Checkland, 1981]

5.2 Towards a New Understanding of Data Modelling 217

proposed. None of this appears as appropriate from a hermeneutic perspective.
Similar conclusions follow from the sociology of data use.
(4) Sociological question: In praxis data are not collected to establish truth or
do justice to a preferred mode of communication. Data are collected to design
action, to give meanings to action and to politically support action taken. There
fore data modelling does not proceed in a social vacuum. In order to structure
the discussion we might loosely distinguish between action to design policy (in
cluding critique of policy) and action to execute policy, which is often called
policy implementation. By policy design we mean the origination of long-term
goals, general directives and programs such as are typically on the agendas of
boards, legislators and chief executive officers.

It is often assumed that policy-making sets the pre-understanding of policy
execution. This is inherent in the models of administrative decision-making of
both Simon and Anthony. This, however, overlooks the autonomy of complex bu
reaucracies, which exists for several reasons57 • (a) Ambiguous policies facilitate
consensus formation to pass policy, allowing different constituencies to support
the same policy for different reasons. (b) Organizations often do not have the
resources and skills to implement the wishes of policy makers even if they wanted
to. (c) Lower-level officials have their own interests and constituents. They view
new policies as an opportunity to pursue their own agendas. (d) Policy makers
are often unable to specify policies clearly. This overlooks that policy makers
do not always know what they want and that conflicting policies are issued.
(e) Policy makers often make unrealistic assumptions about the possibility to
follow their directives which then leaves organizations to their own devices in
implementing them.

In light of this, data modelling, even in support of policy implementation,
cannot count on predefined horizons of meanings. It defines and redefines the
institutional frame of reference in which policy-making takes place. Therefore
data modelling is a political activity which affects the interest of various policy
making groups.

But why is it not possible to separate data collection from policy-making
by assigning these tasks to different groups? In fact, this is often attempted.
For example the U.S. census bureau has historically been perceived to be non
political. However, its data often turn out to be politically biased58 , because the
methods of the bureau lead to a systematic undercount of minorities. This has
many political implications and leads to calls to adjust the numbers. But there
is no unique method to do so and hence the decision which methods to use and
which numbers to get is ultimately intertwined with policy formation.

This point is more generally established by Tenenbaum and Wildavsky with
a study on the role of energy data in policy formation.

As we see it, data, far from preceding policy, are inextricably intertwined
with politics; ... it is the policy that one has in mind that determines
which data, accurate to what degree, are relevant our conclusions

57 Cf. [Baier et al., 1986].
58 An example of this is given by [Mitroff et al., 1982].

218 Heinz K. Klein and Kalle Lyytinen

about the relationship between data and policy may apply to any field
of government or company policy59.

The basic reason for this conclusion is that both data and policies are needed
in the hermeneutic (sense making) tasks of policy formation. Data in a very
broad sense constrain policy, but only at the extremes. On the other hand, data
collected without paying attention to policy are irrelevant, even meaningless.
In light of the earlier discussion, it is not surprising that there is an analogy
between policies and scientific theories:

Without considering the political preferences and relationships among
people who would make decisions, no intelligent thought, including the
selection of data, is possible. Just as philosophers tell us that all facts
involved in testing hypotheses are theory laden, so too all data used in
analyses are suffused with policy6o.

The theory of data modelling will remain incomplete unless it covers some fun
damental principles that govern how data are used in social environments. The
development of the ontological, epistomological and linguistic bases of data mod
elling, no matter how thorough, emphasizes only its rational side. It thereby
paints an ideal. In order to complete the picture, the entanglement of data and
policy must also be confronted.

5.2.5 Conclusions

We have introduced a number of ideas and stipulations which, if followed up
in future research, will not only change many of the current assumptions of
data modelling, but also broaden its scope considerably. It was noted that the
prevalent metaphor of data modelling is that of a representation that should
correspond to reality. In conclusion we propose that a more fruitful metaphor is
to view data models as a set of laws and data modelling as the activity by which
laws are designed and enacted.

There is a rational side to law making. They should be clear and consistent.
They are not necessarily bound by current practices or state of affairs but can be
inspired by emancipatory visions. Based on this they can create a new order and
establish new domains of jurisdiction. Laws may define what counts as preferred
evidence. In practice laws are difficult to interpret, always changing, limited to
a certain domain of applications which in turn is never fixed and as a whole
certainly not consistent. Hence laws pose serious hermeneutic issues and their
validity is difficult to establish. Laws are, of course, one specific type of universe
of discourse. It is therefore not surprising that there exist many analogies to our
discussion of metatheoretical principles. In fact, the first data modelling project
that attempted to formulate a linguistic universe of discourse was concerned with

59 [Tenenbaum and Wildavsky, 1984, pp. 84-84]
60 [Tenenbaum and Wildavsky, 1984, p. 100]

5.2 Towards a New Understanding of Data Modelling 219

programming a body of law6!. If one looks at the rational side of law making,
ignoring for a moment its many practical deficiencies, a number of principles
suggest themselves that would help to improve the role of data modelling in
social communication62:

1. Data models should facilitate co-operation for accepted purposes.
2. They should help people to express what they believe to be the case and

make them sceptical of beliefs for which they lack evidence.
3. They should provide guidance to formulate reports and arguments which are

to the point and available when required63 •

4. They should support a format of communication which is unambiguous,
concise and well organized.

Ideally these principles define good laws and good data models. However, in
practice, often the opposite can be observed. The reason for this apparent con
tradiction is that language and epistemology provide little focus on human in
terest and power. There is much talk of knowledge-based systems and strategic
information systems. It must be surprising that there appears to be little incli
nation to investigate how the design of these systems can be made responsive to
the political structures with which they are to interact.

Just as laws lead people to filter information and put their best foot forward,
so do the rules of data models. Just as laws are formulated ambiguously to be
acceptable to a mixed coalition of supporters, so are data models. Just as laws
need to be approved by some sort of due process, so do data models. Just as
laws constrain policy making and at the same time are the result of policy, so
do data models. Just as laws should be supported by a democratic majority, so
should data models, and this may only be possible at the expense of consistency
or incompleteness. Just as the interpretation oflaws changes with shifting policy
orientations, so are data models. As information systems move closer to the cen
tres of gravity of power and political will formation, the entanglement of schema
development and interpretation with policy formation and implementation is a
subject that can no longer be avoided.

Acknowledgements
An earlier version of this paper benefitted from the sharp eye of Dick Welke for devi
ations from the topic. The current structure has been infiuenced by the advice of the
editors and a thorough critical reading by Duane P. Truex helped to correct the final
wording in many places. All the misconceptions that undoubtedly remain are the sole
responsibility of the authors.
The financial support of this wprk by the Academy of Finland is gratefully acknowl
edged.

61 British family law, d. [Stamper, 1983].
62 They are based on Grice's maxims of conversation, d. [Levinson, 1983, pp. 101].
63 This is suggested in the model of argumentation for information systems used by

[Nissen, 1988].

5.3 A Reappraisal of Information Science
Pentti Kerola and Jouni Similii

This chapter emphasizes the informationistic view of science, and espe
cially of information science. The view accepts the scientifically based
cumulative information base as the main goal for science, combining in
a natural and balanced manner the theoretical aspiration for truth, the
search for applied knowledge and emancipation from old, false concep
tualizations. Its philosophical roots are in modified scientific realism and
research empiricism (of information science) mainly in the context of a
Nordic coeffort.

5.3.1 Introduction - the need for a reappraisal of the
foundations of information science1

The purpose of this chapter is to summarize one view of the characterizations
of information science, and especially human and organization-centred (infolog
ical) research into the development and use of information systems2 . This view
was originally based on joint research carried out in the Nordic countries and
reported on in the Proceedings of the Scandinavian Systemeering Research Sem
inars during 1978-89, and more specifically on research at the Institute of Infor
mation Processing Science, University of Oulu3 . Many international connections
have been maintained with European IS research groups4 and with American
colleagues5 .

It is evident that the field of information technology and automatic data
processing is in a state of mild confusion and uncertainty at present. Competing
and conflicting theories and approaches are being put forward6 , most notably
as far as terminology is concerned. There is not even any generally accepted

1 Originally we used the longer terms information processing science, information sys
tems science or data processing science. The term information science has been pro
posed by the editors of this book.

2 The content is mainly based on the dissertation of Similii. [Similii., 1988] which was
implemented during the multidisciplinary research project SYKE directed by Kerola
[Kerola et aI., 1985]. More generally, the term 'infological' has its origins in the re
search of [Langefors, 1966], who made a fundamental distinction between datalogical
(data and technical-oriented) and infological (information, people and organization
oriented) aspects of the development of information systems.

3 [Kerola et aI., 1985, Iivari, 1983, Iivari and Koskela, 1987, Nuutinen et aI., 1987]
4 [Mumford et aI., 1985, Buckingham et aI., 1987]
5 [Klein and Hirschheim, 1989, Kerola and Taggart, 1982]
6 [Mumford et aI., 1985]

5.3 A Reappraisal of Information Science 221

name for the science itself. For the purposes of this treatise, the term "infor
mation science" will be understood as encompassing the whole field of use and
development of information systems. The earlier forms and discourses of science
seem incapable of analyzing the phenomenon of automatic data processing in
its entirety or the knowledge required within it, most pointedly where the com
puter science paradigm is involved. A new area of knowledge has emerged at
the boundary between computer science and the human sciences which requires
careful analysis and thought. The science or philosophy of science has rarely
been faced with such a hot, dynamic and rich object for analysis.

Information processing research has not delivered the results that have been
expected from it in the practical field7 . According to Lyytinen8 , prevailing re
search is loaded with the following kinds of "anomalies", i.e., problems which
it cannot solve or deal with by following practices consistent with established
research standards:

(1) "the delimitation of information systems to comprise technical artifacts
and correspondingly the restriction of IS development to engineering as
pects" ;

(2) "the understanding of information as an impersonal, a-historical, a-social
formal entity";

(3) "the adherence to bureaucratic rationalism in viewing organizations";

(4) "the neglect of the socio-cultural milieu which has an impact on the devel
opment and practical usage of IS" ;

(5) "the neglect of questions of values in IS development, and associated with
this, the neglect of questions of how data serve the purposes of legitimizing
social control and power" .

It has been necessary to return to the fundamentals, i.e., to the philosophical
roots of our research effort in order to express the basic values and foundations
of scientific research as explicitly as possible. Different philosophical approaches
have been adapted during this evolutionary process, but in this case we utilize
the framework of Niiniluoto9 , in which he emphasizes the informationistic view
of science. This view accepts the scientifically based cumulative information base
as the main goal for science, combining in a natural and balanced manner the
theoretical aspiration for truth, the search for applied knowledge regarding the
various objects of interest and emancipation from old, false cognizances. We
introduce in the following the basic features of this philosophical view and its
application to information science. Finally we summarize the research effort on
a paradigm of infologically-oriented information science and conclude with a
discussion of the significance of informationism.

7 [Mumford et aI., 1985]
8 [Lyytinen, 1986]
9 Professor of Philosophy at the University of Helsinki,

[Niiniluoto, 1980, Niiniluoto, 1983, Niiniluoto, 1987].

222 Pentti Kerola and Jouni Similii

5.3.2 The informationistic view of science

Niiniluoto distinguishes three traditional major views of the goals of science.
In the behaviouralistic view1o , scientific problems are practical decision-making
problems and scientific results are prescriptions for action in these situations.
The cognitivistic view11 holds that the primary goal of science is knowledge itself,
while the pluralistic view12 regards scientific results as a "continually growing
ocean of incompatible (and perhaps even incommensurate) alternatives", where
"nothing is ever solved, no perspective may ever be eliminated from the total
picture" .

Behaviouralism in its pure form represents an attempt to analyze the scien
tific research process without the concept of knowledge. Perhaps, more appro
priately, it is characterized as a view according to which scientific knowledge is
to be subjected to action. The scientist is understood as a decision-maker or an
adviser to a decision-maker. Her/his task is to analyze hypotheses concerning
the relevant states of matter with respect to some practical problem, to eval
uate the credibility or reliability of these hypotheses and to determine which
of the alternatives for action associated with the practical problem are to be
recommended in the light of the practical goals. The behaviouralistic model is
evidently suitable for the characterization of many activities within the area of
goal-oriented applied research or scientific development work. Its suitability as a
model for basic research is questionable, however. It maintains that science has
no lasting theoretical results - the scientist does not ask what may be known,
merely how one should act.

Likewise, it is quite difficult to see how, according to the extreme pluralistic
view, scientific results may be utilized as a basis for practical action. While
behaviouralism seems to neglect the theoretical side of science, pluralism seems
to have forgotten the relation between science and practice - the rationalism
of applied science or technology is impossible to understand on the basis of
pluralism.

Cognitivism, on the other hand, does not deny that science also functions
as a basis for practical action. The modern cognitivist may try instead to show
that it is exactly the theoretical pursuit for knowledge, which is apt to lead to
knowledge of utmost practical significance. If knowledge is accepted as the only
general goal for science, i.e., the cognitivistic view of science is upheld, a classi
fication of science may be performed on the basis of the interest of knowledge.
In addition to the technical interest, which perhaps would come to mind first
when speaking of different interests, there are two other interests13 , namely the
hermeneutical and the emancipatory, which should be considered when char
acterizing the different fields of science. In addition, according to verism (the
search for truth), knowledge is in itself a suitable and sufficient interest for sci-

10 [Savage, 1965]
11 [Levi, 1967]
12 [Feyerabend, 1975]
13 [Habermas, 1971]

5.3 A Reappraisal of Information Science 223

ence. Niiniluoto provides a table describing the essential features of these four
interests of knowledge.

Table 5.3-1. Table, provided by Niiniluoto, slightly modified by us

Interest of Veristic Technical Hermeneutic Emancipatory
Knowledge Theoretical (Theoretical) (Theoretical) (Theoretical)

Function of Explanation Prediction Understanding
Critique of

knowledge ideology

Control of
Communication Liberation

Goal
Search for

nature and
and interpreta- from false

truth
society

tion of tradi- conceptualiza-
tion tions

Typical Natural
Critical social Mathematics, Sciences; Humanistic examples

Philosophy Systematic SClences
sciences;

of science
social sciences

Psychoanalysis

On the basis of Table 5.3-1 and employing careful reasoning, Niiniluoto pro
poses an informationistic view of science, in which the information base with its
different value, content and argumentation aspects concerning reality is accepted
as the general aim for science. The scientifically based hypothesis or statement
has high information content and value if it excludes many potential situations
in reality and permits others.

The informationistic view combines in a natural and balanced manner the
theoretical aspiration for truth and the search for applied knowledge, both of
which Niiniluoto sees as belonging inseparably to the general goals of science.
Truth and information are often confused with each other, but they are logically
independent, because the information contained in a scientific proposition can
be right or wrong in relation to the specified scientific criteria. Informationism
maintains that the information content and value of a scientific hypothesis be
comes greater, the more daring and improbable it is in its original form. This is
quite the opposite of the veristic view, which may be shown to lead to a cau
tious approach to new theories. The greater the information value of a scientific
hypothesis or theory, the more it potentially tells us about reality, and the more
information we have concerning reality, the better possibilities we have for ex
plaining phenomena, acting and orienting ourselves in the world, interpreting
history, understanding ourselves and liberating ourselves from false conceptual
izations.

224 Pentti Kerola and Jouni Similii.

Likewise the technical, hermeneutic, emancipatory and even theoretical in
terests of knowledge, when taken separately, are inadequate in themselves for
defining science or scientific thinking. Not all "emancipatory" actions are sci
entific, and the same holds good for hermeneutic interpretations and technical
breakthroughs based merely on trial and error or luck without the groundwork
of systematic knowledge. But informationism has a more fundamental status
in the characterization of scientific thinking. It has a primary role in guiding
the search for knowledge and truth concerning reality, and it is only secondar
ily that the theoretical, technical, hermeneutic and emancipatory interests come
into play. Those results of science which have information value usually also have
instrumental value in the sense of the technical, hermeneutic and the emancipa
tory interests of knowledge. Informationism becomes thus an 'umbrella concept'
covering all four columns in Table 5.3-1.

5.3.3 An informationistic view of information science

The informationistic14 view of science seems appropriate for information science,
not only for the sake of an 'appropriate' terminology, but for the sake of the
demands the real world sets for this young field of science at present. What
we need especially are daring new theories and concepts and a gradual build
up and accumulation of past scientifically based knowledge into an applicable
and comprehensive picture of the field. It is true that in the past the most
fundamental interest for information science has been the technical interest of the
practical field. The demands placed by post-industrial society on organizations
are so startling, however15, that we need research which will also help us to
understand the history of automatic data processing, to adapt ourselves to the
new communication society, in which information technology will playa major
role in our daily lives, and to liberate ourselves from the false conceptualizations
which current and earlier technology has induced us to form. We claim here
that the informationistic view of our information science recognizes distinctly
different approaches, the hybrid and pluralistic nature of the field and its relation
to practice. It provides a suitable starting point for a paradigmatic analysis of
the important issues raised above.

The evolution of definitions of information science is instructive. We can
distinguish at least three successive phases in these16 :

(1) Information science studies the analysis, representation and applications
of algorithms implementable in a computer.

(2) Information science studies the definition, storage, transmission, processing
and use of formal data.

(3) Information science studies the technology, methods, impact and utiliza
tion of systematized information processing and its systematization.

14 Please be careful with the different 'variations' on the term 'information'!
15 [Huber, 1984]
16 [Iivari, 1983, Nuutinen et aI., 1987]

5.3 A Reappraisal of Information Science 225

The first definition corresponds to what is generally called computer science17 ,

but the evolution is not strictly temporal, as some of the first characterizations
of computer science in the sense of the second definition originate from the late
sixties18 . The last definition 19 brings the impact of information processing, its
management and administration, and the whole process of developing an infor
mation and data system into the sphere of information science. There seems to
be a clear shift towards research which is more human and organization oriented.
Moreover, there seems to be a shift taking place from a strict positivistic inter
pretation of science towards a radically different "anti-positivistic" perspective,
in which the intentionality or purposefulness of human action is understood to
distinguish it from the objects of research in the natural sciences in a method
ologically significant manner. Causal explanations are not accepted as sufficient
or suitable for the inspection of purposeful behaviour, and teleological explana
tions are needed instead in order to understand human acts and historical events
from the viewpoint of their goals.

Comparison of the definitional evolution above with the columns of Table
5.3-1 shows that most emphasis has always been placed on the two leftmost
columns, even in the third definition. Today, however, there exists a clear ten
dency to shift the emphasis more "to the right"20,21. The recognition and accep
tance of an informationistic view of information science would make this shift
explicit and conscious while allowing for a balanced transition phase.

5.3.4 On a paradigm for infological information science

As the title of this subsection suggests, infologically oriented information science
has not one, but several competing paradigm candidates. This competition is
observed for example in the division of the forums of the science into those
dedicated to data base specialists, software specialists, human factors specialists,
systemeering22 specialists, etc.

17 Compare this with the latest definition in ACM [Denning et al., 1989]' and compare
also Klein and Lyytinen, Chap. 5.2!

18 [Hamming, 1969, Langefors, 1966]
19 [Iivari, 1983]
20 [Mumford et al., 1985, Kerola, 1988a, Kerola, 1988b, Klein and Hirschheim, 1989,

Nurminen, 1988]
21 A National Doctorate Program for Information Science was implemented in Finland

in 1985-1990 [Kerola, 1987], financed by the Ministry of Education, comprising three
subprograms: Computer Science, Software Engineering Research and Information
Systems Science. In the sense of the informationistic view, all of these have skew
distributions of emphasis to the left in the columns of Table 5.3-1, but relatively
speaking the first two have had very little emphasis on the move to the right. That
tendency has been explicit in information systems science, however, but not so strong
as it could be from the optimal informationistic viewpoint.

22 The term 'systemeering' has its origin in Langefors' research, meaning the category
of most extensive activities of IS development. The term 'systemeering research' is
used in Table 5.3-2 for historical reasons. It could be understood as a synonym for
'infological IS research'.

226 Pentti Kerola and Jouni Similii

Iivari23 has written an up-to-date, thoughtful paradigmatic analysis of the
following seven sub schools of IS research: software engineering, database manage
ment, management information systems, decision support systems, implementa
tion research, the socio-technical approach and the Scandinavian infoiogicaP4
approach, based on internationally well-known reference books and papers. The
following case of paradigmatic analysis belongs to the last subschool. Its content
is of an "ought-to-be" nature and was developed during the early days of the
1980s. It was originally presented in its complete form in the Proceedings of the
Fourth Scandinavian Research Seminar on Systemeering25 ,26.

5.3.5 Conclusion

In order to summarize the most essential conclusions, we can now pose the
question: "What would information ism mean for science in general and for in
formation science in particular?"
According to Niiniluoto the practice of science is to be understood

primarily as a systematic, critical search for information and knowledge
concerning reality,

and in the case of success,
secondarily as serving different interests.

The search for truth alone or scientific information content alone are not suf
ficient as the main objective of science. The general aim should be the search
for informative truth. Informationism emphasizes the significance of theoretical
basic research. This is important and valuable in itself, but it also forms an indis
pensable precondition for fruitful, more prescriptive and emancipatory research.
Informationism emphasizes 'broad' basic research, which aims at producing well
argued knowledge concerning all aspects of reality, and theoretical/philosophical
assertions of high information value. The truthfulness of these assertions is then
gradually researched and tested. Well-argued, informative hypotheses are not
only the most important building blocks of our scientific picture of the world,
but also in the long run the most useful scientific knowledge for practical pur
poses. Theoretical and emancipatory scientific efforts are at the same time both
contradictory and complementary in their interrelationships in the context of
informationism, the emancipatory results being ultimately rich in their informa
tion content, but very 'open' as regards the verification of truth.

23 [Iivari, 1989]
24 This subschool, in practice, includes many subsubschools, which partially contradict

each other.
25 [Goldkuhl et al., 1981]
26 The main content is reproduced here in Table 5.3-2 and has been further discussed

by [Similii and Nuutinen, 1983].
27 An information system is characterized here as a professional language.
28 The informationistic emphasis of the authors!
29 [Sellars, 1963]
30 [Sellars, 1963]

5.3 A Reappraisal of Information Science 227

Table 5.3-2. Paradigmatic analysis of systemeering research

Ontology:

"Systemeering research (SR) is a subject-object science which studies primary and
secondary problems of development, formalization and implementation oflanguage27

in different contexts including intentional human beings. Therefore SR is subject to
historical practice. SR produces methods which are human constructs, represent
praxis and are bound to relativism."
Discussion:
"The autonomy of the social dimension must be recognized in the study of the
primary and secondary problems of systemeering. The role of the subject-object re
lations between the researcher and the object of research and between the researcher
and the research community must be recognized. The development, formalization
and implementation of the languages within systemeering practice and systemeering
research must be studied in their social contexts".

Epistemology:

"Due to the ontological assumptions of intentional human beings, genuine teleo
logical explanations are needed with a character of contextuality, partiality and
indeterminacy manifested in different modalities. SR includes the treatment of the
relationships between descriptive and prescriptive knowledge as well as between the
oretical and practical/operational knowledge within some ethical framework of the
researchers." 28

Discussion:
"The role of knowledge in concept and theory formation must be recognized. The
Aristotelian notion of the supremacy of the user's knowledge versus the producer's
knowledge must be evaluated in the context of systemeering and systemeering re
search. Theoretical knowledge (scientific image) must be distinguished conceptually
from atheoretical knowledge (manifest image 19. In systemeering practice these two
images must be unified into one stereoscopic image. The possibility and role of pre
scriptive knowledge in systemeering practice must be considered carefully."

Methodology:

"Research methodologies and methods must be adapted to features of empirical
reality and research purpose; this implies methodological conditionality and plural
ism. Antipositivistic approaches like interpretative methods and action research are
required in many situations" .
Discussion:
"The applicability of hermeneutic, phenomenological, teleological and positivistic
methods must be studied in appropriate contexts. The transcendence of action over
collections of rules or methods must be recognized."

Ethics:

"Human beings should be treated as intentional beings and their freedom of choice
should be encouraged and supported" .
Discussion:
"The fundamental issue of the image of man30 must be recognized and explicated
as far as possible."

228 Pentti Kerola and Jouni Similii.

As a consequence of the informationistic interpretation of science, the in
teraction between different categories of science, in the sense of Table 5.3-1,
come to resemble a multiple-level parallel process rather than the Kuhnian evo
lution/revolution sequence, and thus a more balanced whole. This also has the
consequence of increasing the methodological contextuality and pluralism in the
total process of scientific effort.

What does this mean for the youngest science of our age, information science,
and its research trends? The objects of research into information science in real
ity are in a highly dynamic state and are changing rapidly. The basic, theoretical
research in this field should deal with these objects as a whole, interpreted in
formationistically. Traditional computer science alone is very often interpreted
today as theoretical, and the rest as applied research. In this relation, from
the informationistic viewpoint, information science is in a state of imbalance.
In order to improve its direction, the philosophical/theoretical and emancipa
tory research work implemented in the context of infological information systems
research, with its broadest possible selection of objects, would become more im
portant focus area, and one could even claim that it is indispensable for the
fruitfulness of other research directions in information science.31

31 Conclusions of this type have been reached by other routes by Klein and Hirschheim
and Iivari and Lyytinen.

Part 6

Understanding the
Com puter Through

Metaphors

6 Understanding the Computer Through Metaphors 231

Reinhard B.
We have finally got round, then, to the subject of software development and
use - back on home ground, so to speak.

Heinz
And straight to the very crux of software development: reconstructing reality
in terms of operative models, while at the same time distilling its conceptual
essence.

Christiane
By that, I suppose you mean - to use hermeneutic terms - that we invariably
understand the things of reality, in the light of our prior understanding, "as
something" . That is the germ of the metaphor.

Reinhard K.-S.
We use metaphors to transfer meanings from one object to another. We allow
the connotations and implications of metaphorical concepts to act upon us.

Christiane
And this makes us see reality in a different - and frequently clearer - light.

Heinz
The sage in the illustration is contemplating a thing as a tool. And the com
puter produces an appropriate image taken from the world of the craftsman.
The formalism it displays - the program - thus becomes intelligible.

Reinhard K.-S.
But how valid is the metaphor? The screw represented in the computer
certainly cannot be turned by any tool the sage might be holding.

Reinhard B.
But the mouse pointer of a graphic editor is a real implement that can be
used as a tool in the computer.

Heinz
A good cue for introducing the contributions to this part of the book. The
initial ground-probing is done by Susanne MaaE and Horst Oberquelle. They
present the metaphors commonly used in interactive systems design and dis
cuss the consequences of using each of these metaphors for the construction
and use of such systems.

Christiane
In the chapter you two have co-written, you then take up a specific perspec
tive - the tool and material metaphor - and show its importance for software
development in the light of hermeneutic ideas.

Reinhard K.-S.
For me, it is interesting that, even in this relatively technical area of computer
science, hermeneutics should be able to play such a significant part.

232 6 Understanding the Computer Through Metaphors

Reinhard B.
Wolfgang Coy addresses the topic of metaphors from the point of view of the
user. From his discussion of the classical machine concept and his analysis
of the use situation of application software, he derives his notion of "Soft
Engines" .

Heinz
He uses this concept to highlight the scope for "plastic" design of software
by its users.

Reinhard B.
And then, coming as what might seem a thematic break, we have Thomas
Gordon's provocative chapter on Artificial Intelligence.

Heinz
In keeping with the spirit of the book, Thomas avoids getting the reader
involved in a fundamental controversy on the feasibility and warrant ability
of the idea of artificial intelligences, suggesting instead that we look on AI
as a metaphor for programming software.

Christiane
I'm very glad to have a contribution here from the AI school, too. Perhaps
it can help to give a constructive turn to the often highly emotional contro
versies waged between the AI and software engineering communities.

Heinz
Which brings us back to discourse as the human and truly scientific form of
debate.

Reinhard K.-S.
A positive feature, for me, is the fact that, here, human activity is seen as
standing at the beginning and end of software development, enabling us to
acquire an understanding of the intervening process of formalization.

6.1 Perspectives and Metaphors for
Human-Computer Interaction
Susanne MaaB and Horst Oberquelle

"The underlying premise of modern automation is a profound distrust
of thinking human beings. More than any particular technology, this un
analyzed prejudice against people determines the way work is organized.

We want the computer but not the electronic sweatshop. ,,1

6.1.1 Introduction

Computers are becoming omnipresent in the work place. People spend large
portions of their time in interaction with computers. Consequently, the design of
application systems and in particular of human-computer interaction (HCI) has
become a major factor of influence on work contents and working conditions.
The design of ergonomic and humane, of adequately demanding and socially
acceptable work requires a deep understanding and respect for the properties,
capabilities and limitations of the individual. In this context the design of a
human-computer interface becomes a late step in a design process that starts
with the distribution of tasks among organizational units and among people and
the distribution of functions between humans and machines before it arrives at
such questions as machine and interaction design2 .

Being part of or even leading such a process of work design is very demanding
for computer professionals who most often are educated for its technical aspects
only. Preferably the design process should include intense and continuous co
operation with prospective users in order to assess, verify and iterate on their
requirements for the new system. Otherwise system designers will act according
to their common sense, some prejudice and good will, however with an emphasis
on technical considerations. For a long time their products have clearly shown
this fact. This has led to all kinds of problems in use. In recent years a research
field has formed that focusses on user-oriented design of human-computer in
terfaces. One of the major insights has been that the user interface has to be
conceived and presented in terms the user can understand.

A very common and efficient way of trying to understand and handle new do
mains is the use of metaphors. Lakoff and Johnson3 argue that human thinking

1 [Garson, 1988, p. 261-263]
2 Cf. [Hacker, 1987a].
3 [Lakoff and Johnson, 1980]

234 Susanne MaaB and Horst Oberquelle

and understanding is fundamentally based on metaphors or metaphorical con
cepts, respectively. A metaphor most often refers to some well-known domain
and allows one to draw parallels between that domain and the current subject
of thought or conversation. The better the fit is, i.e. the more details match,
the better the new situation or phenomenon can be understood from the outset.
However, there will always be a certain degree of mismatch where structures are
not comparable, components are missing, or properties do not exist. Metaphori
cal descriptions can be used to emphasize some chosen aspects of a phenomenon
or object while neglecting others, but never to explain the whole. They cannot be
considered to be plainly right or wrong, but only so with respect to their context
of use. They may also be used in a manipulative manner to blur distinctions or
to cause false assumptions.

The use of metaphors can be observed in computer design as well as in use.
We speak of dialog languages, menu-conversation and computer intelligence, we
deal with documents and folders, open and close windows; we handle software
tools, store data, we design virtual machines that process input and produce
output. Metaphors may be consciously applied during design to cause a situation
of breakdown and detached reflection: design activities are interrupted by the
attempt to see the design problem at hand in terms of the concepts the metaphor
offers. Imagine, e.g., the difference it makes if you design an interactive system
either as a handy tool or as a friendly partner! Trying to consciously see one
thing as another thing opens up a creative potential and different metaphors
may lead to completely different solutions4 .

Metaphors, carefully chosen and used to design the interface, can also serve
as a learning vehicle in situations of computer use. They make systems self
explanatory or may be used explicitly in user training to explain new systems or
additional aspects of systems already in use. The idea is to exploit users' prior
knowledge and increase their initial familiarity with the system by presenting its
functionality and its handling in familiar terms. Typical examples are the well
known folders and trash cans in desktop systems or the idea of providing menus
to choose actions or objects from. Carroll, Mack and Kellogg point out that
metaphors help to build useful mental models, even if they are partly incorrect,
contradictory or incomplete5 . If users are not supplied with adequate metaphors
they will make them up themselves. It has already been argued that designers
should take up the professional languages and metaphors they can observe in
the workplace and incorporate them in their designs6 .

Metaphors applied in system design and use stand for certain perspectives.
These perspectives, however, may be unconscious to the person who uses a
metaphor. A perspective structures the cognitive process, as Nygaard and S~r
gaard put it7. Looking at things from a certain perspective means highlighting

4 For a detailed discussion of "metaphorical design" see [Madsen, 1988] and
[Lanzara, 1983].

5 [Carroll et al., 1988]
6 [Madsen and B¢gh-Andersen, 1987]
7 [Nygaard and S¢rgaard, 1987]

6.1 Perspectives and Metaphors for Human-Computer Interaction 235

certain aspects while hiding others, means seeing certain relations and not oth
ers. It provides a frame of reference and consequently influences design and use:
To someone who has a hammer everything looks like a nail. So the application of
some particular perspective helps one to see more clearly in some respect while
blinding to other aspects. To a certain degree this is a desirable effect since it
focusses attention. In system design, however, one should deliberately try to take
various perspectives in order to get a more thorough understanding of the appli
cation and its effects. This is what Nygaard and S~rgaard call multi-perspective
reflection. For instance, a decision about the interaction techniques to be pro
vided for users can be taken under the aspect of machine efficiency: short and
non-redundant command input helps to save processing time; of learn ability
and user support: user prompting reminds users of the alternatives they have; of
user- and task-adequacy: skilled users need shortcuts for routine tasks. It clearly
requires some effort or even training to be able to take different perspectives,
since they may be closely coupled with interests alien to the designer or have
their origins in disciplines other than engineering. The notion of "perspective" is
deliberately set apart from "paradigm" (or "Weltanschauung"), since different
paradigms usually exclude each other.

Perspectives set priorities with respect to what is important in human
computer interaction and they take user interests to a larger or smaller degree
into consideration; more generally, they imply assumptions about the nature of
human beings. These models of humans may be more or less optimistic or pes
simistic about people's work motivation and readiness to take responsibilities,
their learning abilities and creativity, etc. Taken as a basis for design decisions
they will lead to more or less restrictive systems that leave the users with differ
ent degrees of transparency and control, of decision latitude and responsibility.
In most cases designers are unaware of the rather pessimistic beliefs they hold
about users. When explicitly asked about work design in general they tend to
offer more liberal views. It is suspected that in the latter case designers mostly
think of their own working conditions, while subconsciously assuming different
needs and necessities for others8.

This paper is intended to draw attention to the fact that by designing work
situations system designers exercise power. Aware of it or not, they start from
certain assumptions about skills and needs of their future users and about the
necessities of the tasks those have to accomplish. Focussing on some optimization
goals more than on others they will work from a particular perspective - whether
they know it or not - and consequently shape working conditions for users. The
design process itself will be indicative of their perspective and priorities: the
extent to which users are involved, designers' openness for other people's ideas,
their willingness to admit crucial gaps in their own knowledge or education.
Finally, the metaphors designers use to describe their products to others will
be as explicit as they will get about their standpoint and their intentions. We
want to shed some light upon the complex interweaving of metaphors used,

8 See the empirical studies of [Hedberg and Mumford, 1975] and
[Dagwell and Weber, 1983]

236 Susanne Maafi and Horst Oberquelle

perspectives taken and models of humans held. By pointing out the consequences
certain perspectives have for the task- and user-adequacy of the resulting systems
we hope to raise consciousness about the designers' power and responsibilities.
We propose to designers that they should deliberately take different perspectives
themselves or at least to learn to accept and understand the various perspectives
of the parties involved in the design process or affected by the design.

In Section 6.1.2 we will present different perspectives from which systems
can be designed as well as used. The notion of model of humans will help to
characterize these perspectives. We will point out assumptions that underly each
perspective and the primary optimization goals that come with it. In Section
6.1.3 we will discuss metaphors that are in use in the field of Human-Computer
Interaction and relate them to the perspectives they express. Section 6.1.4 draws
consequences for work-oriented and user-adequate design.

6.1.2 Perspectives in system design and use

Many perspectives can be taken in system design as well as during computer use.
We are going to present a set of five main perspectives that cover most of the ideas
that can be found in practice and in scientific discourse today. Our classification
modifies and extends the categories brought forward by Kammersgaard9•

The traditional machine perspective takes computers as complex devices
which can be used by individual users or groups of users similar to mechanical
machinery. When applying the system perspective HCI is considered transfer of
data between components which have basically the same properties, in partic
ular each component can store and process data according to predefined rules.
From the communication perspective you see humans and computers as agents
engaged in an interaction similar to a human-to-human dialog. They commu
nicate by means of a more or less shared language. The workshop perspective
stresses that a computer can provide a workshop-like work environment that
represents tools as well as materials and space. Seeing computer use from the
media perspective makes you primarily concentrate on the cooperation process
between people that is to be supported by computers, in that the computer
serves individuals to communicate or cooperate with each other to accomplish
their tasks.

Let us now analyse in more detail what these different perspectives mean
for the expectations and the behaviour of users in human-computer interaction,
what they mean for the goals designers will follow in order to build a user
adequate system as well as for their main focus of attention and optimization.
In addition, it is important to find out what the perspectives reveal about the
assumptions designers make concerning future users and their work situations.

9 [Kammersgaard, 1988]

6.1 Perspectives and Metaphors for Human-Computer Interaction 237

(i) Machine perspective

Seeing the computer as a machine, users will expect to deal with a technical
system with given properties and a well-defined input-output behaviour. It may
have a rather sophisticated and complex functionality that is non-transparent
to its users and may even appear to be acting autonomously. Most users will
not try to understand what goes on inside or why input has to be specified in
a certain way; neither will they question the output and its format. Like other
complex machines, computers get installed by experts and are subsequently used
as they are by less (or otherwise) qualified people. Users will not be surprised
by difficulties they encounter during system handling. They will call an expert
for help.

The idea of building a machine focusses designers' attention on functionality,
efficiency, error-free performance, i.e., mainly on the machine as such and less on
the situation of machine use by humans. Traditionally there are enough technical
problems to worry about and humans are put into the role of a "servant" to
the machine (the German expression "Maschinenbediener" is revealing). The
ultimate goal is to substitute human labour as far as possible. The extreme idea
is that of an "integrated information processing plant" where users will do the
remaining bits of work that cannot (yet) be efficiently automated.

(ii) System perspective

Seen from the system perspective the computer is put into the role of an infor
mation storage and processing device that is part of the organization's global
information and communication structure. The users are seen as having basically
the same properties as the automated components of this structure. They can
deal with a certain set of data types by means of a set of actions; they can pro
cess data according to predefined rules and transfer data to other components
of the system. Human-computer interaction becomes data transmission only.

The notion "system" often seems to imply that systems are constructed out
of subsystems which consist of subsystems, etc., and thus are hierarchically struc
tured. Organizations need not be hierarchical by necessity; nevertheless, hierar
chical structure very often is meant when the system perspective is taken.

Designers who see users as providers and recipients of data will have as a
primary goal "to find principles of interaction which speed up the transmission
of data ... and reduce the error rate The user interface is seen as just another
interface between two components" 10. Designers will not primarily think about
sensible work procedures and working conditions for humans but about optimal
information flow, minimal redundancy and the most efficient distribution of data
processing tasks between humans and computers. Traditional system analysis
methods and description techniques concentrating only on data and control flow
support and reinforce this view. Adhering to this perspective means to reduce
people's jobs to their algorithmic aspects only and to neglect all other human
properties, skills and needs that are important in work situations.

10 [Kammersgaard, 1988, p. 350]

238 Susanne MaaR and Horst Oberquelle

(iii) Communication perspective

From the communication perspective computer use is regarded as a communica
tion process in which the computer shows a communicating behaviour somewhat
like humans do. User and computer act as both senders and recipients of mes
sages that are formulated in a language common to both of them. The notions of
command language, question and answer, dialog and natural language-like inter
actions are based on this perspective. Under this perspective it is more the com
munication process than its contents that is of importance. The primary purpose
of messages is to provide information to be stored, to evoke special operations
on objects or data, to evaluate stored knowledge, etc. The idea of a general,
application-independent form of dialog with general meta-communication facil
ities (like help functions) to be implemented by application-independent dialog
handlers is an expression of the communication perspective.

There are two variants of the communication perspective. The partner per
spective is mainly found in the Artificial Intelligence community and has as its
goal to design systems that act as humanly as possible. It is this variant that
Kammersgaard calls "dialogue partner perspective" 11. The main problem with
this perspective is that it obscures the limitations of the computer as a commu
nicating agent and does not make clear who is responsible for its behaviour.

Designers will try to provide natural language interaction and to create the
illusion of an autonomous, cooperative, adaptive partner in dialog. So the fact
gets hidden that the rules of the dialog are defined beforehand by the designers.

Users will tend to anthropomorphize the computer and overestimate its abil
ities. They will expect unproblematic natural language interaction and will
be surprised by the low degree of flexibility, adaptivity and understanding of
their automatic partner. They will especially miss the extremely powerful meta
communication facilities available in human-to-human communication. In case
of problems the illusion of a friendly, helpful partner will quickly break down
and may even turn into that of an adversary.

The formal communication perspective acknowledges crucial differences be
tween interpersonal communication and human-computer communication. Ober
quelle, Kupka and MaaB describe the computer as showing a restricted kind
of communication behaviour, called "algorithmic communicating behaviour" 12.

This behaviour is preplan ned by the designers and then delegated to the machine
by means of programming. All factors relevant to interpersonal communication
are effective not in the machine but in its designers: they form a mental model
of the users as their remote dialog partners, of the language conventions they
know and apply, of their intentions in human-computer interaction, etc. In their
programs they "freeze" these assumptions and transfer them to the computer.
Special problems arise from the fact that users experience systems as a whole.
Several parts of an interactive system made by different designers work together
to form one virtual communication partner. Inconsistent or contradictory de
sign decisions in different modules will inevitably show at the user interface:

11 [Kammersgaard, 1988]
12 [Oberquelle et al., 1983]

6.1 Perspectives and Metaphors for Human-Computer Interaction 239

the virtual communication partner will exhibit an unpredictable and confusing
behaviour. The idea that HCI can be considered a special kind of user-designer
communication is shared by other authors. Bench-Capon and McEnery stress
the fact that the computer acts as a medium13. In our view users do not feel as
if they communicated with designers; in most cases they will have no chance of
ever meeting them in person, but they encounter their product that gives the
illusion of a virtual partner.

Taking the formal communication perspective designers will be aware of the
limitations of algorithmic communication and of the influence they have on the
users' possible actions when they define the interaction modalities beforehand.
They will try to make the computer's communicating behaviour as transparent
as possible and to avoid unnecessary complexity. In addition, designers have to
make sure that their own design of (mostly only) one part of the system will go
well with the other parts.

Users who imagine a formally communicating partner will be prepared for un
flexible and restricting system behaviour. They will expect meta-communication
facilities to a certain degree and will know that the system's apparent intentions,
partner model, self-image and interaction conventions are due to its designers
who are actually responsible for what is going on at the interface.

Obviously, there are general limitations to what behaviour computers can
exhibit and in any case the designers are responsible for what happens. The two
communication perspectives admit or stress these facts to different degrees. The
partner perspective tries to use the possibilities of algorithmic communication
to automate as many aspects of communication as possible - leading to complex
and non-transparent systems. The other perspective tries to provide users with
comprehensible and controllable support. The ongoing debate about the question
whether interactive systems should be adaptive (based on a dynamic internal
user model) or only adaptable under user control is mainly a struggle between
these two subperspectives.

Both communication perspectives focus the designers' attention on the inter
action language. However, designers often tend to expect only very basic com
munication and language abilities from future users. They forget that people
working in some application area develop a very efficient specialized professional
language that is in large parts unknown to outsiders. They are experts in their
domain. While designing the system, designers should think of themselves as
communicating (via computer) with these experts. This would stop them from
treating users like children or brain damaged adults.

Successful communication requires mutual understanding of and adaptation
to language conventions. When the system is done, users have to cope with the
conventions the designers have implemented. This is why already during the
design process designers should make sure that they learn and understand well
the professional language of their target users so that the system's terminology
and conventions do not overly violate users' expectations and do not neglect

13 "People interact through computers not with them."
[Bench-Capon and McEnery, 1989a, Bench-Capon and McEnery, 1989b]

240 Susanne MaaB and Horst Oberquelle

their skills 14 . A communication perspective does not necessarily mean natural
language interaction. It focusses attention on the fact that computer and user
interact via some kind of language.

(iv) Workshop perspective

Looking at a human-computer system from a workshop perspective means view
ing an individual as similar to a craftsman who has to make a complete product
according to the rules of the craft. To work in a workshop means to handle
different kinds of objects:

Materials are transformed from a raw form into a refined product. Tools are
used in this process, but not used up. They may have controls which can be
adjusted by the craftsman. Locations are objects where other objects can be
put. For instance, in the joiner's workshop we may find pieces of wood, nails and
a half-finished chair as materials, a hammer and an adjustable plane as tools
and the bench, boxes for nails or a tool box as locations.
The work of a craftsman is characterized 15 by:

• deep knowledge of materials and mastery of the tools and procedures devel
oped during intensive apprenticeship and experience;

• permanent control over material and tool with the main attention on the
tool's effects on the material, not on the tool itself;

• direct and exclusive control over the space for materials and tools;
• participation in the development of refined tools and the choice of new ma

terials.

The idea of computer systems as workshops has been a basic concept in the
pioneering work of Douglas Engelbart already in the sixties, although it was
explicitly mentioned as late as 198316. A workshop perspective is also the back
ground of the paper by Budde and Ziillighoven17.

Users working in a computerized workshop will expect to find a situation
which is transparent to them, is completely under their control, and extends well
known traditional tools in an obvious way. They will expect that materials, tools,
controls and locations are obvious from their appearance, i.e. self-descriptive.
They will expect to find tools adjusted to their tasks, but will not assume that
a powerful tool can be mastered immediately. They will look for possibilities for
adaptation and extension of the tools when their experience is growing or a new
situation emerges.

To design a system from the workshop perspective means to start out with a
rather respectful view of users: They have to be seen as the application experts
from whom designers can (and must) learn about the field of application, its
established work procedures, its quality standards and its language. The most

14 For more details see [MaaB, 1984]'
15 [Ehn and Kyng, 1985]
16 [Engelhart, 1988]
17 See Chap. 6.2.

6.1 Perspectives and Metaphors for Human-Computer Interaction 241

appropriate interaction technique for the workshop perspective is direct manip
ulation, which simulates the manipulation of objects in the real world. Designers
will try to make the tools themselves disappear from consciousness during USe.
They will try to cooperate with users to bring their tacit knowledge into the
design process and to use their expertise for evaluation.

The fact that tools can only be developed on the basis of extensive experience
with their practical USe calls for the use of prototypes. Workshop-like systems are
considered open for further modification at any point in time. The real potential
of the workshop view is in the development of advanced tools for application
experts in cooperation with them. System design for novice USers will lead to
the provision of only very basic tools.

(v) Media perspective

From a media perspective a computer or computer network is Seen as a flexible
technical means to support coordination, communication and cooperation among
several persons. Cooperation takes place by means of spatial arrangements and
connections and by operations and rules for their temporal use.

The computer as a medium combines and extends features of traditional
media like mail, telephone, radio or print media. It allows materials to be repre
sented and provides space where materials can be located. It connects persons for
the synchronous or asynchronous exchange of materials and messages and allows
joint access to shared material. The idea of computers as media for communica
tion has been intensively discussed by Bannon18. The view of computers as media
providing shared material for cooperation has been stressed by S!i$rgaard19 . In
addition to the storage, transport and distribution properties of traditional me
dia the computer can be used to flexibly introduce new materials and space,
to modify connections and to set up coordination and communication protocols
USers have agreed upon. In its kernel, it has to behave in a disinterested way20,
i.e., it must not implicitly promote the interests of any individual participant.
Since cooperation is a highly dynamic and context-dependent process with fre
quently changing patterns, the adaptation of the medium must be controlled by
the cooperating, responsible persons themselves.

Using the computer as a medium makes users primarily concentrate on the
people they work with, on the cooperation processes and on responsibilities.
Users will expect the computer to transport their materials and messages without
modifying them and to reliably hold material and messages that can be accessed
by individuals or groups. They will feel responsible for the parts they control.
The programmability of the computer allows USers to automate parts of their
own work, but they remain responsible for these parts, too. They will try to
adapt the medium to the changing needs of their jobs.

When a computer system is being designed from the media perspective, de
signers will pay special attention to group processes in cooperation of Users and

18 [Bannon, 1986]
19 [S~rgaard, 1987]
20 [Petri, 1983]

242 Susanne Maafi and Horst Oberquelle

how to support those. The computer as a medium should offer appropriate ways
of representing and exchanging various kinds of materials and ideas, e.g., as text,
graphics, pictures, sounds. Functions have to be provided to produce new ma
terial, to refer to, annotate and build on existing material, zoom in on details,
etc. People must be able to contribute easily to conversations, and to send and
receive messages. Procedures for turn taking or concurrent work, for discussion
moderation and group management have to be thought of. But the system must
always be designed as open for adaptation during use. This is a challenge not
yet met by existing systems21 . Nevertheless, designers must be aware that only
a small part of human-to-human communication and cooperation can be com
puterized and that successful computer-supported cooperation is based on good
human relations. These can only be established and sustained in direct social
contact.

We have presented five major perspectives, mainly in the historical sequence
in which they came up. Each perspective is based on a special view of humans,
defines a particular human-computer relationship and sets goals for optimiza
tion in software design. The perspectives partially reflect those kinds of tasks
for which computers have been successfully applied: from strictly formalizable,
well-structured tasks to less formal tasks of individual users and further on to
group work; from replacement of human work to support of human workers. The
question of the adequacy of all these perspectives for certain work situations has
not been discussed yet.

We suspect that further perspectives are already in use or will develop as
time goes on - our set of perspectives is not in any sense complete. In order to
better understand the perspectives presented we will take a closer look at the
metaphors that go with them. Unusual new metaphors may be indicators of new
perspectives.

6.1.3 Metaphors In design and use

A large variety of metaphors, like desk-tops, convivial tools, dynamic blackboards
or intelligent helpful agents, is used in the context of Bel. Such metaphors make
the reader/listener think of concepts, experiences and values that have to do
with certain perspectives. So, in studying the metaphors people use, we will get
to know more about their underlying views and intentions. In particular, the
perspectives introduced in the last section will become clearer.

(i) Machine-oriented metaphors

The basic vocabulary of informatics is full of machine-oriented metaphors, which
are part of designers' professional language. Examples are calculator, data pro
cessing, storage, processor, input/output, to run a program, etc. Programmers

21 For a collection of papers in the quickly developing area of computer-supported
cooperative work (CSCW) see [Greif, 1988].

6.1 Perspectives and Metaphors for Human-Computer Interaction 243

among themselves are used to talking about virtual machines they are building
and dealing with. By this they abstract from how these software components
are internally realized. Also the notion of software engineering expresses the
idea of software production as machine construction. Budde and Ziillighoven ar
gue that software should be constructed like machines, but appear tool-like in
use situations22 .

In public discussions, machine-oriented metaphors are mainly used for two
purposes: either to paint a vision of total automation where human beings as
potential interference factor have been completely eliminated (as in Computer
Integrated Manufacturing), or to point out the inhumane and unforgiving char
acter of computers and of work with computers (e.g., electronic assembly line,
the electronic sweatshop23).

The current discussion on CASE (Computer-Aided Software Engineering)
indicates that the idea of an integrated machinery for a complete field of pro
duction has reached the designers' workplaces. It will be interesting to see how
they are going to react to a machine perspective applied to their own work. The
software factory seems to be a proper metaphor. But we suspect that successful
CASE systems will turn out to be a combination of workshops connected by
media.

In user instruction one way the machine metaphor can be of advantage is to
explain why users have to strictly follow rules in human-computer interaction:
the computer is "just a dumb machine" .

(ii) System-oriented metaphors

System-oriented metaphors are rare though the system perspective is the most
common perspective for software development. Since the notion of system has
been developed in close connection with informatics it is often used without
metaphorical circumscription. Calling everything a system makes important dif
ferences disappear.

Card, Moran and Newell provide an excellent example for system-oriented
thinking24. In their "Model Human Processor" they describe human cognitive
processes by concepts like storage, processors, capacity, cycle-time, thus under
standing people as information processing systems. Their goal is to optimize the
human-computer system with respect to speed, throughput, and error rates.

The equation of people with technical components also becomes obvious in
formal languages that are used to describe organizational systems consisting of
people and machines. Nets of channels and agencies (or offices)25 are an exam
ple: various active system components, the agencies, are connected by passive
components, the channels. Persons as well as machines may be performing the

22 See Chap. 6.2.
23 [Garson, 1988]
24 [Card et aI., 1983]
25 Cf. [Petri, 1980].

244 Susanne Maafi and Horst Oberquelle

actions of an agency. Channels are used to transport or store information. Call
ing a piece of software an agency or office makes it appear as a part of a big
ger organization. A comparison to a functional unit with a strictly rule-based
working clerk or officer as the agent captures the formalized behaviour of the
software quite well. On the other hand, comparing humans to strictly rule-based
agents means a significant reduction in our view of humans. The development
of role/function/action-nets26 was inspired by the idea that the pragmatic dif
ferences between roles (for which always persons are responsible) and associated
functions (which can be executed by humans or machines) should be reflected
in a new description language in order to overcome some of the deficiencies of
traditional system description languages.

(iii) Communication-oriented metaphors

Most communication-oriented metaphors are based on the idea of a dialog part
ner, but stress different aspects and support more or less the aforementioned
two variants of the communication perspective.

Describing a computer as an obedient clerk characterizes it as inferior to
the user. Calling it a helpful assistant who "does what I mean,,27 still puts the
computer in a subordinate role, but leaves open how far the assistant's knowledge
about "what I mean" goes. As long as it only means simple spelling correction
that can be switched on and off by the user the metaphor does no harm. However,
declaring a computer an adaptive, intelligent expert or tutor clearly stands for
the partner perspective that attempts to make the computer as human-like as
possible.

The concept of help as such is a metaphor that alludes to a partner rela
tionship. Passive help components resemble dictionaries or manuals, they are
media-like. They could be more accurately called descriptions. Active help com
ponents realize some kind of adaptive behaviour that makes it difficult for the
user to anticipate the system's behaviour and its limitations. Knowledge-based,
intelligent or adaptive help attributes some kind of personality to the computer.
In order to inform users about limitations and to leave them in control of the
system's behaviour, designers should look for more unpretentious metaphors
that stress the differences, not the similarities. For instance, help could be re
placed by flexible, extensible descriptions if implemented accordingly. The sys
tem's behaviour in interaction could be called algorithmic or at least formal
communication behaviour. The partner metaphor should be avoided as far as
possible. For example, in the development of the German standard "Principles
of Ergonomic Dialogue Design" 28 concepts like self-explaining and error tolerant
were dismissed in favour of self describing and error robust because it was felt
that the former concepts put users in a clearly inferior role with respect to the
wise and forgiving computer.

26 RFA-nets [Oberquelle, 1987, Oberquelle, 1988].
27 See the "programmer's assistant" with DWIM (Do what I mean) principle

[Teitelman, 1977].
28 [DIN66234, 1988]

6.1 Perspectives and Metaphors for Human-Computer Interaction 245

The recently introduced notion of user problem-domain communication29 dif
fers from the partner metaphor, but still makes the persons responsible for the
communication behaviour of the problem-domain (whatever that may be) dis
appear behind the seemingly objective domain knowledge.

The non-existence of powerful intelligent automatic partners up to now does
not seem to influence researchers and funding agencies. The hope for building
such systems in a nearby future is still unbroken. From our point of view the
question as such, whether almost human-like partners can be built, is the wrong
one. The point is not whether we can build such systems, but whether we should
do it.

(iv) Workshop-oriented metaphors

The tool metaphor is the most prominent metaphor under the workshop perspec
tive. That is why others use it to refer to the whole perspective3o . But the inter
pretation of the tool concept has become very broad and general. In informatics
people have started to call almost any helpful piece of software a tool. Some
call commands a tool, discuss "tools with dialogue capabilities" and see macro
facilities as "tool-building tools"31, thus mixing communication and workshop
perspective. Others have called computers as such convivial tools, while at the
same time promoting the idea of adaptive, knowledge-based human-computer
communication32. Neither is the tool metaphor appropriate for such systems
nor does the attribute convivial taken from Illich seem to be adequate. Con
vivial tools must be completely transparent to and controlled by their users.
Tools able to manipulate their users (as adaptive systems can do) cannot be
convivial33•

The tool metaphor can be useful in that it draws attention to task-oriented
system functionality. The study oftraditional tools and their characteristics helps
to find principles for task- and user-adequate design of interactive systems. It is
interesting to see that designers are asking for and are building flexible power
tools for their own work. Very often, however, the tool metaphor is just used as
a catching synonym for simplicity, even for complex integrated systems, in order
to play down system aspects that might produce user resistance: Who would be
afraid of a tool?

Workshop scenarios integrate and extend the idea of tools, as realized on the
Macintosh, for example. Desktop, folders and trash-can provide space and the
latter two are movable objects at the same time. Documents like letters, forms,
spreadsheets form the material to be worked on directly by pointing and dragging
or by using tools like paint brushes, erasers, rulers, etc. Property sheets represent
the many controls which can be manipulated by the users to adjust the system's
behaviour to their needs. All objects are graphically represented by icons giving

29 [Fischer and Lemke, 1988]
30 [Kammersgaard, 1988, Ehn and Kyng, 1985]
31 [Dzida, 1982]
32 [Gunzenhauser, 1982, Fischer, 1983]
33 Cf. [Illich, 1975, p. 39].

246 Susanne MaaB and Horst Oberquelle

them a visual existence. The illusion of a workshop is supported by the fact that
one finds the workplace in exactly the state one has left it in. It is not surprising
that help facilities play an inferior role in this environment and that adaptive
systems are absent. But even very simple metaphors may be misleading when
they are implemented without too much thought. For instance, the trash-can
icon (and metaphor) of the ATARI suggests that thrown away documents can
be retrieved from it, though in fact the trash-can works like a shredder.

Sets of related metaphors supporting a workshop perspective can also be
found in other fields of application. Some CAD systems provide drafter's work
shops with paper, grids, templates, pens, palettes, etc. The UTOPIA project
developed a workshop for newspaper layout34. Programming of the Macintosh
is supported by a programmer's workshop35. The same metaphor is promoted
by Budde and Ziillighoven36. Programmer's workbench and programming lab are
other metaphors that stand for the workshop perspective.

Simulation systems that are operated by direct manipulation are classical
representatives of systems built under the workshop perspective. The Alterna
tive Reality Kit (ARK)37 drives the illusion of working with real objects to its
extreme. Every parameter is represented by tangible objects, e.g., as knobs, but
tons, slider controls that can be obtained in a warehouse. ARK even represents
physical laws as objects that can be manipulated. This results in a homogeneous
interface, but rather stretches the metaphor of real things.

(v) Media-oriented metaphors

One of the traditional computer applications was to provide central data stor
age in data bases. Another function important under the media perspective,
the support of interpersonal communication, was realized in mail systems. Only
recently have these two functions been integrated in so-called coordination sys
tems. Mainly in research settings the idea of supporting human cooperation
in groups has been developed. The idea of material sharing is currently being
implemented by means of electronic books, notecards, blackboards and electronic
bulletin boards. The goal of communication support is reflected in metaphors like
message, electronic mail, electronic conferencing, electronic meeting. Recent sys
tems have refined these concepts by structuring the networks of connections (e.g.
into discussions, task forces, the contents of messages (e.g. invitations, memos)
and by supporting various patterns of conversations.

Calling the coordinated exchange of messages or moderated access to shared
material (like a blackboard) a conference or meeting seems to neglect a factor
that is rather important in meetings. Often the explicit exchange of messages
is relatively unimportant compared with the development of social relations in
the group of participants that happens simply by the fact that they are close to

34 [B!lidker et aI., 1987]
35 [Apple, 1987]
36 See Chap. 6.2.
37 [Smith, 1987]

6.1 Perspectives and Metaphors for Human-Computer Interaction 247

each other as humans for a while. Another important feature is confidentiality
which is lost as soon as spoken (transitory) communication is made manifest in
stored and thus retrievable, modifiable, misusable form.

Metaphors expressing the media perspective and systems that support group
work first came up in research settings where the concepts of cooperation and
coordination imply a rather balanced distribution of power and responsibilities
and shared interests in working groups. The transfer of system solutions from
research into commercial settings has been reported as problematic38. This has
to do with the fact that cooperation and coordination have a different meaning
in an environment with hierarchical structure and managerial control. It turned
out that systems that were intended to support cooperation among persons with
equal rights could be used to make hitherto uncontrollable cooperation processes
transparent and more manageable and thus fill one of the last remaining "for
malization gaps" in the office. This illustrates the fact that systems that were
developed with good intentions and starting from progressive perspectives may
have surprising and undesirable effects if the commercial application context has
not been correctly anticipated by the designers. It may happen that the original
metaphor will stick with the product while in fact raising false expectations with
respect to its effects.

(vi) Further metaphors

The workshop perspective is somewhat extended by the rooms metaphor39: The
idea is to provide an individual user with several different work environments
that suit his or her various subtasks. Rooms organize collections of windows
into related screenfuls of information and functionality. Rooms are connected by
doors through which they can be entered. A similar idea is promoted by Mad
sen who suggests using an office building approach4o. A related, but different
idea is that of Ho1t41 . In his "coordination mechanics" approach he describes
organizations as interconnected work arenas or centres (space) for interacting
bodies (materials, tools, responsible persons). Coordination is achieved by in
teractions of responsible persons and other bodies at the common boundaries.
In this view computer networks extend the technical basis for coordination by
providing space, bodies and means for programmed interactions. The computer
provides the "dynamic glue" that binds tasks together into larger, meaningful
entities. The organizational structure in space and time can be dynamically de
veloped during use, which gives users more control over their working conditions.
In the coordination mechanics approach the idea of "shared material" is rejected
since every piece of space belongs to one and only one centre by definition.

Space-oriented metaphors are also used in many hypermedia systems to help
users develop a mental model for orientation in complex data spaces that they

38 See, e.g., [Durham, 1988] about the Coordinator system.
39 [Card and Henderson, 1987]
40 [Madsen, 1989]
41 [Holt, 1988]

248 Susanne Maafi and Horst Oberquelle

can browse or walk or work in. Social browsing in virtual corridors as proposed
in the CRUISER project42 seems to be the most extreme attempt at technically
reconstructing social reality.

A rather unconventional way of characterizing the work environment for
human-machine interface designers is the theatre metaphor presented in "Re
hearsal World,,43. Interface elements are seen as performers on stage (which is
the screen) that can be taught certain parts by the stage director (the designer).
They can be rehearsed individually or in groups to show how they perform to
gether, interacting via cues.

Guided tours44 and tourist guides45 for hyperspaces try to simulate active,
helpful agents in the computer.

In both cases the invisible partnersofthe partner perspective are transformed
into visible partners.

The many space-oriented metaphors as well as the introduction of virtual
agents indicate that new virtual world perspectives are emerging. They cannot
yet be treated in detail.

6.1.4 Consequences for design

The extreme flexibility of the computer allows designers to strive for a variety
of goals: maximal automation or control over users, human-like computer be
haviour as well as maximal support for highly qualified workers. Accordingly,
the resulting systems will constitute very different working conditions for their
users; they may turn out to be dequalifying and restrictive, overly supportive
and tiresome to work with, or perhaps creativity enhancing, user-adaptable and
just right. Obviously, designers are in a powerful position since they are setting
the facts the users will have to live with afterwards. Markus and Bj~rn-Andersen
have pointed out that neither the users nor the designers themselves are nec
essarily aware of this situation which may range between the two unacceptable
extremes of professional manipulation and unintended influence46 . By our dis
cussion of metaphors and perspectives in design we want to uncover, to question
and to influence designers' implicit models of humans and their assumptions
about work.

(i) Adequate models of humans and work-oriented design

The view of humans dominating among designers can be characterized as pes
simistic: they view them as having little creativity, little interest and motivation
for work, and as being afraid of taking responsibility. It seems "natural" to de
signers to control user behaviour as far as possible, to prescribe work procedures,

42 [Root, 1988]
43 [Gould and Finzer, 1984]
44 [Trigg, 1988]
45 [Fairchild et al., 1989]
46 [Markus and Bj91rn-Andersen, 1987]

6.1 Perspectives and Metaphors for Human-Computer Interaction 249

to suppress users' own initiatives and to motivate them by economic means only.
We believe, on the contrary, that persons who seem to conform to this sad picture
should rather be considered a lamentable product of the Tayloristic work orga
nization they have been exposed to, instead of assuming that they are like this
by their very nature 47. The problem is not in the people, but in the inadequate
working conditions!

We propose to designers that they deliberately take an optimistic and holistic
view of people as a necessary basis for the design of humane working conditions
and satisfying work, and choose perspectives and metaphors accordingly. Human
beings have to be considered as individuals

• who are bodily present in the world,
• who think and act not only rationally and analytically, but also based on

intuitive and fuzzy feelings and social and professional experience, and
• who are social beings who need social contact and cooperation.

Humans live embedded in a biological, historical, cultural and social context.
They not only want to earn their living by work, but have a right to self
realization and personal development. People are ready to take responsibility
for their work - if they have the chance and get the necessary qualification for
it. As skilled workers they also possess a lot of experience and tacit knowledge
which should not and cannot be transferred into machines. Such a model of
humans is shared by many researchers in Western Europe, especially in Scan
dinavia, and has been made a starting point for "humanistic", "work-oriented"
system design approaches48 . It is obvious that these design approaches aim for
more than what today's good-willing practitioners try to provide: user interfaces
that are easy to learn and efficient to use and that have a nice "look and feel" .

An optimistic and holistic view of users leads to a new designer-user rela
tionship: designers will act as experts for computers and users will be accepted
as experts for work in the field of application.

This view is reflected in work-oriented approaches to system design as they
have been similarly characterized by Weltz and Lullies and by Nurminen49 : Hu
man workers are considered as central agents who have to be supported by a
task-oriented job design and by organizational and technical means like com
puters. The relevant knowledge is bound to the person and the context. Persons
are responsible for ordinary as well as for information processing tasks, in which
they have to be supported by ("small") computer systems. System development
is seen as an evolutionary process focussed on persons and their jobs and user
participation is necessary in this process. Hence, the role of designers changes
from a "generous god" or "invisible friend" to a real, cooperative partner for
users.

In order to transfer these design ideas from research surroundings to commer
cial applications it will be necessary as a first step to make practitioners aware of

47 Cf. [Weltz and Lullies, 1983].
48 Cf. [Frese et al., 1987, Volpert, 1987, Nygaard and Hbdlykken, 1981,

Bj~rn-Andersen, 1988, Nurminen, 1987, Nurminen, 1988, Ehn, 1988].
49 [Weltz and Lullies, 1983, Nurminen, 1987, Nurminen, 1988], and Chap. 7.2.

250 Susanne MaaB and Horst Oberquelle

their models of humans. To convince them that their assumptions might be insuf
ficient or even wrong it may help to confront their models of others with models
they hold about themselves. Starting from those metaphors and perspectives
they apply for their own working conditions and for desirable computer support
may reveal discrepancies and lead to new thinking.

(ii) User-supportive perspectives and metaphors

Starting from a holistic and optimistic view of humans and keeping humane
working conditions in mind, designers should try to choose perspectives and
metaphors accordingly. Some perspectives are more suited than others and no
single perspective will be sufficient.

The machine and system perspectives neglect or underestimate users' needs
and capabilities and should therefore be dismissed. Having the computer appear
as a human-like communication partner is problematic as well since correspond
ing systems tend to become non-transparent and responsibilities seem unclear.

In our view, only those perspectives are acceptable which are based on a
view of computers as complementary and supportive to humans. These are at
present, as far as we know, the formal communication, workshop and media
perspectives. The formal communication perspective is needed to draw attention
to language aspects: The language elements that have to be designed for use
in human-computer interaction must go well with the professional language of
the respective application area. Unlike in human communication, implemented
language conventions for HeI cannot easily be modified in dialogue with the
system. That is why designers should cooperate with their future users during
design in order to learn and negotiate conventions before "freezing" them in their
systems. A workshop perspective helps to concentrate on providing appropriate
functionality for individual computer use. What is the material the user is going
to work with and how could it best be presented? What tools will be necessary
and how can they be made adjustable to changing user needs? What can be
learnt from the professional experience of people working in the application
domain? Since human work always has individual and collective parts, system
design for computer-supported work needs the media perspective to complement
the other two. From the media perspective the most important questions are,
how communication and coordination processes among groups of people can be
supported, how to give access to and present shared material and how to send
it around.

This kind of multi-perspective reflection about a design problem at hand will
give designers a better chance to shape humane working conditions and produce
user- and task-adequate systems. Part of this reflection can be done together
with users.

When metaphors are used to illustrate system capabilities to users, they at
the same time imply something about users and their capabilities. As a con
sequence of our metaphor discussion we would like to put forth the following
rules:

6.1 Perspectives and Metaphors for Human-Computer Interaction 251

Let us choose metaphors consciously and carefully:

• Metaphors must not prevent system transparency - instead they should help
to improve users' understanding and mastery of the system.

• Metaphors should not obscure the dissimilarities between humans and com
puters by projecting too many human capabilities onto the computer; instead
they should serve to create a realistic image of the computer's capabilities
and point to its restrictions.

• Metaphors should not transport unacceptably restricted models of humans
by comparing humans to machines. They should rather aim at a human
centred understanding of computer-supported work processes.

Acknowledgements
We gratefully acknowledge the constructive comments on earlier versions of this chapter
by Susanne Bpdker and Liam Bannon, Markku Nurminen, and Reinhard Budde and
Heinz Ziillighoven.

6.2 Software Tools in a Programming
Workshop
Reinhard Budde and Heinz Ziillighoven

6.2.1 Recalling our background

When we began, some years ago, building a programming environment for the
logical programming language Prolog, the goals we had in mind were predom
inantly technical ones. Our basic aim was to combine the logical and object
oriented programming styles and to compile a set of tools for constructing Prolog
software in a uniform environment. Once we felt we had found satisfactory so
lutions to the problems involved, we released the programming environment for
use by other development groups. We were astounded to find that the external
use of our environment led to a number of unexpected problems. We then began
not only to eliminate technical errors and inconsistencies, but also to reflect on
how it was possible for these problems to arise. The conclusion we reached was
that we needed to find answers to a number of questions which went well beyond
the original technical problems:

• What are the building blocks of a programming environment and how can
they be "invented"?

• What is a good building block and how can it be smoothly integrated into
an environment?

• How does an operational building block become an integral part of the de
veloper's daily work?

• What are we doing when we develop a programming environment and what
are we doing when we work with it?

Basically, all these questions revolve around an epistemological kernel: How are
we as software developers to understand our work and the objects occurring in
it? Reflections of the sort expressed in this book by C. Floyd or J. Goguen 1

appear, to us, to rule out any possibility of a formal approach to this particular
domain.

The approach we have ultimately chosen to answer this central question
consists of identifying different aspects:

• When dealing with programming environments, developers and users adopt
different perspectives.

• We view software as consisting of both formal objects and things that we
use in our work.

1 Cf. Chaps. 1.1 and 5.1.

6.2 Software Tools in a Programming Workshop 253

• When we formalize, we explain how an object functions; when we work
purposively with a thing, we understand what it means .

• To make software executable, we have to make a complete formal description
of it. But we can only do this if we have an initial understanding of what we
are to describe.

Reflecting on these different aspects, it became clear to us that the starting
point both for designing a programming environment and for understanding this
design process had to be an analysis of the everyday work of software developers.
Nevertheless, formalization is one, though not the only, important task that
must form part of the development process. Inspired by the frequently cited
book Understanding Computers and Cognition by Winograd and Flores, we have
looked into Heidegger's notion of "equipment" (Zeug) and examined his ideas
about everyday ways of dealing with it.

Now, we are told by hermeneutics that, in order to understand our everyday
work and in order to be able to express this, we understand things as something.
We understand a thing explicitly through association with other things that
have likewise already been understood. This transference of meanings from one
domain to another describes exactly how a metaphor works. We thus set out
to look for suitable metaphors. This search led us to distinguish between tools,
machines, automata and materials in a programming workshop2. In what follows,
we will explain these terms as metaphors for developing and using a programming
environment. It is important for the reader to bear in mind the fact that we are
writing about software engineers and their work. That is our point of departure.
Meanwhile, our further research work has shown that the chosen metaphors can
also be effectively used for developing interactive application systems. W. Coy
uses similar arguments when he speaks of soft engines in his contribution to the
present book. Coy does not proceed from the professional software developer's
viewpoint, but from that of the users, focussing on the use of standard software3 .

MaaB and Oberquelle have shown that there are other metaphors besides this
one and have examined the effects this has on questions of usability and quality4.

Our basic line of reasoning is as follows: We look at our everyday work with
the computer and other things of our working environment and find that, in
doing so, we adopt different views on different things. And we classify these
things as either tools or materials. Then, under the perspective of construction
and use, we establish the connection between software as a machine and software
as a tool. We find that software often manifests itself, in use, not as a tool, but
as an automaton. Finally, we view the organizational and spatial environment
of our work and discuss why we prefer the workshop perspective to the factory
perspective to characterize it.

2 The results of this investigation, which go well beyond the scope of this book, can
be found in [Budde and Ziillighoven, 1990].

3 Cf. Chap. 6.3.
• Cf. Chap. 6.1.

254 Reinhard Budde and Heinz Ziillighoven

6.2.2 Working with the computer

In our everyday work as software developers, we are used to handling things that
are "inside" a computer, such as word processors, editors, interpreters or various
types of files. At our workplace, we employ these things in a self-evident way -
we frequently talk about them. Generalized statements like "the computer is not
a tool" ,5 which we find in the literature do not tally with our daily experience
at work. The things we are familiar with in software development constantly
cross the borderline between computer and "non-computer". Take, for instance,
a dataset which appears to be lost:

• We look for a specific file on archive tapes which, to be on the safe side, we
have stored separately from our workstation computer.

• We look for this dataset on a different computer which we have been using
for some time while our workstation was down. Perhaps, we may find an
older version "lying around" somewhere.

• We look for the dataset on our desks or in the wastepaper basket, as we have
made printouts of various versions.

It is essential in order to understand these various activities, that we regard a
dataset as part of our working environment in much the same way as we see the
archive tape (which contains it), or the computer (without which it could not
exist). In this way, we look both at the computer as a whole ("The dataset has
disappeared from the computer") and at its parts ("A moment ago, the file was
in the sdrc directory"). An analysis of the prevailing patterns of dealing with
the computer shows that we frequently regard its parts and software components
(e.g., files, programs, devices) as materials and tools similar to the way we view
paper, pencils, file cabinets, and hand tools.

This takes into account the fact that computer use has changed over the last
ten years. "Monolithic" mainframe applications are inevitably dying out, and
along with them are disappearing working situations in which a user delivers a
pack of punched cards to a closed-shop computer department and then has to
wait for hours before getting a printed listing. Recently, not only developers but
users, too, have adopted a more differentiated view of the computer as consisting
of identifiable software components that support daily tasks by means of input
routines for order data, billing programs or database services.

6.2.3 Tools and materials

Heidegger characterizes the things that are familiar to us in a working process
(das Zeug) in two different ways: They are in a specific way useful to us, and, in
a given situation, we take them for what they are. As we work with equipment,
we notice that we use it in different ways - one part of it will, to some extent,
become the object and result of our work, while another part serves to produce

5 Cf. [Wingert and Riehm, 1985].

6.2 Software Tools in a Programming Workshop 255

the result of our work. Let us look at this distinction and what it means in the
computer field:

• The software components that are part of our object of work we will call
programming materials.

o Materials are characterized by the ways in which we use them as part of
the final result of our work. Accordingly, we process, shape, analyze and
evaluate materials. When developing software, we come across program
ming materials as components of a software system and its documenta
tion. Examples of programming materials are: an interface specification,
comments in a source code file, tuples in a database.

o Besides this type of programming material, we use additional resources
that only contribute indirectly to the final result. Examples of such re
sources are tempfiles with lists of file names and a catalogue of safe
dumps.

• The software components that we employ while dealing with programming
materials we will call programming utensils.

o Utensils are characterized by the way in which they help to produce the
result of our work or do so more conveniently. When developing software,
we use programming utensils like spelling checkers and e-mail systems.

• Of the programming utensils, software tools are the part of our equipment
that we apply to programming materials and that are of particular importance
for our work and our understanding of it.

o Software tools are characterized by the way in which we use them for
processing, shaping and probing the different types of programming ma
terials. In our view a tool is invariably something mediating between us
and our materials.

o In addition, software tools are invariably signs of the way we use to do
our daily work. They point to our experiences and to familiar working
processes and regulations.

o Another characteristic of tools is their persistency - while we are working
on a particular task, we usually perceive them as remaining unchanged,
although, we frequently change their settings or "parameters" . This per
sistency is not a predominant aspect of materials or utensils in general.

o Examples of software tools are: compilers, editors, browsers, and pretty
printers.

It depends on our objects of work and the different settings in which they are
used whether we look at software components as materials, utensils, or tools.
Thus, we may summarize as follows:

As software developers we process, probe and organize programming ma
terials by means of software tools and with the support of programming
utensils.

256 Reinhard Budde and Heinz Ziillighoven

6.2.4 Working with tools

We have pointed out that tools are crucial to the way in which we work and
how we understand our environment. Leaving aside the reduction of the notion
of tools to mechanical implements used by the craftsman, we have opened up a
variety of different views on the software components of a computer:

Software as material unfolds when we treat it with software tools. Soft
ware is transposed into different sensually perceptible phenomena:

Software tools open up our object of work, the programming materials,
as we are dealing with it: thus, software tools are means for cognition.

Let us now take a closer look at what it means to work with tools. We frequently
find references to the so-called transparency of technical equipment6 . This aspect
is familiar to us when we are handling tools and materials without disturbance.
But, at the same time, we realize that these things exhibit distinct characteristics
and do not disappeartransparently. Besides serving a specific purpose, tools and
materials appear as things in their own right, useful or harmful to us, but never
on their own. Technical equipment requires specific ways of handling which call
for practice. Take, for instance, the difficulties a child has to cope with when
learning to ride a bicycle, e.g., the problems of balance and coordination; how
"natural" this same interplay between the human body and the technical appa
ratus seems as soon as we have developed the appropriate skills. We have made
similar observations with people using a graphical workstation computer and a
mouse for the first time: the coordination of arm, hand and fingers obviously
had to be subjected to a completely new type of visual control in order to cope
with seemingly trivial tasks like selecting an icon or activating a selection menu.
Obviously, we learn how to handle tools by working with them - sometimes in
experimental or trial situations. And trying to employ tools can result in failure
- that is an everyday experience.

Such specific ways of handling tools acquire a kind of autonomy that is evi
dent in the "art" of building and mastering machines and tools7 . These aspects
are of fundamental importance to our work as software developers. We have to
look at the different ways and means of handling software. And we have to re
member that we are frequently confronted with situations in which we have to
develop software for other people who are not familiar with software at all.

Thus, we may say that tools, like any other technical equipment, are not
confined to opening up the world around us. They are linked to our bodies,
extending our senses and giving rise to new forms of movement. In other words:

Handling software tools extends the sensual perception of our environ
ment - they help us to experience software systems and the world around
us.

6 Cf. [Winograd and Flores, 1986, Ehn, 1988].
7 An impressive elaboration of this aspect is given by R. Pirsig in [Pirsig, 1975].

6.2 Software Tools in a Programming Workshop 257

When we say that the coupling of human beings and technical implements gives
rise to new forms of bodily behaviour and new sensual perceptions, we do not
mean that these processes strictly follow rational and purposeful dimensions. Let
us merely call to mind the sensations and emotions that help us to control and
operate a tool or a machine - be it the experience of pain and despair in the case
of a car breakdown or accident, or the experience of pleasure and enjoyment we
have when playing a pinball machine or riding on a roller coaster.

We may have to get used to the idea that pleasure, pain, emotions and aes
thetical feelings in the widest sense are aspects of our ways of dealing with
technical equipment, and that these emotions and feelings are neither of sec
ondary importance nor can they be dismissed to the realms of leisure time and
amusement parks. Such "ir-rational" emotions and impressions are also famil
iar to us when dealing with software systems. Anyone, who has ever "got lost"
in a graphical computer game will have experienced the fascinating world of
"imaginary" appearances with the sometimes far-reaching physical and mental
reactions it causes. And they will not be astonished to learn of the similar sen
sations experienced when constructing and testing "mere" application software.

6.2.5 Tools as artifacts

We have deliberately compared the handling of software tools with that of hand
tools. It is customary to oppose the directness and naturalness of our perception
to_the artificiality of technically mediated signs and models. This position could
be characterized by saying: "We perceive the material things around us in a
natural way, but we have to be culturally trained to make use of signs and
models." We reject this idea by looking at it from a theoretical point of view
and contend that we as human beings invariably perceive what we call nature in
a mediated way. Mediation comes in whenever we realize our metabolism with
nature by using tools as we shape nature, and whenever we designate and label
the things around us.

Adopting this type of theoretical understanding, our bodily motions in a
working process may be seen as artificial or indirect in varying degrees. What
we are likely to overlook is that we are not only confronted with new technical
equipment, but also with a new meaning of our own actions. Thus, our motions
become gestures which are signs denoting a complex technical procedures. This
holds, though at the same time we experience tools and other technical equipment
directly.

Consequently, technical equipment does not merely consist of simple objects
that we employ and then lay aside again. Technical equipment binds us into a
multitude of obvious and hidden links. It transforms our physical and sensual
aspects and our body language. The more complex the procedures that are
"encapsulated" into technical equipment, the more "abstract" the gestures of
our body become. After all, gestures - as the "terms" of our motions - become
familiar in our everyday lifes. Like signs, they appear in a double sense: as motor

8 Cf. [Bahr, 1983].

258 Reinhard Budde and Heinz Ziillighoven

actions of our body, and as symbolic motions, denoting something else. And, as
with signs, we both perform and understand them "directly" - if we understand
them at all. Who, when switching on the light via a sensor switch, thinks of all
the "atomic" actions that have concealed themselves behind this gesture in the
course of technological development? There is little or no difference in quality
between this aspect of technical equipment and software tools. Software tools
merely offer a wider range of gestures via function keys and mouse handling, but
these are by no means more "abstract" or mediated than other gestures. Which
experienced user of a graphical workstation computer needs to think about the
hardware and software links between moving a mouse and changing the position
of the mouse pointer on the screen when clicking an icon?

To complete our discourse on the characteristics of work with software tools,
we have to look at the tool as a mediator and sign. Technical equipment mediates.
This is obvious in the sciences - take, for instance, an experiment with a neutron
accelerator - but it is an everyday experience as well. While tools shape , our
senses at the same time are informed about the state of the material we are
working on9 . While we are concentrating on our task, both our tools and our
materials merge into one entity of perception which gives us feedback about state
and progress of our work. In this connection, we may justly speak of a language
of tools.

However, these aspects of information and communication are not only char
acteristic of the use of hand tools. It is even more obvious that machines shape
and organize materials according to their different states; and, at the same time,
these states of a machine indicate the states of the processed materials. After
all, besides their main functional characteristics, all machines exhibit aspects of
signs. The different positions of switches and handles, the pointer deflection of
measuring instruments, the changing sounds, these and other signals carry the
information guiding operation.

There would appear to be an obvious relation between the signs of a tradi
tional machine and the materials of work, but we still have to be familiar with
these signs in order to understand them. Without our ability to operate equip
ment on a meta-level of signs, we would not be able to work on materials. It
is important to note that our everyday ways of employing technical equipment
invariably comprise a level of models, i.e., of signs and states. It is in this sense
that we understand the phrase: every tool is a sign for its own use.

Working with a computer, this separation between the thing as such and its
meta-level of signs become obvious. "Inside" a computer the materiality of our
workpiece loses its dominance and the workpiece becomes a mere focal point
of information. Eventually, the level of signs tends to conceal completely the
material substratum of information, and thus a software developer usually loses
sight of it. The moment of disturbance is when we are reminded of the material
level of information, be it a head-crash of a disk, a faulty board or a jam in the
local net.

9 Cf. [Bahr, 1983].

6.2 Software Tools in a Programming Workshop 259

Operating a computer and a software system is not substantially different
from operating machines or other technical equipment. There is simply a wider
gap between the levels of signs of a software system and their material stratum
as compared with what we find in a traditional machine. Moreover, we can create
new levels of signs based on existing signs within a computer. This would seem
to be the main difference. A computer offers not merely a limited set of signs and
signals, but a system of signs with the expressive power of a formal language.
Further meta-levels come into view, for instance, when tracing a software error
within an interactive debugging tool. Frequently, this means that we are searching
for the reason why, in debugging some application software - which we then
take as our material - this debugger shows something that deviates from our
expectations. As developers of programming environments, we will eventually
find ourselves in a situation where we apply the debugging tool to itself while it
is tracing a piece of application software. The number of meta-levels is unlimited.
Incidently this example shows that we decide, in a specific working context, what
we take as a software tool and what as programming material. Here, we have
illustrated that one piece of software can at the same time serve both as a tool
(debugger) and as material (debugged debugger).
The most important finding of this last section is:

We handle software tools both as material means and on a meta-level of
signs.

Summarizing the findings of our reflections on the characteristics of software
tools, we may say:

• Software tools open up new perspectives of the world around us. They consti
tute the means for working on programming materials while at the same time
indicating the state of the working process and the product by a multitude
of signs .

• Software tools generalize our ways of handling aspects of the world around
us; they organize our actions and condense them into gestures.

6.2.6 The concept of a machine

In this section, we explain the interrelation between using a software component
as a tool and constructing it as a machine. In order to understand this distinction,
we first have to look at "traditional" apparatus and machines. A prominent
characteristic of many technical implements is their movability: We have said
that tools can only be handled properly in accordance with specific motions
of our bodies. Simple mechanical apparatus like the loom or the lathe require
this accordance as well. But here it is not movability in the sense of locomotion
which is of importance. It is motion cast into construction. A movement that is
calculable, uniform, repeatable - these are the essential characteristics of motions
which are mechanically "fixed" and thus "de-individualized". What is hinted at
here becomes predominant in big industrial machinery.

260 Reinhard Budde and Heinz Ziillighoven

When we speak of technical equipment as machine, we mean for the time
being:

A machine is repeatable motion which IS abstracted from its specific
context and cast into construction.

This definition of ours would seem to accord with the essence of the rationalistic
image of the machine. The rationality of a machine is shown by its reliability. We
can "rely" on a machine, because its motions do not movelO . But a machine does
not incorporate and reify motion as such. Looking at working processes, we real
ize that machines and rationalization cannot be separated. Rationalizing means
dissecting human work into purposeful activity and repeated, routinized action.
The multitude of possible aims and purposes does not lend itself to generalization
or then to rationalization. The objects of rationalization are routinized actions,
since they can be subjected to standardized process descriptions and mecha
nization, thereby using the available powers in a more rational way. Within this
schema, the individual becomes man power and is regarded under physiological
and quantitative aspects only. Accordingly, individual craftsmanship with its
personal skills and human interests no longer counts. What the machine repro
duces is the standardized, de-personalized routine aspect of human activities.
This process of stripping human activities of all aspects of context, meaning and
individuality is called decontextualization. Thus, we may say:

A machine incorporates and reproduces the mechanical reduction of hu
man activities. It thus decontextualizes human activities.

A frequently cited example from industrial production is Ford's assembly line.
But we find today's automated factories to be far more revealing. Here, the dif
ferent positions are occupied either by workers or industrial robots, depending
on economical considerations only. The actual interchangeability of human be
ings and machines illustrates the extent to which decontextualized routines can
dominate processes of divided work.

Machine and algorithm

Before entering on further discussion, we wish to underline that we have sep
arated the notion of machine from aspects such as power transformation, the
mere state-transition of some material, and most of its social context. With this
in mind, we now explain our view of formalization:

Formalizing means reducing an activity to its form.

The idea is to make an activity repeatable in order that it may support different
aims. Formalizing an activity, then means separating it from its concrete aim
and purpose, which leads to a formalism without any meaning as such, i.e., the
formalism is decontextualized. If we wish to understand an activity as a formal

10 Cf. [Bahr, 1983, Schonpfiug, 1989].

6.2 Software Tools in a Programming Workshop 261

process without understanding the meaning of this activity, it is crucial that we
understand how this activity is performed. In order to understand this how, we
use a language comprising the following parts:

• A finite set of atoms which represent the basic actions of the activity we
wish to formalize .

• A finite set of constructors which we use to relate a constructor and a finite
set of basic actions to a new action to which we give a name.

We thus understand a formalized activity recursively by breaking it down into
partial activities and constructors until we arrive at the basic actions. We for
malize an activity that we have understood intuitively by re-constructing it re
cursively from basic actions and constructors. We can actually realize the result
of this process, a formalism, in a construct without caring about its meaning:
we build a machine. The prototype for realizing this notion of a machine and,
at the same time, the most general means for denoting its basic actions is a
programming language.

If, however, we take formalization as a process which reduces meaning, it
seems obvious that software, algorithms, and formalisms - like machines - have
to be embedded into actual working processes if we wish to restore their meaning.
Originally, a formalism comes from the context of purposeful human activities,
and in the end goes back into this world, invariably changing it to some degree.
Therefore, it is useful to understand formalization as a complementary process
of de- and re-contextualizationll .

We have now outlined the connection extending from familiar activities, via
abstractions of an algorithm and its reconstruction in a machine, back to a
familiar handling of the machine. To summarize:

Formalism, formal language, calculus, or algorithm, on the one hand, and
machine, on the other hand, essentially mean the same thing.

When we equate the notions of machine and algorithm, we start from human
activities. Leaving aside the purpose of meaningful work, we focus on the routine
part of repeated activities. These activities we have decomposed into elementary
units and while reconstructing them, we have made them explicit. The formal de
contextualization and the subsequent explicit recontextualization are the essence
of our notion of the term machine. It is the machine that makes a routine denoted
in an algorithm constructively repeatable.

When we look at formalization as a design and construction process, it is
usually complemented by a process of utilization:

Our notion of the term tool is aimed at restoring software tools from the
formal machines of software construction which can be used in a familiar
way in order to arrive at meaningful results of work.

11 Cf. [Dreyfus, 1989].

262 Reinhard Budde and Heinz Ziillighoven

In other words:

While using software, we wish to look on it as a tool; and in another
context, i.e., while constructing it, we wish to look on it as a machine.

However, this concept not only describes two different viewpoints, but two dif
ferent ways of employing things:

While using software in our work, we wish to handle it like a tool; but
while constructing it, we wish to design its parts like a machine.

6.2.7 Machines as tools or automata

Employing software as a tool and a machine - this obviously places demands on
software development and use, that are neither evident nor common practice.
Thus, we must ask what happens when we use software systems that cannot
be handled in an intimate and self-evident way. In order to illustrate this as
pect, let us look first of all at the historical predecessors of the computer, the
classical automata12. The "appeal" of these automata and androids relied on
the fact that their internal mechanism was concealed, their gestures and poses
astounding onlookers. Their amazement was accompanied by the knowing look
of the engineer "behind the scenes". We realize that these automata, which were
constructed as machines, never worked in the same way as the familiar things
they represented; they were intended to appear as machines as well.

Let us take a modern automaton, e.g., a vendomat - a machine that reduces
operation and control actions to pressing buttons. Once set in action, some
"non-transparent" process is executed inside the automaton, presenting us with
its output. And we have no further means of influencing this process. We are all
familiar with the "comic" situation where the vendomat refuses to dispose the
desired item. Confused and at a loss what to do we start banging on the machine
and pushing buttoms at random.

If we transfer these reflections to software, we find there are systems which,
besides having been constructed as machines, also appear as machines when
employed by their users. Hence:

Software systems which appear as machines when In use will be called
automata.

One characteristic of software automata is the fact that our means of control are
reduced to presetting parameters. When we push the appropriate button, the
automaton sets in motion an internal process which is mostly beyond our under
standing and which, hopefully, will terminate in an acceptable result. A profound
understanding of software automata is confined mainly to their developers and
an in-group of "wizards" and "hackers" who see themselves as adepts. In order
to avoid striking a wrong note in this discussion, we wish to make it clear that

12 Cf. [Bahr, 1983, Sutter, 1988].

6.2 Software Tools in a Programming Workshop 263

we frequently choose to operate automata in our everyday work. And for that
matter, we do not normally bother to inquire about the process going on inside a
vendomat, as long as it spits out the desired packet of peanuts. Similarly, we are
not interested in the details of our print server's spooling as long as our graphics
and text documents are produced by the laser printer in a reasonable time and
are of acceptable quality. This holds for some aspects of our office work. But the
situation changes when we are working with a programming environment, be
cause, then, we wish to handle the majority of software components as software
tools, and not as automata.

6.2.8 Programming workshop versus software factory

Anyone building a programming environment is faced with the question of the
proper kind of overall perspective to choose as a guideline for design. We are
aware that it is not enough to provide a variety of unrelated software tools.
They have to have their proper location and order, if we wish to make good
use of the features and operations they offer. Current discussion on this subject
is divided between those favouring a factory perspective and those preferring
a workshop perspective. Today, the dominant perspective is based on keywords
such as software process, software factory or CASE tools13 evoking the image of
an automated, production-line software development process. It is a fair question
whether we are not indulging in some kind of nostalgia by using the metaphor
of the craftsman.

It is common to take the rather facile view of the historical development of
technology as a linear progression of mechanization, from handicraft to manu
facture, and finally to the factory. Such a view supposes a "natural" evolution
from hand tools (like the hammer) to mechanical machines (like the forge), and
eventually to automated production lines (like the rolling mill). In this view,
the evolution of technical equipment was complemented by the provision of the
proper type of "case" or location (workshop, manufactory, factory).

We believe that the different stages of technological development should be
primarily characterized by the means of cooperation and division of labour, and
not by the types of technical equipment used. Accordingly, we do not see the
crucial difference between a workshop and a factory in the fact that the one
contains hand tools and the other machinery, but in the different roles played
by the technical equipment within the process of specialization and cooperation.
In the context of a workshop, there is emphasis on supporting individual activ
ities by employing tools and automata14. On this basis, cooperation between
workers possessing different skills and qualifications can be optimized. In the
context of the factory, we find a completely different situation. Here, individual
craftsmanship is replaced by appropriate methods, e.g., the division of labour

13 CASE = Computer Aided Software Engineering.
14 We use these terms in line with our definition given in the previous section. An

instance of tool, then, might be an electric drill; and of an automaton, say, a photo
copying machine.

264 Reinhard Budde and Heinz Ziillighoven

and specialization in the manufactory, Taylorism and industrial engineering in
the factory. In consequence, work becomes routinized and mechanized. In such a
setting, human beings increasingly play the role of the unknowing link between
a conglomerate of technical implements. To summarize:

• Machinery within a factory context objectifies the routinized aspects of hu
man work activities and a specific state of the division of labour.
By coupling workers and technical implements to form integrated units, in
dustrial machinery reduces individual skills in favour of mechanized routines.
The aim is the substitutable worker rather than the specifically qualified ex
pert .

• Tools and automata used within a workshop context primarily support skilled
workmanship.
Cooperation and the distribution of tasks is maintained by people and not
by machinery, although technical equipment may support this process. In
this type of working environment, individual skills and abilities can unfold
and evolve.

If we look at the work of software developers, we find that its characteristics
are teamwork, skills and expertise of the individual, and cooperation. Of course,
there is a division of labour and specialization, for instance, the attempts to
establish chief programmer teams and programming pools. Still, there seems to
be little chance of arriving at an overall state of routinized tasks which could
lead to a sensible "implementation" of this division oflabour. There is also little
chance of setting up "software production machinery" . As evidence of a strong
endeavour in that direction, we find there are an overwhelming number of soft
ware products available which claim to support individual work and cooperation,
and scarcely any products geared to specialization and the division of labour.
Thus, we conclude:

The tasks of software developers can be more suitably compared with
the work of a craftsman in a workshop than with work in a factory.

If we analyze work in a factory we find that, on the one hand, routinized human
labour is replaced by mechanical routines and, on the other, that the whole
process is aimed at an economical optimization of re-production. The things that
first come to mind when talking about reproduction are assembly lines turning
out huge numbers of items. But even if we look at the small lots within CIM, it
becomes obvious that the difference lies only in the greater variation of processed
materials and in the recombination of the actual working units, there being no
departure from the basic principle of repeated mechanical working activities.

The workshop, however, can be characterized by its integration of manual
work, coordination, and design. We may well find differing degrees of innovation
and creative work within different workshops - depending on the type of prod
ucts and services offered - but in none of them will we encounter a complete
separation of planning, design and construction activities. For our discussion,
this means:

6.2 Software Tools in a Programming Workshop 265

• A factory is suitable for reproductive working processes.
A factory is geared to economical reproduction of a maximum number of
goods which are specified in detail beforehand. Essential planning and design,
and even production activities are taken out of the factory.

• A workshop brings planning, design, and construction activities together un
der the same roof.
A workshop is suitable for coping with individual requirements. Its' flexible
forms of organization promote attunement to individual customer needs and
wishes.

In principle, software development poses no problems as regards reproduction.
Copying programs is a trivial matter, the time factor being negligible. The cru
cial problems encountered in current software projects centre around planning
and development in accordance with user needs and wishes, and coping with
complexity, version and variant management. These aspects show a clear ori
entation of the work of software developers towards handicraft and workshops
rather than towards factory operations. We conclude:

Since planning, developing and coordination are the central tasks in soft
ware development - and not the mass production of goods - the pro
gramming workshop may be considered the proper working environment
for software developers.

By favouring the programming workshop as opposed to the software factory con
cept, we are by no means advocating an already obsolete form of social organiza
tion of work. It is not our intention to propagate craftsmanship in its historical
context, rejecting all types of industrial work. Thus, instead of harking back to
the era of craft guilds, we look at aspects of current craft work involving indi
vidual craftsmen produce commodities in cooperation with others. The crucial
aspect here is the close relationship between design, production, and evalua
tion. These activities bear the imprint of both individual and cooperative work.
The technical equipment employed in handicraft - be it hand tools, measuring
instruments or automata - can be found in various specialized forms that are
tailored to the needs of the respective craft. Depending on the requirements of
the different tasks and the respective skills of the workers, the utensils and tools
used exhibit different degrees of complexity as regards both their purpose and
operation. All these facts would seem to justify comparison of the craftsman's
use of tools in a workshop with the activities of the software developer. We
feel that such a comparison is warranted not only on a metaphorical level. It
is the way the tools and other equipment are employed and the similar degree
of cooperation and mechanization which suggest the analogy between software
development and craftsmanship and which set the context for designing a pro
gramming workshop.

If we reduce the factory and workshop perspectives to their technical core,
we may characterize their importance for software development as follows:

• A programming environment viewed as a software factory is a running pro
gram with a pre-defined concept of software development.

266 Reinhard Budde and Heinz Ziillighoven

This program contains a few exits, at which the human resource is supposed
to enter data unobtainable from any other (technical) source.

• A programming environment viewed as a workshop offers a set of tools, but
does not implement an overall strategy of software development. However,
it may be used to automate a selected set of familiar and routine activities
(such as change management or compilation).
Users define working processes by drawing on their knowledge of tasks, ma
terials and tools. The programming workshop "surrounds" the user with sets
of tools and automata, each with its own specific application and suitability
for a particular type of material.

If we consider the respective long-range aims behind the concepts offactory and
workshop, we can see the difference between these two views: The factory stands
for replacing human labour by machinery whereas the workshop promotes the
enhancement of skills and experience.

6.2.9 The programming workshop as a paradigm

Whether explicitly or implicitly, many software developers are governed in their
work by the idea that users must be prevented from making mistakes. They are
thus frequently led to the following series of conlusions:

• A major requirement for software is the avoidance of user errors.
• In order to be able to detect such errors, a model for the proper operation of

software has to be defined. This model must include the user as a formalized
element.

• Once this type of model has been defined, user activities can be checked for
conformity to these models.

This is why most software developers think it quite natural to design software
with a view to restricting the options open to users. For obvious reasons, there
is a strong link between this attitude and the industrial notion of machinery, the
mechanization of work, Taylorism and the present discussion on CASE tools.

Our view of software tools in a programming workshop is based on an em an
cipatory idea. Tools serve to extend the means and skills of users - to enhance
what they are able to do, see and understand when employing tools. Users are in
full control of their tools, and they are fully conversant with their workshop15.

The structure of a programming workshop, i.e., its organization, is depen
dent on the particular working context. Consequently, its structure cannot be
predefined in every detail by its developer. Moreover, a programming workshop
invariably bears the "imprint" of its users. Names, defaults, configurations, the
piles of papers and notes surrounding a terminal and filling the mailbox - all of
these are concrete indications of the individuality of a programming workshop -
which is far more pronounced than one would suspect at first sight.

15 A similar idea of giving skilled users complete command of their work is proposed
by Keil-Slawik (Chap. 4.4), by Nurminen (Chap. 7.2) and by Coy (Chap. 6.3).

6.2 Software Tools in a Programming Workshop 267

Work contexts and work styles are rarely adaptable to the formal represen
tations of tool hierarchies and call relations - which, after all, are quite simple
interrelations. Take, for instance, the grouping of windows on a screen, their
overlapping and the visibility of "relics". They denote interrelations and indi
cate similarities and characteristic differences in their respective content and
manner of operation which can never be captured by a predefined formalism.
Therefore, a programming workshop should not fix these arrangements and re
lations, but should provide mechanisms that help the users to arrange and group
the objects and means of work to their liking. These mechanisms should inspire
the imagination of users and not be an obstacle to it.

More important still, a programming workshop ought not to force its users
into a regulated working procedure which they can only change at a few points
and which is scarcely comprehensible anyway. If the programming workshop were
an automaton itself, and the user a part of it, then we would no longer be able
to speak of the user's responsibility for a meaningful work process, but would
have to place responsibility with the tool developer or the user organization's
management that assigned the job.

Even though users may not be tied to fixed working procedures, this still
does not mean that their work is free of restrictions. Programming materials
and software tools cannot be employed just as the user desires, nor are the
forms of cooperation with others arbitrary.

Our notion of the workshop should not be seen as some sort of magic wand
that the developer simply has to wave in order to accomplish any desired task.
In a programming workshop the work of developers employing different tools is
coordinated. Each tool has its place and order in the workshop 16 • Thus, interest
must focus on the organization of human work when designing a workshop. This
can only succeed, however, if the structure of the workshop is transparent.

Imagine, for instance, a programming workshop where permission to read or
write material files can be given by means of an access tool. The organization
of this workshop does not allow other users to modify reserved materials. De
spite this mechanism, tools do not "patronize" users. They do not hide anything,
but they are in line with the overall goal of organizing expert work on a team
basis. Consequently, the effect of the access tool is shown by all tools which
can be employed to material files. There may even be other - more "powerful"
- tools which can be employed by the experienced user to consciously "undo"
the effect of the access tool. When using the metaphors tool and material, we
emphasize that software tools should never hide or obscure programming mate
rials. By using the workshop metaphor, we indicate that all relevant aspects of
a work context should be visible. Hence, the concept of a programming work
shop presupposes the transparent compatibility of software tools. Generalizing
our example, this means that all software tools which can be applied to a par-

16 The aspects of place and order have generally been overlooked in the design of
programming environments, but we feel they are of crucial importance. Their close
relation to hermeneutic concepts like nearness, place, or orientation offers developers
new and inspiring design criteria.

268 Reinhard Budde and Heinz Ziillighoven

ticular material invariably show the same effects on that material caused by a
specific tool. Familiar tools thus open up an unwonted perspective when a new
tool is employed. This is why users gain new potential action through using new
software tools.

Well-designed software tools show their effects but hide details of their con
struction. Information hiding is, in actual fact, a design principle. The "interior"
of a tool is hidden, but not the material to which the tool is applied, because
effects on materials are not considered irrelevant implementation details. Quite
the reverse: many software systems work like automata hiding materials once
they are set in action by their users. Consequently, the user's scope of activities
is narrowed down and the potential risks of an activity cannot be adequately
foreseen. We all are familiar with situations in which we try to do a balancing
act along the precipice of well-known commands, each unsure step being a nerve
racking experience. Our scope is even further diminished, if new automata are
added to the system, bringing with them additional interrelations among sys
tem parts - interrelations that we do not understand, but we know, nevertheless,
must not be disrupted.

When we speak of the transparency of tools, this does not imply that they
will always function without interruptions (or breakdowns) in an imperceptible
(transparent) way. More importantly, it means that we are aware of the inter
relations between tools and of their specific effects on materials. Transparency
of tools is something we will eventually realize in the context of the workshop
as a whole. It is, after all, the task of the developers designing the tools within
a workshop to arrange equipment, places and environments in a clear and ac
cessible manner and to put up signs indicating where materials and utensils are
located. This enables users to work with the software tools of a programming
workshop meaningfully and efficiently.

Summary

We have outlined above our concept of tools and materials as metaphors for
understanding and designing the software components of a programming envi
ronment. Viewing software development from an emancipatory perspective, we
feel that the workshop perspective provides a more appropriate basis for design
than the factory perspective. The overall idea is to implement new means of
work for skilled users, instead of trying to formalize their working processes and
thus making skilled workers redundant. We also feel that the validity of idea goes
beyond the scope of programming environment design into the field of interac
tive application systems design and use. A programming workshop along with
the tools and materials it provides is not, then, a mere exercise in nostalgia, but
a pertinent answer to crucial questions facing software development today.

Acknowledgements

Many thanks to Phil Bacon for translating and polishing up this text.

6.3 Soft Engines - Mass-Produced Software
for Working People?
Wolfgang Coy

6.3.1 Engines and machines

We will investigate how the notion 'software engine' may become a useful meta
phor for the computer science community, which would reflect the actual status
of software practice and which may be understood as a guideline for software
development.

The notion of engines and machine systems is closely associated with the
industrial revolution after 1750. It is not the analytical disassembly of an en
gine into machine elements as assumed in the widely used definition of Franz
Reuleaux1 nor the mechanical or logical structure of an engine, but the industrial
synthesis of machine systems from engines and machine tools and the associated
organization of labour that defines the machine. Industrial production in the
factory is intimately connected with this development of machine systems and
therefore the organization of labour, engines and machines are closely related
notions2 •

6.3.2 Abstract versus real machines

The classical machine of the industrial empires is an artifact, developed as an
incarnation of mechanical processes, later enhanced by the power of steam and
electricity and other forces. But such a mechanical reduction is an ideological
scheme3 , which ignores the fact that machines are not and were never simply
material objects. The development of technical artifacts like machines reflect in
their material objects the process of human labour under industrial conditions,
and technical entities do exist outside human purposes.

Parallel to the mechanical interpretation of the machine there have been con
tinuing efforts in the technical and natural sciences as well in mathematics to
define more abstract notions of machines, divorcing this concept from the work
process. An important attempt in this direction is the definition of mathemat
ical machines as they were first developed and formalized in the context of the

1 Reuleaux followed Cardano. Many aspects of this development may be found in
[Strandh, 1979].

2 This is developed in some detail in [Coy, 1985].
3 The philosophers of the Enlightenment, especially Voltaire, but also the encyclope

dists, were willingly or unwillingly responsible for this narrow and abstract mechan
ical interpretation of machines. Cf. [Borzeszkowski and Wahsner, 1980].

270 Wolfgang Coy

'theory of computation' (and formal logic) by Alan Turing. Despite their 'uni
versality' with respect to symbolic computation, Turing machines still reflect
a basic work process, namely writing on a paper sheet. But Turing's machines
abstract from the writer who is simulated as a mathematical (or more precisely,
computable) function. They also abstract from real paper sheets, as the machine
tape is immaterial and potentially unbound, and from the contents of work, as
they formalize only a general concept of computability. This abstraction is a
useful formalization and a precise definition of the rather vague notion of com
putability; on the other hand it should be obvious that this abstraction is an
extremely restricted concept of a machine and that it could be re-introduced to
the material world only with this caveat. In fact, it is still an open question what
computability means in the physical world, as the role of logic in science is still
open to debate.

Following Turing's definition a multitude of mathematical machine notions
were defined, especially in theoretical computer science. Abstraction of their ba
sic working mechanism from a material implementation is characteristic for these
mathematical machines. They depart from the classical concept of machine, as
they no longer rely on a specific hardware implementation. They drop the whole
idea of a machine being a piece of mechanics or hardware. From this point of view
it appears only consistent to apply these definitions also to software packages.
Considering the power of software the name 'engine' was preferred to show that
these machines literally move data and software processes. A well known exam
ple is the notion of the 'inference engine' that constitutes the prime mover of an
expert system. This notion of an engine supports the quite clear separation of
the general logical inference process from the application-specific facts and rules
(and other entities). Of course the same process seems to occur with transla
tors for programming languages, in word processors or in spreadsheets. They all
constitute abstract machines or engines (if the latter notion is preferred).

But the mathematical abstractions including the pure software definition of
a machine is as misleading as Rouleux' mechanical definition in terms of ma
chine elements and structure. Both definitions drop the purpose and the use of
machines in work environments. Rather in contrast we propose the use of the con
cept of soft engines for programs including their hardware base, if these artifacts
serve people in the work process in such a way that they do not dominate this
work by their hardware or software characteristics. Not every software construct
may be seen as a soft engine. Soft engines describe computer programs which
become part of the work process and which display the generalized characteris
tics of tools4 or media. Both perspectives, tools and media, have been discussed
recently5. The perspective of a soft engine is not meant to exclude either aspect.
Soft engines describe therefore the actual state of professional computing and
constitute a guideline for the construction of useful software (and hardware).

4 A transclassical tool in the sense of Frieder N ake [N ake, 1986].
5 For the tool aspect see [N ake, 1986]' for the media perspective see

[Winograd and Flores, 1986].
See also Chap. 6.1 where "tool" is presented as a workshop-oriented metaphor.

6.3 Soft Engines - Mass-Produced Software for Working People? 271

The engine concept may be seen as directed against the extreme complexity
of DP systems, which developed mainly in the directions of universality and
abstraction. Universality and abstraction are powerful conceptual guidelines,
promising liberation from practical constraints. But they are also misleading if
they are over-interpreted. Artifacts of computer science (or informatics as it is
called in some parts of the non-English speaking world) are neither universal nor
abstract in a strict sense. They are products that were constructed for specific
purposes in specific domains, mainly for specific uses in work processes. The
universality and abstraction of computer artifacts represent only a failed re
interpretation of the real world of work and labour in the mathematical terms of
Turing machines and similar constructs. With the term soft engine both aspects
should be described more precisely and more modestly as broad applicability
(versus universality) and as symbolic transJerofwork situations to computational
models (versus abstraction).

If universality is to lead to a tool perspective it must be restricted to broad
applicability within a well-defined job context and not permitted a generality
in which the applicability of a program is no longer comprehensible to the user.
Certainly no one can comprehend the logical consequences of any but the most
simple programs, but it is possible to become engaged in a work process, where at
least the general purposes of a program within its defined application area may
be understood. Word processors are in the class of programs where experienced
users develop perspectives of use6 , though there is a broad applicability of word
processors. It should be noted that a major goal in the development of so-called
hypertexts7 is to prevent the user from being "lost in hyperspace". Other pro
grams with broad applicability are compilers, word processors, spreadsheets or
expert system shells8 , but none of these programs may be used universally in the
work process. The idea of broad applicability is not the result of universal possi
bilities of Turing machines or their equivalent in programming languages. Broad
applicability in the work process is meant to free the user from the necessity to
learn to use and interact with many different programs and to unify the use of
computers to a reasonable extent. Broad applicability should help to develop a
tool perspective - for the developer as well as for the user. It must be noted
that a universal Turing machine is applicable to all tasks, but that it will not
succeed in the purpose of unifying user interaction reasonably. Understanding
user interaction is an art - not a consequence of logic.

While some programs are simply too broad in their perspectives of use, oth
ers may be too narrow. A word processor with separate programs for text input,
for style definitions, for indexing, for spelling checking and for printing is cer
tainly too narrow in its applicability, but on the other hand it may be observed
frequently that useful programs become overloaded with features from version to

6 Though still a word processor may be used for quite unexpected purposes, such as
disassembling and reassembling machine code.

7 Cf. [Coy, 1989].
8 Cf. [Coy and Bonsiepen, 1989] and [Bonsiepen and Coy, 1990aJ.

272 Wolfgang Coy

version until they are beyond their appropriate level of use9 . Broadly applicable
programs must be reasonably broad and should be bounded by a social (usually:
work) purpose. Broad applicability is never an unrestricted universality, which
implements anything that could be easily included. A reasonable balance be
tween the possibilities of a program and its specific purpose must be developed.
Programs in work situations are constructed for specific purposes and these pur
poses should be reflected properly in their design - not more, not less.

Abstraction defines and separates different logical levels. DP systems usu
ally connect a large number of constituents in a wide variety of logical levels to
a working structure. Methodological discussions of the correct use of comput
ers focus on the best definition for the level of abstraction. This may be seen
in the early development of programming languages (macro-assembler, Fortran,
Cobol), operating systems (IOCS, OS/360, THE, Unix), computer architecture
(System /360), the GOTO controversy, the discussion of stepwise refinement
and other approaches to modular design. Since the complexity of modern com
puters extends to all steps from digital electronics and switching techniques
over logical design, computer architecture, operating systems and programming
languages10 to application-specific programming, the definition of conceptual
and logical structure becomes necessary. From the work perspective abstraction
demands that the flow of work is transferred to the computer program. A basic
step in this direction is the symbolic transfer of the work environment to the
computational model. In detail this may be a logical structure of the program
modules in which the supported work process may be re-identified by the user.
It may also be the graphical abstraction of the program's steps with icons, win
dows and terminal interaction that symbolizes the programmed process. Many
control room monitors in complex manufacturing lines are examples of symbolic
transfer, as control and steering of the manufacturing process is no longer per
formed directly but at the symbolic model of the machinery. This holds also
for the graphical terminals of a CNC lathe. Computer programs are much more
suitable for symbolic transfer and many discussions about graphical interfaces,
like the desktop metaphor, focus on the idea of symbolic transfer. Spreadsheets
are symbolic transfers of cashbooks and this is certainly the main reason for the
great acceptance of these programs. Symbolic transfer is the underlying process
that leads to the use of metaphors. If soft engines are to support work processes
they must show broad applicability as well as symbolic transfer.

6.3.3 Programming a computer or using a computer

Programrr..ing in a classical understanding is related to programming languages
(or programming notations as Peter Naur prefers to call them), which are to be

9 Anyone who is familiar with the versions I and II of the outline program 'More' will
notice such overloading, and the same may be said of Word Perfect 5.1 versus Word
Perfect 4.2. Of course, Unix was from the very beginning beyond any appropriate
level of understandability - except for some computer science addicts who like it just
that way.

10 Cf. [Coy, 1988].

6.3 Soft Engines - Mass-Produced Software for Working People? 273

translated by a compiler or interpreter into executable machine code, which in
turn are to be executed on real computers under real operating systems. But
command languages have usually nothing in common with the programming
languages whose code they are processing. Programmers must therefore learn
at least two formalized languages, namely the programming language and the
command language of the operating system. And they must understand the
underlying application. Using application programs avoids the process of pro
gramming but often lacks the flexibility that may result from the proper use of
a programming language. There are two obvious ways out of this restriction: to
ease the burden of programming or to use more flexible application programsll .

Among the early attempts to simplify programming were Report Program
Generators (e.g., the RPG languages of IBM), i.e., programming languages,
which support the programming of sub tasks of batch programs by providing
fixed formats for data input, data processing and data output. The intention
was to simplify the generation of reports based on existing data files; the result
can be seen as a reduced version of Cobol, much as early Basic may be under
stood as a stripped-down version of Fortran. It must be doubted that RPG really
eased the programming process by a sequential differentiation of program parts.
It seems not to attain a proper level of complexity reduction - something we
have learned in the meantime, slowly and painfully. But the adopted strategy
of "Keep it simple" is a valuable decision implicit in most successful structural
reductions.

Thompson, Kernighan and Ritchie, the main authors of Unix, made "Keep it
simple" the guiding principle of their operating system design. Simple procedures
like copying, sorting or printing a text file are executed with simple programs,
called filters. Filters are (usually parametrized) programs, which transform the
standard input file to the standard output file. As Unix command interpreters
(shells) may redirect any input or output, including the standard input and
standard output and as more complex command structures may be built by
forming pipelines of filters, it is easy to program complex work structures with
out leaving the operating system shell. Programming in a more classical under
standing (namely by using programming languages) is reduced and replaced by
the function of command structures on the operating system level. This is a real
step toward an easier use of computers and also a step closer to highly flexible
application programs, though not every task may be performed with a command
structure as not every mechanical task may be done with a Swiss army knife. But
the introduction of easily programmable command structures and their exten
sion in the programming language C is the basic contribution of Unix to modern
software design, which should not be obscured by long periods of line-oriented
(and human memory demanding) interaction, cryptic names12 and remarkable
errors of many Unix filters nor by the misunderstood flexibility of C. Despite its
methodological merits, the most influential contribution of Unix to the profes-

11 This is a real dilemma thoroughly discussed in [Brooks, 1987a].
12 My favourite abbreviation is dd, which stands for convert and copy (probably because

cc abbreviates the C compiler).

274 Wolfgang Coy

sion was probably to offer useful text editing facilities. Together with a relative
simple operating system interface UNIX transformed a general-purpose computer
to a dedicated word processing machine. roff, nroff and troff were proud ancestors
to many succeeding PC-based word processors like Wordstar and others - though
PC-based word processing is now more satisfactory than nroff, troff and TEX.
Word processors were the first Soft(ware) engines showing broad applicability
within a well-defined job domain and symbolic transfer of the traditional tools
of writers to a computer terminal. Together with the hardware, word processors
generate a specific, easy-to-use machine for the application-oriented user. Users
need not program the computer individually though it can be used for complex
and demanding tasks (like desktop publishing).

Although well designed word processing programs are capable of dealing with
demanding tasks, many observers found spreadsheets to be the real breakthrough
for personal computing - Visicalc being the prototype of this class of application
programs13. The main characteristic of these programs is the creation of a user
illusion14 as a result of successful symbolic transfer, which allows the system's
users to relate their paperwork with a dynamic screen image of number and text
cells. The several hundred years old Renaissance 'cassa-book' was turned into
a dynamic spreadsheet. The prime mover of a spreadsheet is a program gener
ator, which translates the necessary cell computation in a mechanical manner
into low-level programs. This process is more or less hidden from the casual or
uninterested user. Programming becomes a 'feature' of the application program.
Therefore spreadsheets may be viewed as program generators, which allow the
user to avoid programming at a low level. Spreadsheets are soft(ware) engines,
where the conceptual work at the application level remains the responsibility of
the users, though they may not even be aware of the fact that they are program
ming a computer. Spreadsheets sustain a unique use perspective; the user must
learn their use (i.e., programming!) only once and this may be done gradually
starting from basic to more advanced features. Since their introduction many
more applications, sometimes far removed from bookkeeping, were brought to
spreadsheets, e.g., digital circuit simulation or statistical analysis. These applica
tions were almost certainly beyond the imagination of the developers of Visicalc.
Modern spreadsheets like Microsoft Excel contain a full programming language
with their extensive macro-facilities15 , though casual users will not have the
impression that they program in a more classical sense of the word. The ba
sic advantage of such systems is in their broad applicability and their intuitive
appeal because of a successful symbolic transfer. Spreadsheets allow the use of
software without having to rebuild it from scratch with every new application16.

13 This was probably because print output did not offer a new perspective to computer
users until the advent of cheap daisy wheel and laser printers in the office.

14 Cf. [Kay, 1984].
15 Macrolanguages are discussed in [Gates, 1987].
16 Of course, it is not possible to use any software for all purposes but the construction

of reusable software modules seems to be a very promising aspect.

6.3 Soft Engines - Mass-Produced Software for Working People? 275

6.3.4 Characteristics of soft engines

Soft(ware) engines, whose first incarnations were discussed above, share several
characteristics to be discussed in more detail. This leads to an implicit definition
where an explicit definition is still open to coming developments.

(I) Soft engines are stand-alone application programs and program generators
which support interactive work with a broad but specific class of applications.
The class is extensive rather than single purpose (e.g. word processing, spread
sheets, numerical or graphical simulation, symbolic manipulation of mathemat
ical equations or some expert system task). The class is sufficiently specific that
a well-understood job can be symbolically modelled by computer means. To use
a soft engine is to use a computer, but hardware and software are seen by the
user as a unified machine in a tool or media perspective.

Soft engines are interactive program generators. They support the user by
hiding the actual low-level programming process as far as appropriate and pos
sible. In this sense, they are very high-level languages (relative to the present
high-level programming languages).

In general, soft engines are interactive programs. In some cases a soft engine
may be an embedded system as in CNC machines, some CAD workstations or
in certain CIM applications, were the interaction is not restricted to terminal
interaction. Not every program can be a soft engine; other types of programs are
batch jobs or fully automatic systems. The soft engine approach is one design
goal among others, though it is considered to be a very important one.

(II) Soft engines must be usable.
Usability is not a formal notion, but some negative properties can easily be
characterized. Usability demands at least a carefully designed human-computer
interface17, which allows the user to concentrate on the job to be performed
instead of focusing the user's attention to the machine (hardware, operating
system and program). In this sense the soft engine should help to develop a tool
perspective: the user must remain the acting subject of the working situation
while the computer remains a technical device, object or medium of the work
process.

(III) There is no need to program a soft engine in order to use it.
Soft engines are application programs and they may be program generators,
generating executable (though in detail hidden) programs for the user, but the
user needs not learn a classical programming language with all levels of hardware
and operating system.

(IV) The user may program a soft engine.

Soft engines are adaptable systems. Adaptability must remain compatible with
usability. Programming soft engines is simplified in relation to classical program
ming languages with macro-structures. The engine may include an interpreter
with a simple macro language. lotus 1-2-3 and Microsoft Excel are examples of

17 Cf. [Nievergelt, 1983].

276 Wolfgang Coy

programs with extensive macro facilities. Apple HyperCard is enhanced by its own
programming language HyperTalk (which may be used, though new applications
may even be constructed without using it explicitly).

Adaptability does not mean automatically self-adapting systems; these bear
the danger that users are irritated and lose their role as the subject of the work
process. This would destroy the tool perspective of a soft engine (and therefore
destroy the property of being a soft engine).

(V) Soft engines may be embedded in complex work processes.
This holds for work processes which use a computer among other tools and re
sources as well as for work processes where other computer programs in addition
to the specific soft engine are used. The necessary interaction between programs
is not generally solved today (or solved at all), but the 'desktop' metaphor more
and more used with workstations and PCs may be a step in the right direction
(despite the fact that most if not all screen desktops are much too small).

(VI) Not all software products can be soft engines.
The concept of soft engines seems hardly to be compatible with present main
frame terminals or with process automation. Fully automated systems will not
be soft engines as they are not used interactively. Line-oriented CNC terminals
may not lead to soft engines as the numeric display of production data will
hardly allow the user to concentrate on the work process. Transaction systems
with line-oriented terminals can hardly be soft engines as they offer almost no
possibility for users to adapt the system to their working conditions and require
ments. The notion of a soft engine is therefore a selective one, which describes
only one (though one important) aspect of software production - mainly in the
mass market of PC and workstation programs.

The (implicit) concept of a soft engine is becoming endemic in more and
more working areas, and it seems that the successful application of the stated
characteristics of soft engines turns programs into successful programs. Some
more recently developed simulation programs like Stella allow the graphical sim
ulation of complex dynamics on the basis of modified state diagrams. This is
close to paper and pencil simulation with the enormous advantage of a fully
dynamic simulation process. The same holds for some programs for the dynamic
manipulation of mathematical equations like Stephen Wolfram's Mathematica.
Some expert system shells like KEE and Nexpert Object demonstrate elegantly
integrated graphic environments allowing the development and manipulation of
stored rules and facts and good visualization of the modelled processes.

6.3.5 Soft engines: A new paradigm for software
engineering?

Like all software products, soft engines are very complex entities. Their produc
tion should be measured against the known procedures of software engineering
- and even more against its deficits. There is a basic distinction in comparison
with government or corporate mainframe-based single-purpose solutions still in

6.3 Soft Engines - Mass-Produced Software for Working People? 277

common use. Soft engines are mass products whose typical hardware is a PC
or a workstation. This means that some steps of user-tailored traditional soft
ware engineering may not be applied. But the market for standard software is
steadily growing. In 1988 nearly two-thirds of the West German software sales
were standard software; 18% of the total was for use with PCS1S.

Fully automated versus interactive systems

The basic technical decision for the design of a computer-based system is: Should
the system be fully automated or should people use the computer interactively
in their work process? Fully automated systems can be applied successfully and
there are many industrial systems in which the interaction between humans and
computers is reduced to zero. With the growing number of application fields
there will be more and more tasks which may not yet nor in any foreseeable
future be fully automated, because we do not know how to achieve it or be
cause it is too expensive or sometimes because we do not want it. Among the
disagreeable effects of classic DP implementations are systems that try to au
tomate as much as possible and leave the unavoidable 'rest work' to a human
operator. This changes the user's role from a working subject to the operator of
a machine19 . Such crippled systems will never achieve the perspective of a tool
and therefore they cannot be soft engines. If the encapsulation of the program as
a completely automated system is not wanted or not possible or too expensive,
the system should be designed explicitly as an interactive program that supports
users in their work process. Such systems can and should be constructed with
the guideline of a soft engine in mind.

Specific versus unspecific definition of the application

Software engines are, like all software, subject to a software life cycle which
extends from the initial specification to product maintenance, though there are
some specific constraints. In general the specification of a soft engine is difficult
because it is a mass product with a large number of possible applications - some
of which may not even be known in advance. Typically there are new applications
for spreadsheets from time to time, and fields of application to be explored
with simulation engines and expert system shells are hardly foreseeable2o • The
right choice of the initial extent of a soft engine constitutes its main software
engineering problem: Which facilities should be included and which should be
left out?

18 Cf. [IDC, 1989].
19 This is not unique to data processing. On the contrary, nearly all factory work may be

characterized by the conceptional switch of using a tool to working in a mechanized
environment. Marx pointed out that this change of the relation between subject and
object defines the industrial factory.

20 Cf. [Coy and Bonsiepen, 1989].

278 Wolfgang Coy

The absence of faults versus fault-tolerant design

The user interface should offer the skilled as well as the unskilled user a task
oriented engine (as opposed to a computer with an operating system and some
application programs). On the other hand this engine should be easily extensible
by the use of macro-facilities and it should allow integration in complex work
processes.

In the context of the user interface, fault robustness gains major importance.
It is obvious that a program must be stable in the presence of faults, recognize
the fault and pass an understandable fault message to the user. But the demand
for fault tolerant programs is much more. It is an alternative to the implicit
technical assumption that programs may be fault-free, an illusion that is contrary
to all technical experience. Instead we expect soft engines (like other well-defined
software) to be able to work as long as possible even when some elements of the
program are out of order. Prerequisite for such gracefully degrading systems are
complex methods of fault diagnosis like the ones now developed with some rule
based diagnostic systems. This is an active but still largely unexplored area of
computer science.

Display of programs versus display of working processes

Another aspect of well-designed user interfaces leads to symbolic transfer as the
intuitive visualization of the basic work processes supported by the soft engine.
Neither the program structure nor the computer code should be displayed on
the screen unless necessary (or wanted). The prominent content of this display
should be a symbolic image of the work process. With spreadsheets and word
processors this is not too difficult because the image of a paper sheet on the
screen is intuitively acceptable. But even this demands a graphic display instead
of a line-oriented screen. At Xerox PARC the desktop metaphor was developed
that makes the use of computers in an office environment more agreeable. Similar
developments may be found in the industrial environment with graphic displays
of CNC lathes or with control room monitors of complex production lines. It
should be clear that we have taken only the first steps in these directions and
that the whole problem of screen-based visualization is by no means solved.

Usability

Fault-tolerant software and an intuitive reflection of the work process are only
aspects of the more basic notion of usability. The term usability stands for a
design which exhibits a friendly attitude towards the unavoidable faults users
make. The computer industry sometimes prefers the term user-friendliness, but
the whole issue seems to rest in the PR departments rather than in the engi
neering departments. Though the terminology is debatable, we cannot take the
burden from systems analysts and programmers to develop usable systems. Us
ability is not simply a technical notion, as an agreeable work situation depends
on many technical and social factors. It is not simply the technical design which

6.3 Soft Engines - Mass-Produced Software for Working People? 279

implies usability of computers in the work environment. But a sloppy design of
the user interface almost certainly prevents any satisfying use of the product.

U sing a tool versus operating a machine

Introducing soft engines offers users the possibility for task-oriented work and
should banish the work resources 'computer' and 'program' into the background
of their attention. One approach could be to give the program (implemented as
a soft engine) the perspective of a tooPI. Of course this metaphor, much like the
desktop metaphor, is not free of problems - mainly because metaphors should
not be stretched beyond their limits. Positive aspects are that they keep the
relation of human subjects to the mechanical support of the computer. On the
other hand, there are obvious limits. One limit occurs with telecommunication.
Even the phone may be handy for many people (much in the sense of Winograd
and Flores, who follow Heidegger in his notion of readiness-to-hand), but it
may be considered strange to call a phone system a tool. The same holds (even
more) for computer networks. Here the idea of a technical medium arises, which
allows another description of readiness-to-hand. We should keep in mind that
the primary goal of software production is to integrate hardware and software
in such a way that it moves to the users' mental background (or vanishes) in the
work process. Keeping this in mind permits the design of soft engines.

Soft engines: A new leitmotiv for design

Soft engines may be a new leitmotiv for software design, integrating well proven
old as well as some new imperatives. The values of such a redirection of design is
not so much in the single characteristics of soft engines but in a wise integration of
these characteristics. We have experienced some first and preliminary examples
of soft engines. They were constructed without explicitly thinking about a new
software design guideline; the next designs may use the framework of soft engines
explicitly.

Why is it necessary to change the present direction of software design? Mainly
because the 'traditional' methods of software engineering do not cope sufficiently
with the social embedding of computers in the work process. The software de
sign process is now in the methodologically unpleasant situation of Feyerabend's
"Anything goes" or perhaps even in the worse situation of "Nothing goes (any
more)" 22. The basic issue of the long-lasting software crisis23 remains open:
adapting software production to social reality is still a wide and open field of
research. The concept of soft engines is certainly no perfect way out of this situ
ation but it may show a first step in the right direction, at least on the technical
side of the problem and restricted to certain kinds of mass product.

21 Winograd and Flores use this analogy, citing Heidegger, stating explicitly that a
tool must be present-at-hand. Cf. [Winograd and Flores, 1986] or
[Budde and Ziillighoven, 1990].

22 Cf. [Feyerabend, 1975].
23 Cf. [Bonsiepen and Coy, 1990b].

6.4 Artificial Intelligence:
A Hermeneutic Defense
Thomas F. Gordon

6.4.1 Introduction

The field of Artificial Intelligence (AI), from its very beginnings in the 1950s,
has been criticized for its name as well as its ambition. Most of the debate
concerns the possibility of artificial intelligence and presumes there is indeed
some thing which is intelligence; the only question has been whether or not
artificial systems can be built which exhibit, or have, this thing. That is, the
debate has remained for the most part within the rationalistic tradition. In
this section, I would like to explore two alternative approaches to this issue.
The first considers the consequences of viewing artificial intelligence as another
metaphor for computing. That is, perhaps certain kinds of computing systems
can be usefully viewed as being like intelligent beings in some significant way.
An immediate consequence of this view, of course, would be a lowering of the
aims and ambitions of the field. The claim that a system displays something like
intelligence is surely much weaker than the claim that it is intelligent.

However, I will reject viewing AI as a metaphor for another reason. The no
tion of metaphor presupposes that words do indeed have a core of certain mean
ing, their literal meaning. The metaphorical meanings deviate from the literal
meaning in various ways, by removing some essential element of the definition
of the term. By arguing that AI uses the term "intelligence" metaphorically, one
would imply there is another, literal meaning.

Instead, I propose taking the lessons of hermeneutics seriously by accepting
that terms have no static, context-independent, literal meaning. No one use of
the word "intelligence" can make an exclusive claim to legitimacy. The focus of
the debate about AI should not be its possibility, but rather the suitability of
using the expression "artificial intelligence" in particular social or institutional
situations for some particular purpose. Thus, whether or not it is helpful to speak
of some computer system as being intelligent, cannot be decided conclusively in
the abstract. The risks and opportunities presented by the contingencies of each
case need to be considered.

This argument turns Winograd and Flores' use of hermeneutics to criticize
Artificial Intelligence on its head. Their argument is unpersuasive, as it attempts
to restrict and delineate the meaning of intelligence in a rationalistic way, while
at the same time denying the validity of this rationalistic tradition. If we accept
the lessons of hermeneutics, then we must also drop a na·ive correspondence
theory of meaning. If intelligence does not denote any particular class of objects,
then debates about whether or not certain kinds of machines can be members of

6.4 Artificial Intelligence: A Hermeneutic Defense 281

such a class become vacuous. However, by abandoning this kind of rationalism,
we are left with the task of finding alternative ways to critically examine and
evaluate AI systems, while avoiding rationalistic debates about what is or is not
intelligence. I discuss three possibilities, based on economics, natural science and
law.

Insights from law and jurisprudence will play an important role several times
here. For some time now, I have been active in the interdisciplinary field of
artificial intelligence and law. In jurisprudence, there is a history of reflection
about the nature of reasoning which is comparable in depth and richness to
the philosophy of science and mathematics. Within jurisprudence, the limits of
a rationalistic perspective have long been appreciated, although the discussion
about the consequences of these limits continues. For example, it is recognized
that the meaning of concepts is "open-textured" and evolves over time, that
normative considerations are of central importance when deciding whether to
subsume some event under a general term, and that it is futile to try to construct
a "heaven of concepts" for classifying all future events.

Before continuing with a more detailed discussion about these three ways of
viewing AI, it may be useful to recall some of the various points of view about
the nature of logic. Although the significance of logic for AI is often debated,
there does not seem to be much controversy any more about what logic is. This
was not always true. I am not well enough acquainted with the history of logic to
know why the debate has quieted down; but I doubt it was because the various
issues were settled. Has the arena for debating the various issues involved shifted
from logic to AI? Stephen Toulmin, in his The Uses of Argument l listed these
positions respecting the subject matter and purpose of logic:

Logic as psychology. Logic is concerned with the "laws of thought" , not with
pathological, defective thinking processes, but with "proper, rational, nor
mal" thinking, "the working of the intellect of health".

Logic as sociology. Rather than the individual human mind, it is the "habits
of inference" which have been "developed in the course of social evolution"
that are of interest to logicians.

Logic as technology. Rather than an empirical science about how (healthy)
persons actually think, logic is viewed as a craft, a collection of techniques
for effective thinking.

Logic as mathematics. Logic is neither science nor art (craft), but a special
field of pure mathematics concerned with the properties of an abstract set
of objects such as "logical relations" .

Logic as "generalized jurisprudence". This is the view developed by Toul
min in The Uses of Argument. Logic is concerned with the "soundness of
claims" , the procedures by which claims are "put forward, disputed and de
termined" . Legal disputes are viewed as just a special case of rational dispute
for which the procedures have "hardened into institutions" .

1 [Toulmin, 1958]

282 Thomas F. Gordon

One could just substitute "AI" for "logic" in the above list to get a list of
some arguable positions about the proper subject matter of AI. The formulation
of some of the items would have to be modified somewhat. The technology
argument, e.g., would have to distinguish between making tools for assisting
effective thinking and machines which themselves think. To my knowledge not all
of these positions have been taken; the technology and psychology positions have
received the greatest amount of support. Of course, as a lawyer, I would be willing
to argue that AI, too, can profitably be viewed as "generalized jurisprudence" .

6.4.2 The rationalist debate about AI

The usual debate about the possibility of artificial intelligence focuses on three
issues: 1) What is intelligence; 2) Can, as a matter of principle, intelligent ma.
chines be constructed; and 3) If the second question is answered affirmatively,
how? Taken for granted in these discussions is the adequacy of the scientific
method for addressing these questions. Notice also that here the ambition of AI
to construct intelligent systems is understood literally. In the next section we
will explore the view that AI is not really about intelligence at all.

With respect to the first question, neither the existence of a thing called
"intelligence" nor the possibility of delineating the class of intelligent things in
terms of necessary and sufficient properties is called into question. The debate
centers around which properties are necessary and which are typically associated
with intelligence but not strictly required before one is willing to attribute intel
ligence to some object. The point of John Searle's "Chinese Room" Gedanken
experiment, for example, is that understanding is, in his view, an essential part
of intelligence2 . Searle claims he would be unmoved by an AI system which
could automatically translate one natural language into another. Even if a com
puter could be programmed to adequately and convincingly perform this task, he
would be unwilling to attribute intelligence to the machine as he is convinced his
thought experiment shows that mere performance does not imply understanding.

Also along this line are the arguments claiming an intelligent system must be
embedded in the "real world" . The claim is that a certain kind of robot might
be said to be intelligent, but not for example a chess playing program. Chess
programs do not have sensors and manipulators. They transform strings of input
symbols into strings of output symbols and the locus of intelligence, according
to this line of argument, remains with those persons who interpret these strings
in order to make their next move in some game of chess. Intelligence here is
viewed as an attribute of autonomous systems struggling to be successful in
some environment.

For some, intelligence is a defining characteristic of certain "higher" forms
of biological life, humans in particular. From this perspective, no machine can
be intelligent simply because a machine is not an animal. That is, the defining
characteristics of intelligence are so intimately connected with being an animal
that, as a matter of definition, no machine can sensibly be said to be intelligent.

2 [Searle, 1980]

6.4 Artificial Intelligence: A Hermeneutic Defense 283

Cognitive science, on the other hand, is based on the premise that it can
make sense to talk about intelligence abstracted from biology. (This is what
distinguishes cognitive science from cognitive psychology.) Animal and human
intelligence are viewed as special cases. This perspective opens the door to defin
ing classes of intelligence where one or more of the defining characteristics of
human intelligence are missing. One could postulate a form of intelligence, e.g.,
where understanding, in Searle's sense, is not required. Perhaps chess machines
could be said to display one of these other forms of intelligence. The problem
with this strategy is to find a taxonomy of intelligence which is not arbitrary
and construed. Why call something "intelligence" if it is not sufficiently related
to the common sense meaning of the term?

Whether AI is achievable obviously depends on the particular view of in
telligence adopted. In Understanding Computers and Cognition, for example,
Winograd and Flores deny the possibility of AI by restricting their view of in
telligence to human intelligence 3. The AI projects they criticize do indeed aim
to achieve human levels of performance in such domains as natural language
understanding.

Following the approach articulated by Rodney Brooks4 , there is a project
underway here at the GMD, lead by Christoph Lischka, to construct a small,
autonomous, mobile robot displaying the intelligence of a certain kind of lizard.
Although the goal is not human levels of intelligence, this project is ambitious
enough. Perhaps the robot should be able to catch small insects, for example.
Whatever the merits of Winograd and Flores' arguments concerning AI and
human intelligence, it remains an open question whether these more modest
goals are realizable.

The third issue, how to achieve AI, is too often confused with the second
issue, the possibility of AI in principle. Newell and Simon's physical symbol
system hypothesis (PSSH) has played an important theoretical role in the history
of AI5. Its importance is such that the PSSH is often confused with AI itself.
Elaine Rich in her textbook on AI, e.g., states that the PSSH lies "at the heart of
research in artificial intelligence" 6. Indeed the central role of the PSSH is so great
that those committed to other approaches to constructing intelligent systems,
such as some connectionists, claim they are no longer doing AI research!7

3 [Winograd and Flores, 1986]
4 [Brooks, 1986]
5 [Newell and Simon, 1976]
6 [Rich, 1983, p. 3]
7 According to Rich, Newell and Simon define a physical symbol system as follows:

"A physical symbol system consists of a set of entities, called symbols, which are
physical patterns that can occur as components of another type of entity called an
expression (or symbol structure) At any instant of time the system will contain
a collection of these symbol structures. Besides these structures, the system also
contains a collection of processes that operate on expressions in order to produce
other expressions ... A physical symbol system is a machine that produces through
time an evolving collection of symbol structures. Such a system exists in a world
wider than these symbolic expressions themselves." The Physical Symbol System

284 Thomas F. Gordon

Why should AI be committed to any particular hypothesis concerning the
features sufficient or necessary for an intelligent machine? Indeed, why should
AI be committed to the digital computer? There should be room within AI for
alternative approaches and hypotheses. Physics doesn't stop being physics when
a new theory of the universe is proposed. If one views intelligent machines as
being the subject matter of AI, then there seems no pressing need to restrict the
field to a particular type of machine.

6.4.3 AI as metaphor

It may appear that one way to avoid some of the difficulties of the hard line
view that AI is about building intelligent machines is to argue that AI's use
of the term "intelligence" is metaphorical: AI systems are not really intelligent,
they just have some features in common with intelligence. This would allow us
to preserve the conventional meaning of intelligence without necessarily limiting
AI's ambition regarding the levels of performance to be achieved. The adequacy
of the Turing test for testing intelligence would be a non-issue, as real intelligence
would not be claimed.

Unfortunately, this argument is not without problems. First, it does not
completely avoid the problem of defining intelligence. As AI aspires to be a
science, its subject matter needs to be delineated rather more precisely than
some unspecified relation to intelligence. The task here is however simpler, as
we can be satisfied with a set of features characteristic of intelligence, without
being concerned with whether the set is exhaustive or includes all elements
necessary for real intelligence. To justify a metaphorical use of intelligence, its
literal meaning must be understood to some extent; but it is not necessary to
precisely define intelligence in terms of necessary and sufficient conditions. If
the claim is made that an AI system is intelligent, then the door is open for
arguing that some necessary feature of intelligence is missing. The claim that
an AI system behaves as if it were intelligent is much weaker. The absence of a
necessary feature would not rebut the claim.

Secondly, this approach to defining AI is not in the end significantly different
from the approach taken in cognitive science. The history of science shows that
it is not unusual to apply an everyday word metaphorically to describe a new
technical concept. Through use in the scientific discipline the term acquires a new
technical meaning. Examples include the terms "field" and "force" in physics.

The use of metaphor has its justification. Languages such as English do not
encourage the creation of new terms, and metaphor allows a language to be
extended with new senses and shades of meaning for its existing vocabulary. It
also allows a new concept to quickly acquire meaning by inheritance from some
existing sense of the term. However, the use of metaphor brings with it the risk
of misunderstanding. The complete meaning of the prior sense is not carried over

Hypothesis (PSSH) is: "A physical symbol system has the necessary and sufficient
means for general intelligent action." [Rich, 1983, pp. 3-4J

6.4 Artificial Intelligence: A Hermeneutic Defense 285

into the new context, and it may not be apparent just what the metaphorical
use of the term is intended to mean.

The main problem with viewing the "I" in AI metaphorically, is that intelli
gence is an abstract, open-textured concept8 . If intelligence is to be understood
metaphorically within AI then arguably the AI community should make an effort
to distinguish between the metaphorical, technical use of the term and its every
day, common sense meaning. However, this is easier said than done. Intelligence
has no well-understood literal meaning. Our very understanding of intelligence
continues to develop along with our research in AI.

William C. Hill has recently argued that, not only is AI a metaphor, it is
a poorly chosen metaphor9. Hill claims that most AI research has not been
about intelligence at all, not even metaphorically, but about constructing new
"computation-based representational media" , i.e. new forms of communication.
He first claims that AI is a phrase such as "horseless carriage, wireless tele
graph, iron horse, glass teletype or artificial writing" , a phrase which "describes
a new technology wrongly in terms of an old familiar one" . But unlike these other
terms, "artifical intelligence" distracts attention from the new technology's prin
cipal use, the computer's potential for improving communication. Actually and
"even worse", Hill goes on to say, AI is not like "wireless telegraph" as it de
scribes new technology not in terms of other familiar technology but in terms of
mental phenomena, causing irrelevant arguments about the nature of mind and
in telligence.

Hill's arguments have a great deal of merit, at least for those of us who,
upon reflection, have become involved in AI precisely because they are interested
in new forms of effectively representing and distributing knowledge and ideas.
However, each of us needs to decide for ourselves where our interests lie, and a
great number of AI scientists are indeed principally interested in pursuing the
goal of creating intelligent machines.

6.4.4 A hermeneutic interpretation of AI

The arguments outlined above about the nature of AI do not give up what
Winograd and Flores call the "rationalistic tradition" of Western science. They
view this tradition as being based on mistaken premises regarding the nature of
understanding and knowledge, drawing principally for support from Heidegger's
hermeneutic theory of understanding, Maturana's theory of perception and cog
nition and Searle's theory of speech acts. Each of these thinkers arrives at much
the same epistemological stance, although they start from very different intellec
tual traditions. Heidegger is an existentialist philosopher, Maturana a biologist
and Searle a linguist.

It would be too much to try to replicate Winograd and Flores' arguments
here. It is also unnecessary for our present purposes. I do not intend to chal
lenge or support their position, but to examine some of the consequences for AI

8 [Hart, 1961]
9 [Hill, 1989]

286 Thomas F. Gordon

of accepting their principal conclusions regarding the nature of knowledge and
understanding. So, the next few paragraphs will be limited to a summary of this
point of view. Although the arguments are difficult and foreign at first, the main
insights are not so difficult to grasp when stated informally in everyday terms.
Let us start with language.

According to the rationalistic tradition, words have literal meaning. That is,
words are thought to correspond to objects in the world. They denote things in
a context-independent way. Searle's speech act theory challenges this notion by
arguing that the meaning of a sentence is always dependent on some particular
conversational context or situation. The speakers, their goals and intentions need
to be considered when trying to get at the meaning of some "illocutionary act" .

I am not sure whether Searle dealt with this aspect of meaning in his work,
but the context dependence of meaning implies that words acquire new meaning
through use. Words have an "open texture". In the philosophy of law, H.L.A.
Hart, especially, stressed this quality oflegal terms10 . His position on this subject
is a moderate one in that he asserts that terms do have a core of certain meaning.
There are cases where a term is clearly applicable. Open-texture is limited to
the boundary.

This brief mention of legal reasoning provides a nice opportunity to shift
our attention to Heidegger, who adopted and generalized the term "hermeneu
tics" from its prior context. Prior to Heidegger, hermeneutics had been the art
of interpreting legal and religious texts. It had been an approach to trying to
understand the intended meanings of a text long after it has been written, by
persons divorced in time, space, language and culture from the text's original
context.

Heidegger generalized hermeneutics to the problem of an individual trying
to understand his world. Not only is the connection between a term in some
language to objects in the world tenuous, so too is the connection between an
individual's conceptualization of the world and the world itself. The classification
of objects, indeed the identification of objects, does not preexist, but occurs
during the process of interaction with the environment. The particular division
of the world into objects, properties and classes arrived at depends on a person's
unique history, goals and perspective. Contrast this view with the rationalist
tradition, where there is thought to be an "objective" view of reality, where the
goal of science is viewed as arriving at, by application of the scientific method,
the one true theory of the world.

As I understand Winograd and Flores, the relevance of Maturana's work
here is that he explains in biological terms the dependence of perception on the
structure of the perceiving organism. Compare this with behaviorism, where it is
assumed that stimuli can be identified, measured and categorized independently
of the structure of the particular organism. Winograd and Flores use Maturana's
conclusion that there is no objective perception to support their critique of
rationalism.

10 [Hart, 1961]

6.4 Artificial Intelligence: A Hermeneutic Defense 287

Let me use the word "hermeneutics" as the general term for this alternative
orientation towards understanding and knowledge, without necessarily restrict
ing ourselves to Heidegger's particular interpretation. One difficulty with the
hermeneutic viewpoint is that any attempt to convey it must use language,
and the conventions of our language are so deeply steeped in the rationalistic
tradition that the hermeneutic viewpoint appears mysterious, mystic or even
self-contradictory. Any description of the hermeneutic perspective is couched in
terms of a theory about perception, knowledge and understanding, which gives
the impression that the terms of the theory denote objects in the world and that
the theory is subject to verification or, if you prefer, falsification. One plays the
game of natural science while refuting the rules of the game. The theory gives rise
to the kind of tension experienced with the various instantiations of the Liar's
paradox. To understand the hermeneutic perspective, one has to temporarily
suspend disbelief as one does when reading a novel or viewing a movie.

In the last section we discussed the possibility of a metaphorical interpre
tation of AI. The usual interpretation of metaphor does not diverge from the
epistemology of the rationalistic tradition. On the contrary, the whole notion of
metaphor depends on a distinction between the literal context-free meaning of a
term and a novel use which is in conflict in some way with this literal meaning.

Now we are at a point where we can discuss Winograd and Flores' use of the
hermeneutic perspective to criticize AI. They argue that AI is deeply embedded
in the rationalistic tradition, pointing especially to Newell and Simons' Physical
Symbol System Hypothesis. Their interpretation of the PSSH, which I suppose is
the usual interpretation, supposes that symbols "can be understood as referring
to objects and properties of the world" 11.

There may be a number of ways to rebut Winograd and Flores' treatment of
AI. One could argue for another interpretation of the PSSH, for example. Rather
than supposing that symbols denote objects in the world, one could hypothesize
that symbol processing of a certain kind is a sufficient and necessary condition for
higher kinds of intelligent behavior, even though symbols do not denote objects
in the world. That is, the PSSH need not imply a na'ive correspondence theory
of meaning.

Let us focus on another kind of rebuttal here, however. This is my main
point: If we accept the hermeneutic viewpoint, then we must also accept that
the term intelligence does not denote any particular thing, but may vary in
meaning depending on its use within some particular context. One can argue, as
lawyers do, that a particular interpretation in some particular context (or case)
would lead to certain desirable or undesirable consequences, or create certain
risks or opportunities, but not generally, abstracted from some concrete context,
that only this or that concept of intelligence is legitimate. That is, if we intend
to adopt a hermeneutic perspective, we cannot at the same time use rationalistic
arguments to deny the possibility of AI. Hermeneutics requires other criteria for
evaluating scientific hypotheses, indeed it presupposes an alternative philosophy
of science.

11 [Winograd and Flores, 1986, p. 74]

288 Thomas F. Gordon

Of course I cannot pretend to develop an alternative, hermeneutic philosophy
of science here. But it may be that such an alternative science would have some
characteristics in common with jurisprudence, that the criteria and methods
used to evaluate scientific theories would resemble the methods used to decide
legal cases. This idea is explored a bit further in the next section.

6.4.5 Evaluating AI systems

Rather than trying to define intelligence in the abstract, and then arguing about
whether or not artificial intelligence is possible or desirable, it may be more
constructive to focus our attention on the problem of evaluating specific AI
systems. An understanding of the limits and potential of AI can evolve through
the practice of constructing and using specific systems. Concrete systems, used
in specific situations, permit the interests of users and system designers to be
taken into consideration.

Again, the legal analogy is useful here. Vague terms are often deliberately
used in statutes as a way of deferring decision-making from the abstract setting
of a parliament or congress to the courts, where the term can be fleshed out
during the process of deciding concrete cases. A constitution may refer to "due
process" or a statute to "reasonable cause", without further defining these terms.
This is as it should be. Legislatures lack the vision to foresee all the consequences
of a law.

Similarly, the field of AI can be characterized very abstractly, as Elaine Rich,
for example, does when she writes AI is "the study of how to make computers
do things at which, at the moment, people are better". What is or is not an AI
system can then be decided, if not definitely, on a case by case basis.

This approach to delineating the field is not merely an attempt to avoid the
difficult issue of defining intelligence. Rather, taking the hermeneutic perspective
seriously, it is a recognition that concepts like intelligence cannot be defined.

How then can an AI system be evaluated without returning to the futile
problem of defining intelligence? Toulmin claims there can be no general domain
independent method for evaluating arguments. The same claim can be made for
evaluating AI systems. Which methods are appropriate depends on the interests
and goals of the system designers and users. Without striving for completeness,
here are three approaches which come to mind:

The marketplace approach. For AI products, an economics perspective may
be appropriate. There is no need to decide whether the system really dis
plays intelligence; it is sufficient that some community continues to find the
product useful. There is a lot of hype in the AI industry, as in all industries.
We in AI should find this no more or less disturbing than in other fields.

The natural science approach. When the purpose of an AI system is to
test an hypothesis about some particular cognitive process, then the usual
methods of natural science may be appropriate. I hesitate to call this a
process of validation. Supporters of Popper's philosophy of science, at least,
argue that scientific theories cannot be validated, but at most falsified.

6.4 Artificial Intelligence: A Hermeneutic Defense 289

It is not necessary to delve into another discussion about the nature of science
here. The only point I would like to make is that the rationalistic tradition
has, despite its limits, proven its value. The limits of the rationalistic per
spective can be viewed as simplifying assumptions which are appropriate in
certain contexts. Apparently, we can ignore the lessons of hermeneutics for
certain tasks, just as we can, to use a tired example, get along well with
Newtonian physics in our daily lives without resorting to the complexities of
the theories of relativity or quantum mechanics.

The legal approach. In the case of knowledge-based or expert systems, es
pecially when such systems are used for making decisions in organizations
where the rights and duties of persons in the organization may be affected,
it may be appropriate to view the "knowledge base" of the system as a set
of laws. The decisions made by such systems must be backed up by cogent
argumentation. (This is usually called an "explanation facility".) These de
cisions should be subject to challenge in some kind of quasi-legal proceeding
by the persons affected.
Notice that in such settings, the decisions made by expert systems must be
justified by normative arguments. Neither logic nor appeals to "cognitive ad
equacy" are sufficient. Rather, substantial arguments having a legal quality
are required. Conflicting interests must be balanced and the appropriateness
of subsuming the concrete events of the case under the general terms used
in the knowledge base must be addressed.

Formal verification methods can playa role in the above approaches, but cannot
themselves offer a complete solution. Formal methods may be used to show,
for example, that two forms of representation are equivalent, by constructing
a sequence of transformations, known to preserve some relevant property, from
one form into the other. Such methods may also be used to derive properties of
a knowledge base or program. These formal methods alone are insufficient, as
there is no formal way to show that the knowledge structures of an AI system
are satisfied by the intended application domain. A stronger statement can be
made here. No method, formal or not, can "verify" an AI system generally,
abstracted from its application to concrete cases. (Indeed, this is true of all
computer systems.) Again, this is an argument from jurisprudence; there is no
general method for determining outside the context of particular cases whether
the facts of some case are subsumed by the general terms used in the knowledge
base. A literal interpretation of a knowledge base will result in unintended or
undesirable decisions being made. Knowledge bases, like the law, need to be
modified, reinterpreted, and extended as they are applied to particular problems.

The term "verification" is misleading, as its use suggests that there is some
way to gain complete confidence in the "correctness" of some AI system. Except
perhaps in highly artificial, construed domains, this will never be the case. In
practice, there will be arguments for and against the suitability of the system for
its intended task, and it will be a matter of judgment requiring the exercise of
discretion and interpretation to decide the matter. Thus I have chosen to speak
of "evaluating" AI systems. Perhaps "judging" would have been still better.

290 Thomas F. Gordon

6.4.6 Conclusion

AI as a field has always had its antagonists. In some countries, notably Great
Britain and West Germany, the field was prevented from advancing as rapidly
as in the U.S. because of negative assessments of AI's legitimacy or potential, or
because of conflict between AI and conventional computer science. After more
than 30 years of development, however, I think we can say that AI is here to stay,
despite ongoing discussion about the nature of intelligence. I am confident of this
for a number of reasons. First of all, there is now a thriving AI industry. These
commercial interests will not allow AI to die. Second, this industry is a testament
to the fact that AI has indeed created useful technology. It is simply not true
that AI has produced no or too few tangible results. (It is true that AI has not
fulfilled the promises of some of its promoters, but these individuals should be
held accountable for their predictions and claims, not the field as a whole.) Third,
our understanding of intelligence is evolving at the same time as AI, indeed
because of AI. AI is not bound to any particular hypothesis about the nature
of intelligence, despite the historical significance of the physical symbol system
hypothesis. Indeed, one could argue that critics of the PSSH are not actually
critics of AI, but are themselves doing AI by pointing out the limits of a particular
hypothesis, at least if they also go to the trouble of proposing a competing
hypothesis. The Dreyfus brothers are a good example here12 . They may not
represent the AI mainstream, but they have played the role of ombudsman within
the field. They belong to AI. Finally, one cannot use hermeneutics to attack
AI. The hermeneutic view implies that there is no single correct definition of
intelligence. The notion of intelligence evolving through the practice of AI is
just as legitimate, in its special context, as any other.

Acknowledgements
Many thanks to Joachim Hertzberg, Christoph Lischka, Thomas Christaller and the
editors for their helpful comments and suggestions.

12 [Dreyfus and Dreyfus, 1986]

Part 7

Designing for People

7 Designing for People 293

Reinhard K.-S.
How can people be the focus of our attention when our real task is to develop
formalisms and technical systems? Normally, people are only considered to
the extent demanded by the technical development in hand.

Christiane
I'm not sure how widespread this view really is in practice. Of course, there
are quite considerable conflicts of interest in system development. I suspect,
however, that it's also a matter of ignorance as to the sort of foundations
human-oriented system design might be based on. It's not only a question of
product design, but also of process design and the design of the use context.

Reinhard B.
We are asking questions such as how the technical design process can be
embedded in the social context so as to meet human needs. And yet, today,
computer systems are frequently foisted on their users without their having
any say in the matter. People's requirements and needs are neither given
consideration nor taken seriously.

Heinz
Our approach is perhaps best characterized by comparing the illustration in
this part with that in Part II of our book. Here, the people are no longer
mere spectators: they themselves become actors in the play. There are, of
course, considerable differences in the roles in which the various actors are
cast.

Christiane
The sage neither becomes redundant, nor is he recast in a minor role. We
continue to need the expertise of software engineers and computer scientists.
But we must also acknowledge the fact that we need the know-how of the
users and the other groups involved as well. We must develop technology
with those affected by it, not against them or on their behalf.

Reinhard K.-S.
But that's where the whole problem starts. For what it means - as Gro
Bjerknes points out - is that we have to share responsibility. And that, given
the currently prevailing conditions, is not an easy task; it creates problems
for all concerned. And yet, it is something that can be learned. Ultimately,
she argues, the advantages gained will far outweigh the effort invested.

Heinz
User participation does not, however, mean that there is no longer any call for
us as software engineers. We are well aware of the difficulties users experience
in suggesting or anticipating technical alternatives. Conversely, we, for our
part, must endeavour to acquire a proper understanding of the use situation
into which our technical systems are to be integrated.

294 7 Designing for People

Reinhard K.-S.
One way of arriving at such an understanding is proposed by Markku Nur
minen with his subject-oriented approach. Essentially, his idea is that users
must be able to act autonomously and responsibly as the subjects of their
work activity. This not only has implications for our approach to design; it
also has a direct impact on product structures.

Reinhard B.
And that, surely, means that product structures are not independent of
people and the values they hold.

Reinhard K.-S.
It begins with the very way in which a problem is perceived and defined.
Michaela Reisin argues that we must view participative system development
as a joint theory-building process. She proposes methodological improve
ments designed to support cooperative theory building.

Christiane
But theory building must go beyond the development process. Not everyone
who uses a system can participate in its development. Nor is it possible,
before completing a system, to anticipate all the problems that will arise
once it is in use.

Reinhard K.-S.
Wolfgang Dzida supports this view, emphasizing that the human being has
to be in control of the course of interactions with the system. This is not only
important from the point of view of job satisfaction; it is also an essential
prerequisite for arriving at an understanding of the system's functionality.
Basically, this implies that the designer's job is to provide opportunities
rather than to prescribe the course of (inter-)action.

Reinhard B.
As I see it, this question is not confined to software development; it is appli
cable to any kind of human activity.

Reinhard K.-S.
And that is why we have to know what working and learning conditions
are conducive to human development if we wish to design software systems
for people. From the industrial psychologist's standpoint, Walter Volpert
presents a set of three basic principles which have to be taken into account
here. In addition, he proposes a methodical approach to task analysis that
places special emphasis on contrasting system operations with human ac
tions.

Christiane
Here, we have a basis for interdisciplinary cooperation. We have to familiarize
ourselves with the living and working conditions of the users if we wish to
develop useful systems for them. It is not enough simply to know something
about system functions and algorithms.

Reinhard K.-S.
Someone who speaks, for instance, only of symbolic representations has al
ready struck the human being from his list of concerns. The language we use
sometimes speaks volumes.

7.1 Shared Responsibility: A Field of Tension
Gro Bjerknes

7.1.1 Introduction

Why is it problematic for computer scientists and domain experts to share re
sponsibility for a system development project, even when shared responsibility
is a goal for the project?

I will discuss this topic on the basis of experiences from the Florence project l .

First, I present the Florence project and the organization of the project. Next, I
discuss 'shared responsibility'. Thirdly, I tell about three situations in which the
dilemma of shared responsibility was visible in some way or another, and finally,
I reflect upon our experiences.

My conclusion is that shared responsibility, seen from a computer scientist's
point of view, turns out to be a field of tension between control of the project
on the one hand, and participation of domain experts on the other hand.

7.1.2 The Florence project

The Florence project was a research project about the development and use of
computer systems in nurses' daily work. The original goal of the project was
to design programming languages, called profession-oriented languages, based
on the professional language of occupational groups. The profession-oriented
languages were seen as an offensive strategy for occupational groups to keep
control over the use of computers in their work, instead of adjusting the work
to computer systems designed from a management point of view. Another hope
was to avoid adjusting work to computer systems designed for societies different
from the Norwegian one.

The project adheres to a research tradition known as the collective resource
strategy2, or alternately as the critical tradition3 of system development in Scan
dinavia. System development, in short, can be said to be concerned about how
to build computer systems that fit the organization in which it will be used.

1 The Florence project was initiated by the system development group, Dept. of In
formatics, University of Oslo, and sponsored by The Royal Norwegian Council for
Scientific and Industrial Research. The project lasted from 1983 to 1987.

2 [Ehn and Kyng, 1987]
3 [Bansler, 1989]

296 Gro Bjerknes

Thus, two important topics are:

1. What does a fit between a use organization and a computer system mean,
and

2. How do we carry out system development to ensure that the resulting com-
puter system actually fits the use organization.

The critical tradition in Scandinavia has its its basis in the institutionalized
conflict between labour and capital. Hence, these topics have been discussed from
a worker's point of view, arguing that capital already had resources to develop
computer systems according to their needs. The trade unions were regarded
as representatives for the workers' collective, and the first projects within the
tradition were carried out in close cooperation with trade unions, aiming at
developing strategies for the introduction of computers. However, there are many
assumptions built into computer technology, and after a while it was considered
necessary to question the technology itself. This led to projects where the goal
was to show alternatives to existing technology. The Florence project was one
of these projects.

Still, the goal of constructing profession-oriented languages was quite ab
stract. We also found it difficult to construct a programming language on the
basis of natural (professional) languages. Therefore the goal was modified to
building a computer system for nurses' daily work. With this goal we could still
base our work on a profession, nursing, and we could explore different ways of
carrying out system development. In order to build computer systems for nurses'
daily work, we had two possibilities. We could do it all on our own, in which case
we would have to learn a lot about nursing. Or we could leave it to the nurses to
decide what kind of computer applications would suit their work. Then we had
to teach the nurses how to evaluate computer systems in relation to their work.

According to the Scandinavian research tradition, we chose the latter and
became dependent on the nurses. If we say that the computer scientists repre
sented a technical point of view, and the nurses a work setting point of view,
the idea was that the nurses should see the technical solution from a work set
ting point of view. This view of the computer system should be the basis for
design. However, the nurses also became dependent on us, because we were able
to evaluate the work setting solutions from a technical point of view by adding
our general knowledge of the consequences of computerization.

We wanted to reflect the mutual dependency in the organization of the
project, by sharing the responsibility for the project with the nurses. The mutual
dependency was reflected in the first period of the project, called 'mutual learn
ing'. This period was inspired by anthropological research methods, introduced
by the anthropologist that participated in the project. The goal of these activ
ities was that the computer scientists should learn about nursing, and that the
nurses should learn about informatics. The 'mutual learning' period ended with
negotiations about the application area of the computer system we intended to
build, evaluated on both a nursing and an informatical basis.

7.1 Shared Responsibility: A Field of Tension 297

7.1.3 The notion of 'shared responsibility'

The notion of 'shared responsibility' was seldomly explicitly stated in the Flo
rence project, it was more like an implicit assumption that guided the planning
of the project and the way the project was carried out.

The bases for the concept of shared responsibility are the following state
ments:

• There are different interests in a project, and the differences are a source of
knowledge.

• The different groups are equally necessary.
• The responsibility for the project as a whole should be shared between the

participants. To share responsibility means both to give and to take respon
sibility, according to the situation.

The first two statements can be seen as a political credo. The statements express
the importance of the domain experts, in this case nurses. The emphasis on
domain experts is closely related to the critical tradition in Scandinavian system
development research. The statements also stress the importance of computer
scientists. Together the statements express the view that even though domain
experts are experts on their own work, computer scientists can contribute to how
to build a computer system that fits the work. The third statement seems to be
a logical consequence of the first two. However, it proved to be very difficult to
share responsibility with the nurses. As the anthropologist in the project put it:
"Should the users decide on their own, or should they have democratic system
developers who decide for them?"

7.1.4 Three situations

The dilemma of shared responsibility was encountered in three situations:

1. when we decided what computer system to build,
2. when we had serious trouble due to bugs in the computer, and
3. when the computer system was introduced in the work place.

The dilemma appeared foremost in situations where the computer scientists
wanted to control the process for one reason or another, e.g. keeping the time
schedule, protecting research interests, and at the same time it was imperative
that the nurses had control as well, in order to reach the overall goal of the
project.

In the first situation, the computer scientists wanted to build a computer
system that was interesting from a research point of view. On the other hand,
the system should also be a system the nurses wanted to use in their daily work,
otherwise there would be no research connected to the study of computer systems
muse.

In the second situation, the computer scientists excluded the nurses from
the development process by giving priority to programming problems instead of
using at least some time to keep the nurses in a kind of busy-wait state.

298 Gro Bjerknes

In the third situation, the computer scientists insisted on leaving the instruc
tion and introduction of the computer system to the nurses. Again, we would
have liked to exercise a kind of control to ensure that the system was used.
However, we had no means to force the nurses to use the system.

Deciding on what computer system to build

We were determined to let the nurses decide what kind of computer applications
they wanted. This was mostly due to earlier experiences: it is hard to motivate
a sense of cooperation if the nurses do not judge the proposed computer system
to be useful for their daily work. We also would insist on building a computer
system for the nurses' daily work. We were not interested in making carbon
copies of general administrative or medical systems. And both groups wanted to
build a computer system that gave a fair chance to succeed with the available
resources.

We decided on the computer system by setting up a negotiating meeting.
In the week before the meeting, we were rather nervous. Could we really trust
that the nurses had sufficient understanding of informatics to propose a use
ful computer system? What should we do if there were a total disagreement?
Should we try to persuade them in some way or another? Should we set up new
negotiations? How should we do this?

Fortunately, we did agree on a computer system. We decided to build a "work
sheet system" , i.e. the computer system should produce work sheets that were to
replace the clipboards that the nurses use during a shift. The clipboards contain
all relevant information about the patients in the ward, and they are used as
reminders and notepads during a shift. The work sheet system was a small and
simple system. At that time, we knew enough about nursing to recognize that
even if the computer system was simple, it would interfere with the nurses' daily
working routines and the information structures they used in many and complex
ways. Seen from a system development point of view, this was a challenge. And,
most important, we could rely on the nurses. Our anxiety to leave important
decisions to the nurses seemed to be unnecessary.

So, we remained in peace with the nurses. Instead, the decision brought up
other conflicts with existing traditions:

• We found ourselves in conflict with the assumptions of what researchers
should do. Neither in a research milieu, represented by the financing institu
tions, nor in the technical milieu, represented by the computer manufacturer,
is it acceptable to make simple and useful computer systems. Instead, the
systems are supposed to be technically advanced, and result in new and fancy
products. This is due to the fact that the (research) goal often is meant to
support the development of new Norwegian information technology, which
seems to be in opposition to building useful computer systems for particular
users .

• The computer system did not correspond to the usual way of using com
puters in hospitals. The usual way is to make computer systems for the

7.1 Shared Responsibility: A Field of Tension 299

administration of goods, personnel and patients, to make medical systems
for medical doctors or to make statistics for planning. Thus, our computer
system represented a new way of looking at the use of information in hospi
tals. Unfortunately, this is difficult to explain to computer scientists, because
they do not know anything about hospitals. And for people in health care,
the system corresponded to the way they actually use information, therefore
they could not see anything new in it. They could not see that the tradi
tional way of using computers in hospitals often is a mismatch with the way
information actually is used .

• Due to the deviation from tradition, another conflict was brought to the sur
face; namely, two opposing views on how to solve the problems in health care:
One side prefers technical solutions, like computer-based medical records, the
other side prefers organizational solutions. We were lucky since the larger
part of our steering group belonged to the 'organizational' side.

This illustrates that we could rely on the nurses to share responsibility, but that
the consequences of shared responsibility are not necessarily accepted outside a
project.

Bugs in the computer

The project was behind schedule due to hardware errors, software errors and the
fact that we had to explore the limits of the computer tools we were using. During
the implementation, we worked at the University most of the time, for several
reasons: It was a half hour drive each way to the hospital; at the University we
had a workplace, with telephone available all the time, a black-board which we
used for planning and writing down design decisions, a proper place for manuals
and so forth; in the hospital we had one terminal only, and we always worked in
rooms that were designed according to the nurses' needs.

What was the result of this? When we did not have the regular contact with
the nurses, they lost the possibility for taking responsibility for the project. We
excluded them from the process, even if we did not intend to do so. We just
thought that they were not interested in programming and debugging. What
happened was that they lost motivation; they could not understand why things
took so long. They had seen a prototype made with a text-editor, and they could
not understand why it took us such a long time to implement the system; nothing
seemed to happen in the project. Thus, it was difficult for them to legitimize the
project to the other nurses in the ward. The result was almost a total collapse
of the project. We rescued it at the last minute.

This illustrates how easy it is to exclude people from taking responsibility
even when the goal is the opposite.

Introduction of the computer system

After teaching the members of the project group how to use the system and
making short, written instructions, the responsibility for instruction and intro-

300 Gro Bjerknes

duction of the computer system was completely left to the nurses. Then we left,
and we did not show up for half a year.

Since the nurses have been responsible for the suggestion of a useful com
puter system, it was rather easy for us to let them take the responsibility for
introducing and using it. After all, it was not necessary for us to prove to the
nurses that the computer system was useful to them.

In the beginning, the nurses were a bit reluctant, and could not believe that
we really meant to leave them on their own with the system. But when they
got used to the idea, it worked fine. As a matter of fact, their way of organizing
instruction was much better than anything we would have proposed. One reason
for this was that they exploited the existing organization of work.

The nurses are divided into kernel groups that work the same shift. So the
instruction was based on a two-step strategy: One person from every kernel group
should learn to use the system, and they should teach the two other nurses in
their group when time allowed for it. The nurses were also able to exploit the
differences in workload between night and day. So they practised a lot during the
night and evening shifts. Where we only saw constraints, they saw possibilities.

This illustrates that the results may be better when we dare to hand over
responsibility to others. Still, it was tempting to control the nurses and in this
way keep the responsibility for the process, especially when things were going
slowly.

7.1.5 An attempt at an explanation

In principle, shared responsibility means both giving and taking responsibility.
We found that it was difficult for us to give responsibility. Somehow, we felt that
it was easy for us to take responsibility, and that responsibility was easily given
to us.

One could ask, why was it important to share responsibility with the nurses
if it was so difficult? In belated wisdom, we would say that the notion of 'shared
responsibility' was our solution to the field of tension4 between control and a
participative process.

It seems that computer scientists like to have control5 . However, it is not
only computer scientists themselves who expect to control system development;
others expect this as well. 'Control' in this setting means that the computer
scientists often are in charge of both the computer system and the process of
building it. This can prevent user participation in several areas.

• When computer scientists are building a computer system, they want the
result to fulfill some quality criteria. To reach the desired level of use quality

4 'Field of tension' is a concept which is inspired by Mao Tsetung's concept of con
tradictions [Tsetung, 1967]. I have chosen the concept of 'fields of tension' because I
like the intuitive meaning of this notion.

5 Cf. Burstall, Chap. 2.3.

7.1 Shared Responsibility: A Field of Tension 301

the domain experts6 must participate in the process 7 . On the other hand,
the domain experts' knowledge does not guarantee a computer system with
good use quality. This is the reason why both kinds of expertise are necessary
in system developments. The need for both kinds of expertise creates uncer
tainty. It seems impossible to determine whether the domain experts have a
sufficient background for evaluating a computer system for their own work,
and it seems equally impossible for computer scientists to know in advance
whether they will have sufficient knowledge about the application area to
evaluate the domain experts' suggestions for computer systems. It is quite
tempting for computer scientists to reduce this uncertainty by controlling
and dominating the system development process. In fact, it is quite hard not
to dominate it .

• Even if the computer scientists are responsible for the process, it is possible
to delegate well defined tasks, like education. Since they are often supposed
to be responsible for the overall time schedule, it can be difficult not to
intervene if the activity does not proceed as scheduled. In this way, the
feeling of control may destroy the involvement of domain experts, because it
is somehow contradictory to delegate the responsibility for a task and then
control the people who carry it out .

• The computer scientists also have to design and implement the computer
system. Of course they have their own time schedules for those tasks. Often
they think that the problem to be solved and the specified requirements are
well defined, and they do not expect that they will need the domain experts
after this point in time. First, it often proves to be wrong that everything
was well understood9 • Second, the computer scientists do not give prior
ity to keeping in touch with the domain experts due to time constraints. If
they have to choose between implementing a specification according to time
schedule or to contact the domain experts to confirm that the specification
is correct from the domain experts' point of view, the computer scientists
usually choose to keep the time schedule. In this way, the efforts of the com
puter scientists to control their own tasks may prevent the domain experts
from participation in the process.

In theory, shared responsibility is the field of tension between the computer
scientists' and the domain experts' control of the development process. In reality,
however, much control is given to or taken by computer scientists. Thus, shared
responsibility will be a field of tension for computer scientists between control
and participation of domain experts.

Acknowledgements
I would like to thank Reinhard Keil-Slawik for his constructive comments on this
chapter.

6 I use the notion 'domain expert' instead of 'user', since the notion of 'user' pinpoints
that the most important aspects of people's work is that they use a computer system.

1 [Rolskov, 1990]
8 [Bjerknes and Bratteteig, 1988]
9 [Florence Report, 1985, Sieker and Jensen, 1988]

7.2 A Subject-Oriented Approach to
Information Systems
Markku I. Nurminen

The subject-oriented approach is introduced in order to emphasize the
role of human subjects in the use of information technology. Subject
orientation brings clarity to the question of control and responsibility.
The tasks performed by means of information technology become an in
herent part of the user's job. The implications of this ecological principle
are explored, in particular with regard to the organization of work.

7.2.1 Introduction

Computers are confusing. We know very well that they are electronic devices
which can be programmed to perform predefined tasks. But once the computer
is programmed and the execution of the program is started, the computer seems
to work by itself. This is confusing because the computer's behaviour is in one
aspect similar to human behaviour: it works autonomously without external
control.

Sherry Turkle1 has observed children who use computers. Their confusion was
expressed in a debate whether the computers are living or not. The similarity
opinion had many good arguments like "People also follow rules, are they not
programmed - by their mother and teacher, ultimately by the pope?" Such a
confusion makes it justified to bring up the question about the similarity or
dissimilarity between computers and human beings. Are these machines really
as smart and creative as people? Or are people only well-programmed clones of
computers?

In this paper I have chosen as the basis for the discussion the notion of dissim
ilarity between humans and computers. This seems fruitful because it eliminates
many dangers related to the confusion originating in the opposite view based on
similarity. If we do not make a sharp distinction between the fundamental nature
of computers and people, we are faced with a situation in which the computer
appears as a subject. It is typical for a subject that it can act autonomously.
But can we also make the computer responsible for the tasks it performs?

In working life we normally assume that the worker has the professional skill
needed for doing his or her job and taking the responsibility for the results. It
sounds strange if the responsibility suddenly disappears only because there are
some computerized tasks included in the job. It is therefore relevant to take as
the starting point the entire work situation. Information technology is thus seen

1 [Turkle, 1984]

7.2 A Subject-Oriented Approach to Information Systems 303

in its proper context, therefore it does not need any special mysterious status.
The worker performs all tasks which belong to the job. Some tasks he or she
performs by means of the computer, but he or she is the responsible subject for
them as well. For now, we denote this basic as the subject-oriented approach in
the use of computers. It will be further characterized later in this paper.

I shall first, in Section 7.2.2, describe some factors which have contributed to
the appearance of the computer as a subject and point out some problems this
has caused. In Section 7.2.3 I shall discuss in more detail what it means to be a
subject in general and as the user of information systems in particular. The con
sequences for job design and design of information systems finally concretize the
subject-oriented approach in Section 7.2.4, which is followed by a brief summary.

7.2.2 The birth of the computer subject

No wonder that children were confused since also many adults fail to make the
fundamental distinction between people and computers. The Artificial Intelli
gence community seems often to be confused as well. Inspired by the notion of
similarity, Artificial Intelligence researchers are trying to formulate features of
human intelligence in a form which can be implemented by means of computer
software. In well-defined and restricted areas this approach has the capacity of
producing very valuable results, but as soon as the human activity as a whole
is taken to be the object of modelling, the dissimilarity comes to the surface:
Which is the real subject, the computer or the human?

The problem cannot be defined away by regarding the computer-human
confusion as an animist metaphor which as such is harmless. It does not appear
only in the exotic spheres of Artificial Intelligence. It is part and parcel of daily
work for numerous users of information systems. If the user of software has no
sufficient control over it, the computer and the software grow to be a system sub
ject. Many users are confronted in practice with a situation where the computer
really appears as a co-worker. The powerlessness is often expressed in terms like
"I ask the system" or "This error was made by the computer".

Another popular area prone to conceptual confusion is object-oriented pro
gramming and the corresponding principle of modelling for application software.
If we agree that the subject is the person who acts and the object is something
which is affected by this, we should be more careful in the vocabulary of object
orientation. It is true that object-oriented programming provides an elegant
solution for the problem of integrated representation of data and algorithms by
connecting the objects with the methods applicable to them. But the (partly
metaphorical) vocabulary also gives the objects some properties which actually
belong exclusively to subjects. Objects are capable of sending messages to each
other. These messages are not only informative, they are supposed to trigger
methods assigned to the receiving object(s). Thus the sending object gets the
role of a subject which performs a remote procedure call. Since software designed
according to the object-oriented paradigm may perform a large number of such
procedure calls without any intervention by the user, the problem of control
arises: who is in charge, who is the subject.

304 Markku I. N urminen

As long as objects stand for computer-specific entities in data structures, the
operating system or the user interface, the problem is not very serious. But as
soon as we describe the entities of the application system (products, customers,
budgets, for example), we enter the area which is directly related to the work
of the users. There, he or she should have control: the objects should not send
messages and trigger actions by themselves. Otherwise we are again faced with
the computer-subject.

In the context of (administrative) information systems the autonomous action
of the computer is not reflected only in the lack of control of individual users.
The information system often also connects different users and thus performs
an important part of organizational coordination. It is worth noticing that many
times there is no human subject doing this coordination, it is left to the system.
The subjectivity of the system is further strengthened by the fact that the users
are usually not aware of this coordination. They are rather working together with
the system instead of the co-workers behind it. This indicates that the system
subject has been created as a side-effect of increasing system integration. To
illustrate this development, two important changes brought about by integration
may be noted.

Initially, computer applications were more or less independent, each having
a primary user group. Even if the interface was very primitive, the structure
was quite clear: the users delivered their input data to their batch runs on
sheets to be punched and fed to the application programs. Afterwards they
received the results in the form of printed listings. The coordination between
the organizational units took place directly, it was not mediated by the system.
The users were "owners" of their systems.

The first step of integration implied that a part of the results no longer was
returned to the users but stored in the computer centre in order to be used
as input to other applications which were owned by other groups of users. As
the individual applications grew together, the control - and the responsibility
- of the primary users was dissolved. Of course, this step of integration was
justified in many rational ways, because it eliminated unnecessary rep un ching
of cards from computer-produced listings. A similar justification may be found
also for the other step of integration, the creation of centralized data bases. This
eliminated unnecessary sorting and restructuring of data files for the purposes of
different applications. As a side-effect, however, it often separated the data base
from the users, relying instead on a shared pool of data where nobody actually
has the ultimate responsibility. Thus the "ownership" of data disappeared.

Integration does, perhaps, not seem very harmful at the first look. But as soon
as somethi:J.g goes wrong, the question of responsibility arises. It is not primarily
a question of who is guilty. The error must be identified and corrected, and
the work must go on. The spaghetti of an integrated system give poor support
for straightening out error situations, especially if there are no human subjects
having an overview of the whole system.

Similar problems appear in other exceptional situations which are not mod
elled within the system. It is true that this is not primarily a problem of inte
grated system structure. It illustrates, however, another feature of the system

7.2 A Subject-Oriented Approach to Information Systems 305

subject: the computer can perform only predetermined tasks. If the actual task
does not fit these, the user is powerless and unable to do anything. The mean
ingful action of the genuine human subject is prevented. This is likely to have
negative effects both in efficiency and effectiveness.

The computer is not a subject in every imaginable use situation. For example,
when using an interactive, tool-like application program like word processing or
spreadsheet, the user obviously feels like a subject. When inserting a letter in the
text, he or she is rewarded with an immediate feedback: the new letter appears
on the screen as result of the action taken by the human subject. A similar
reward is available when the user adds a formula in a spreadsheet. But when
receiving a complex sheet filled with formulas, he or she may be lost. It will
take a lot of effort to find out where all the figures come from and how they are
calculated. Many administrative systems have similar problems. They are often
still more imperceivable, since the spreadsheet and the formulas are not available
to be analyzed. In addition, the integration is likely to hide the genuine human
subjects behind the system.

The problem is not specific to information technology alone. Automated pro
cesses in general are autonomous by definition. The operator has often very
restricted control. In this paper, however, we focus on information technology. It
seems important that the user of an information should have good control over
the system he or she uses. This means several things:

• The user should understand what he or she is doing. This holds for all tasks,
both computer-supported and others.

• The user should be able to check the functioning of the system.
• The user should be able to perform exceptional tasks as well. This may imply

the possibility to decompose computer functions to smaller primitives, i.e.
to shift from automatic to manual control.

• The user should be able to define new procedures from the existing primi
tives, for example by means of macro generators.

7.2.3 Subject or object?

Our preliminary understanding of subject-orientation was based on the ability
of a subject to act autonomously. The discussion above has enriched this view
with some aspects, in terms of different forms of control, which support the
subjectivity of the worker in the use situation of an information system. Without
control we cannot take responsibility for our doings. For example, if the initiative
is given the system so that it determines the sequence and contents of the tasks
to be performed; and if the user just gives answers when requested by the system,
he or she is not very much a subject.

Of course, there are limits to subjectivity. Too much individualism reminds us
of sweet handicraft romanticism and is certainly counterproductive in any orga
nization. A nice presentation of these limits is given by Cashmore and Mullan2 .

2 [Cashmore and Mullan, 1983]

306 Markku I. Nurminen

They distinguish between two types of factors which restrict the free choice of
humans and their capacity to bring about internal and external changes, and
relate these factors to different research traditions.

Internal restrictions come from biological and psychological factors. If these
are over-emphasized, they lead in the extreme form to a behaviouristic research
setting, where humans are considered more or less like machines.

External restrictions come from social factors. Social institutions or the logic
of historical development determine human behaviour. In the extreme, this ap
proach turns a human being into a cog in the big machine. The rules derived
from this view, called structuralist, are certainly different from the rules of the
behaviourist view, but both of them point to restrictions of the free will.

Surrounded by these two types of restrictions there is the area where volun
tarism may survive - to some extent. The name of the research setting studying
this area, interactionism, describes rather well its character. It reminds us that
the freedom of will is never complete, rather it is always shaped by internal and
external restrictions. The scope left for the free will may be varying in its size.
For subject-orientation this area is very central since there a human being is
something more than a machine (as seen by behaviourism) or a cog in a ma
chine (as seen by structuralism). The area is limited already by definition, but
it should not be smaller than necessary, says our subject-orientation, not even,
when information technology is used.

The subject-orientation has its conceptual origin in the Humanistic Per
spective presented by Nurminen3 , even if it intends to be more concrete and
application-oriented then the abstract frame of reference provided there. The
Humanistic Perspective is characterized by its ideal type, an analytical tool
called Human-scale Information System (HIS).

The HIS ideal type is completely non-integrated. This implies that there
cannot be any centralized data base unless there is a corresponding centralized
function with subjects responsible for it. All pieces of data storage belong to
a local (ideally personal) system unit. The responsibility for the data has a
straightforward solution: the owner of such a system unit is naturally responsible
for the maintenance and updating of data as well as for all processing which takes
place within his or her HIS unit. The resulting system is built on the basis of
subjects rather than objects.

The deintegration implies the possibility for the user to have full control of
the storing and processing functions. While these functions earlier used to be
external to the work situation, they are now right here: expressions like "this is
my data base" and "these calculations are a part of my job" describe how the
computerized tasks are an inseparable part of work.

It is true that users still may have computer-supported tasks to perform which
are so complex that further de-automation, or decomposition, may be necessary
for them to be responsible subjects4 . Such a de-automation would strengthen
the understanding and the control in a situation where the black box danger is

3 [Nurminen, 1988]
4 See Dzida, Chap. 7.4.

7.2 A Subject-Oriented Approach to Information Systems 307

present, i.e. where the user cannot evaluate the outcome of a computer program.
In addition, the possibility of decomposition improves flexibility by allowing
the user to perform also exceptional tasks. 'Exceptions' belong to normal work
situations even if they are regarded as routine. Suchman5 argues even that "plans
are resources for situated action, but do not in any strong sense determine its
course" .

The decomposition of the information system has other interesting effects as
well: it also disintegrates the coordination which was baked within the system.
People become visible, they are working together without the disrupting factor of
the integrated information system. This means, of course, that the workers with
their local system units are not isolated. All channels of communication, even
the electronic ones, are exploited, but now they convey human-human commu
nication instead of human-machine communication. The system-subject in the
role of the coordinator has disappeared. It is well justified to talk about a social
interpretation of the use of information systems.

An example of this kind of a computer-supported work situation may be
found in an empirical case analyzed in the research project Knowledge and
Work6• There was a group of clerks responsible for calculating and paying the
salaries for employees of a municipality. Their work was not organized according
to a specialization by function. Instead, each clerk performed all tasks in the
task lattice. Each clerk had responsibility for a certain group of employees. Each
of the groups had different criteria, agreements and rules for the calculation of
the salary.

For each employee, the clerk had to maintain a set of permanent data. For
each period of payment she collected the salary transactions which determined
the payment for this particular period. The calculation, as well as the interpre
tation of the agreements, was an important part of the job. Even if the clerks
worked independently in parallel, they had some similar tasks as well (e.g. ad
vance tax): they were a cooperating team. In terms of system structure, each
clerk had a personal subsystem (HIS) of her own, with related functions of stor
ing, processing and communicating.

This case indicates that subject-orientation challenges the very concept of in
formation system. It is not an integrated collection of programs and data bases.
It does not make sense to regard the use of information technology separately
from the entire work situation. A striking example of this need to redefine the
notion of information system is given by Bjerknes7 . Her research group wanted
to design an application system with the starting point in the professional knowl
edge of the nurses. This implied the selection of a concrete but not very compli
cated application area. The user interface reflected the daily work of nurses. The
specialists in computer science did not, however, consider the selected system

5 [Suchman, 1987, p. 52]
6 The 'Knowledge and Work' research project worked at the Department of Computer

Science, University of Turku, Finland, in 1986-89. It was mainly financed by the
Academy of Finland.

7 Chap. 7.1

308 Markku I. Nurminen

interesting or ambitious (for researchers!). This demonstrates how strong the
dominant paradigm of information systems often is and how it may prevent us
from seeing good and simple alternatives.

The subject-oriented notion of the information system also implies re-thinking
many other, underlying assumptions. We are able to formulate new views on
knowledge and on human beings, for example. The most concrete part of the
reconstructed reality, however, is perhaps the organization of work.

7.2.4 Subject-oriented work with computers

The reinvention of human subjects in the context of information systems not only
calls for a new concept of information system. It also gives rise to a revised view
of job design. This is a direct implication of the non-integrated system structure
which allows for reestablishing the broken connection between the computerized
and other tasks of the worker.

In a use situation of an existing information system this means that there
no longer is a system external to the work situation. There are individuals
and groups doing their work, and they are using information technology to
perform some particular tasks. A natural way to design jobs is to connect
computer-supported and other tasks by utilizing the symbol function: let the
same worker(s) take care of a task and the information related to it. Then, this
individual or collective subject has a holistic and unscattered responsibility for
a whole.

An example of the subject-oriented organization of work may be given from
the inventory8. The inventory is run by a group of people with shared responsi
bility. They receive the products and deliver them (in FIFO order) on request.
They also take care of the products while they are in the inventory and of their
reasonable physical allocation. They are not allowed to deliver the products be
fore they are released by the quality control in the laboratory. At the same time
they also have exclusive responsibility for inventory book-keeping and for local
space management in the inventory. These computer-supported tasks are thus
an inherent part of the whole job.

Here, the subject-oriented approach combines a set of material tasks together
with corresponding information system tasks. The same people are responsible
for both of them. This structural solution carries a built-in motivational factor
for maintaining high quality of the information system, since the responsible
subjects themselves will suffer most from their potential negligence. The same
case is analyzed also by Hellman9. She points out how important it is to see the
context of the information system: its connection to the rest of the work as well
as to the organizational coordination between (groups of) people.

This focus on the integral work situation is actually another formulation of
the ecological perspective advocated by Keil-Slawik1o. Both formulations express

8 Another case of the Knowledge and Work project.
9 [Hellman, 1989]

10 Chap. 4.4

7.2 A Subject-Oriented Approach to Information Systems 309

a clear anti-Tayloristic view on organization by trying to reintegrate the tasks of
the head and ofthe hand. From the subject-oriented point ofview, however, I am
not completely satisfied with the remedy suggested by Keil-Slawik, which relies
on a new understanding of system development with user participation as the
key feature. It is probably true that traditional methods for information system
development are unlikely to produce ecologically sound work situations for the
future users. But, on the other hand, participation alone does not guarantee rad
ically new and better use situations, unless the participating people have a clear
notion of the basic properties to be demanded from the resulting information
system. If the objective of the development group is to design an information
system which resembles an assembly line, it probably becomes an assembly line.
Thus, the use situation is conceptually more fundamental than the development
process11 . Before specifying the features of the development process we should
pay attention to the important properties of the work situation.

If there is no computerized information system separate from the related
work, it follows quite naturally that there cannot be a separate information
system development either. Rather, there is an organizational change process.
The jobs will be changed as a part of this, and one part of their change will
be the introduction or modification of information technology. The important
distinction is illustrated in Figs. 7.2-1 and 7.2-2.

Com pu terized
tasks

Manual
tasks

Fig. 7.2-1. The idea of job design in traditional system development

According to traditional, flow-oriented top-down development methods (Fig.
7.2-1), the activities and related information requirements are analyzed until
the parts to be computerized can be identified. An analogous situation is cre
ated as a result of the design of an organization-wide conceptual schema. In both

11 [Nurminen et al., 1987]

310 Markku I. Nurrninen

All tasks

Fig. 7.2-2. The idea of job design in the subject-oriented approach

approaches, it is typical that the question of the remaining manual tasks and
job design is raised too late. Then it is normally impossible to make changes in
the specifications of the computerized system, which is likely to create problems
in the design of meaningful jobs. Another problem which is created by this very
procedure is how to re-establish the connections (both logically and physically)
between the users and the technical information system.

As presented here, subject-orientation does not give a detailed method-cook
book for the joint design of jobs and information systems. However, the approach
gives some good ideas to keep in mind. Its critical power challenges many tradi
tional wisdoms in design traditions, both in job design and in IS design. On the
other hand, subject orientation seems to be consistent with many recent sugges
tions for the design of ideal jobs. In particular the ecological, holistic principle
seems to be promising. Let us relate it to Volpert's formulation of good jobs12 .

The holistic principle calls for a mix of computer-supported and other tasks.
Jobs consisting only of sitting at the work station will be exceptional. This gives
a good ground to variation both in bodily activity and use of sensory capacities.
In many contexts it also is likely to provide for and encourage coordination and
interpersonal contact. The integrated responsibility for computer-supported and
other tasks promotes the broad scope of action.

Even though we have shifted the focus from the computerized parts of work
towards the entire work situation, it is not unimportant what the 'computerized'
part looks like. A clear subject-oriented system structure alone makes these
computer-supported tasks more graspable. But what about the user interface?
Does it communicate to the user about the work which he or she is doing?

12 Chap. 7.5

7.2 A Subject-Oriented Approach to Information Systems 311

Or does it give details of the system structure - as if the computer work were
separate from the rest of the world?

Instead of a review of different types of interfaces I shall comment on the
general view of research in this area. Too often, I think, different solutions or
suggestions are evaluated in the laboratory. Rather seldom, test persons receive
instructions which remind them of a meaningful work task. Yet it is the concrete
use situation in which the quality of the user interface ultimately is either con
firmed or not. If the connection to this work situation is poor, many solutions,
elegant in technical details, will be wasted.

7.2.5 Conclusion

One objective regarding the subject-oriented approach has been to contribute
to the demystification of information technology by emphasizing the role of the
actor of computer-supported tasks. This social interpretation also led to the
ecological program, in which the computer-supported tasks are seen as inherent
parts of the subjects' entire jobs.

By improving the controllability and flexibility of the use of information tech
nology, the subject-oriented approach has given a potential promise of improved
quality in computer-supported work. For the time being, this promise is not
concrete. Future work has to be done at least in following areas.

The properties of subject-oriented information systems must be further speci
fied. On the one hand, the system structure must reflect the organization of work.
But on the other hand, it should be flexible in order to allow for reorganizations
as desired. The tasks to be performed with the system should be understandable
and controllable, and the interface should support the integrated work situation.

The development of subject-oriented systems is explicitly reality construc
tion. It cannot be accomplished separately from the organizational change pro
cess. Figures 7.2-1 and 7.2-2 above illustrate the difference between the tradi
tional and subject-oriented approaches. It seems obvious that subject-oriented
system development is meaningless without participation of the subjects. Holis
tic views, conceptual schemas for example, are not useless, but they are not
enough. The driving force comes from work and its organization.

Finally, there is an underlying assumption in the subject-oriented approach
about the competence of the worker. Computer-supported tasks cannot be under
the subject's control unless he or she has sufficient skill for performing them. Such
a competence is naturally developed during the participation process. The idea
that users may acquire such a competence is perhaps not unrealistic. Today a
car driver does not have to be a professional mechanic.

7.3 Anticipating Reality Construction
Fanny-Michaela Reisin

The arguments formulated below are based on the assumption that software
development is to be viewed as a work process and can thus be seen as part of
the social reproduction process with its historical background. This assumption is
useful. It enables us to compare software development with other work processes,
and to better understand the characteristics common to all and the ones that
are specific to software development.

The most general elements of the work process are the purposive activity
or the work activity itself, constituting the subjective side, and its means and
products, constituting the objective (gegenstandlich) side. My concern here is
to pinpoint the subjective and objective elements that distinguish the software
development process from other work processes.

My recent research work has led me to the conclusion that software develop
ment is characterized by the specific nature of the use objects that are produced
and used in the course of this process. The invariant means and products, the
objective elements of software development, can be identified as software ob
jects and distinctly characterized by their electroenergetic nature and effects.
Software products are typographically symbolized autoprocessual use objects of
electroenergetic nature and effect.

Owing to the purely electroenergetic nature of software objects, a fundamen
tal distinction must be drawn between them and all traditional objective means
of production and use, which are distinctly characterized by their specific mate
rial nature.

In view of their electroenergetic effect, though, software objects must also
be distinguished from all typographic and pictorial objects that, ultimately, are
distinctly characterized by their symbolic effect only.

Lastly, owing to their object form, software products must be distinguished
from all electroenergetic functions and effects that have previously been produced
and used in the course of human activity.

The electroenergetic effect and the object form of software products and their
implications for software development have so far been subjected to scarcely any
systematic analysis1 .

It is these determinative elements that give rise to a specific instance of the
work activities and of the organization of the software development process. And
it is on these that we now focus our attention.

If we look specifically at the work activities involved in the development
of software objects, we find that any attempt to relate them to conventional
mass or series production of new products in accordance with an existing mas
ter product will fail. The genuinely human work activity may be defined rather

1 [Reisin, 1990]

7.3 Anticipating Reality Construction 313

as the creative development of new (master) objects that have not yet been im
plemented. Hence, the working process constituted by software development is
not well characterized merely as a productive one; it must be viewed quite dis
tinctly as a creative process. The activities consist in creating and implementing
genuinely new software objects.

Software development is the creative development of new original objects. In
other words it is "original production", which means the work activities are to
be characterized as creative and productive as well.

In what follows I focus on the development of software objects whose use
purposes are derived from existing work processes of everyday social reality -
processes in which they are to be used not only in an indirect manner, but
directly as the objects, means or products of work. The development of such ob
jects is necessarily determined as a cooperative work process involving developers
and future users. This follows from the characterization of software development
as a creative work process. As a matter of fact, there is no other way of deriv
ing the use purpose of a new object than by cooperation and communication
between the persons who are to use it and the ones who are to produce it. This
calls for a specific organization of the development of software objects that are
to be embedded in existing working processes, which is generally identified as
participative.

These assumptions shape the course of my further argumentation in which I
go on to discuss their specific theoretical and methodological implications.

In Section 7.3.1, I give a rough outline of the characteristics of participative
software projects.

In Section 7.3.2, I examine the cooperative design process of a new soft
ware object. Here, I take up the notion of "theory building" coined by Naur
and contrast his view of the theory that must necessarily be built in software
development with the concept of anticipation of purpose which enables the re
flective and creative elements of the work process to be put into a socio-historical
context.

In Section 7.3.3, I then go on to outline a methodological approach to coop
erative theory building in participative software projects.

I draw throughout on experience gained in the research and development
project PETS2.

2 PETS = Participation, Evolution and Transparency in Software Development for
Computer-Supported Work. The project was funded from 1987 to 1990 by the North
Rhine-Westphalian Ministry of Labour, Health and Social Affairs under their pro
gramme "Mensch und Technik: Sozialvertragliche Technikgestaltung (Man and Tech
nology: Socially-Oriented Technology Design)". It was concerned with the develop
ment of a software product to support the staff of the Central Records Office for
Collective Wage Agreements at the German Trade Union Federation's (DGB) Insti
tute for Economics and Social Sciences (WSI). The working processes there are to
archive and evaluate all wage agreements (6000 a year, 36000 altogether) and to
publish statistics.

314 Fanny-Michaela Reisin

7.3.1 General characteristics of participative software
projects

If we agree to characterize software development as 'original development', its
work context cannot be compared to either the 'production line' of a manufac
turing company or viewed simply as the 'order-processing division' of a software
development department. Instead, each software development process involves
the establishment of a project for this specific purpose for a specified period.

Once it is agreed to establish a project, the project goals are defined, the
specific domain of concern demarcated, and the required personnel and material
resources determined.

The project goals are generally expressed in normative terms by means
of quantitative coefficients. Undetermined factors during initial planning are
the structural and qualitative characteristics of the software objects aimed at.
Equally unpredictable are the necessary changes in the work processes in which
these objects are to be embedded in order to attain the goals. A distinct char
acteristic of creative and innovative processes is the fact that their result is not
determined in advance. A development project's domain of concern is not spec
ified completely at the beginning of the work process, which means that the
planned work product, too, can only be determined in outline.

Here, the basic difference becomes apparent between a development project
and a skilled craftman's or industrial work context in which a technical product
is manufactured. Manufacturing processes - whether they be individual or co
operative - are invariably conducted in accordance with a given master product
and production plan. The important thing is to carry out these processes opti
mally, i.e., by producing the greatest possible quantity in the shortest possible
time. The essential requirement here is routine.

Creative work processes cannot be stipulated on a general level. The antici
pation of the future domain of reality and the expertise required for designing
and implementing it must be established in the course of the project itself. The
software objects aimed at and the way in which they are to be used only emerge
gradually, and it is only towards the end of the project that their contours
become properly visible. Strictly speaking, it is not possible for the means of
creative work processes to be determined completely in advance, either. Nor is
the sequence of work steps to be taken amenable to detailed planning and pre
scription. Creativity does not evolve continuously, and cannot be expressed in
terms of algorithms.

The development of software objects that are used directly in work contexts
includes the design of work, and of technology. Evaluation of the specific quality
characteristics of work and technology relies not only on general criteria estab
lished by industrial scientists, but also on the criteria determined specifically by
the existing work processes in a particular area as well as the concrete individ
ual and collective requirements of the future users of the software object. The
creative work processes involved in designing a new domain of reality are not pri-

7.3 Anticipating Reality Construction 315

marily of an analytical and constructive nature, but are rather exploratory and
experimental. Of significance are not only objective, but in particular subjective
factors.

A participative software project is a software development project that is
organized in such a way as to provide for the participation of users in the devel
opment of a new software object. But participative project organization is only
a necessary precondition and not a sufficent one. If the software development
process involves pursuing goals that are not merely restricted to the product's
suitability for a particular purpose, but also include the aim of improving the
quality of work and the work products from the point of view of the users di
rectly concerned, then the understanding of the cooperative work processes in
software development must go beyond mere user participation in the project.

What participative software projects aim to do is to lay open the subjective
and objective elements of the users' work - which have evolved historically in
their specific work context - and to construct a new domain of reality on this
basis. In particular, they cannot be confined merely to analyzing objective enti
ties, relations, and constraints. It is this fact that gives rise to the need for direct
cooperation between developers and users and the tendency to do away with the
separation of production and use in software development.

Cooperative work processes are generally characterized by the fact that the
persons involved not only react to and correlate objective, concrete factors in
the course of their respective work activities, but also necessarily take account of
social relations and personal interactions. Focussing attention on the objective
project goals, on the concrete means and results of work that are to be changed
and used, constitutes only one level of the work context. The other, second
level of action is the way the persons involved relate to each other, the way they
communicate their respective skills, knowledge, interests and perspectives to each
other and coordinate their different work activities. Both of these levels - the
object level and the interpersonal level - constitute integral parts of cooperative
work processes. They can neither be separated from one another nor reduced
one to the other.

The participative organization of software development projects aims at the
cooperation of the users and developers in the process of determining and de
signing the use pupose of a new software object.

In the following section, I take a closer look at the developers' and users'
cooperative work processes in relation to the anticipative design of a new software
object.

7.3.2 Design is theory building

Irrespective of the way in which the performance of software development is
described, a common feature of all theoretical and methodological approaches
to software engineering is the fact that they attach supreme importance to the
work activities involved in the design of a new software object.

316 Fanny-Michaela Reisin

Recently, emphasis has been given to activities in the course of which the
new software object and the domain of reality it circumscribes are anticipated,
conceptualized and described. The aim is to make a conceptual distinction be
tween those activities that may be considered to be of a reflective and creative
nature, and those that relate to construction and change of 'external reality'.
Realization activities are seen as following on logically from anticipative design,
and are defined in terms of model construction and implementation. This also
implies a changed view of what constitutes design3 .

In publications on software development projects in industrial practice4 and
in software development companies5 , there is a call for greater scope to be given
in project organization to the informal learning and communication processes,
in other words the reflective design processes, than has hitherto been the case.

This differentiation, which has only recently become evident, does, I feel, give
due consideration to the specific nature of the work process software develop
ment, which I have characterized as an inherently creative process. The crucial
element in design is the building of a new theory about a given domain of reality.

The notion of theory building in the context of software engineering

In his paper entitled "Programming as Theory Building" , which was published in
1985, Peter Naur presents a perspective which he terms summarily the "Theory
Building View". Naur's view has been drawn on by numerous authors in their
efforts to emphasize the role of intellectual - and thus subjective - activities
in the design process as related to software development. This is my reason for
selecting it as a point of departure for my further discussion6 • Naur's concept
of programming embraces "the whole activity of design and implementation of
programmed solution"7 and can therefore also be employed for understanding
the corresponding activities in the development of software objects as I see them.

The gist of Naur's approach to programming is: "The proper, primary aim
of programming is not to produce programs, but to have the programmers build
theories of the manner in which the problems at hand are solved by program
execution"s.
The goals pursued by N aur in adopting this approach are twofold:

(1) He sets out to demonstrate that software development is not confined to pro
gramming in terms of production or program formalization in accordance with
predefined rules, but must be viewed essentially as an "intellectual" activity.
Here, he distinctly highlights the drawbacks of a reductionistic view of program
ming that focusses exclusively on formalization, using examples to illustrate the
implications of such a view also with respect to economic factors such as the
costs of program modification and the useful life of programs.

3 [Andersen et al., 1990, Kensing, 1987]
4 For example ASEA Brown Boveri AG, [Elzer, 1989].
5 For example Rank Xerox, [Suchman, 1987]; IBM, [Carroll, 1989].
6 A more detailed analysis of Naur's approach can be found in [Reisin, 1990].
7 [Naur, 1985b, p. 253]
8 [Naur, 1985b, p. 253]

7.3 Anticipating Reality Construction 317

(2) He criticizes the traditional view of methods in software engineering. Here,
he takes a rather extreme stand "against methods" that, ultimately, neglects
the fact that programming is a cooperative activity and, moreover, one that is
embedded in a socio-historical process. The consequence is that his reasoning
tends to miss its mark: "In the Theory Building View what matters most is
the building of the theory ... In building the theory there can be no particular
sequence of actions, for the reason that a theory held by a person has no inherent
division into parts and no inherent ordering. Rather, the person possessing a
theory will be able to produce presentations of various sorts on the basis of it, in
response to questions or demands. As to the use of particular kinds of notation
or formalization, again this can only be a secondary issue since the primary item,
the theory, is not, and cannot be, expressed, and so no question of the form of its
expression arises. It follows that on the Theory Building View, for the primary
activity of the programming there can be no right method,,9.

In confining himself to the intellectual activities, N aur apparently ignores the
external context, the cooperative setting of programming. Although he views
programming as a direct cooperative activity, he does not consider possible
differences in theory building on an individual level as against a comparable
process in a cooperative context. In Naur's reasoning, such a question cannot
arise. Programming, in his view, must primarily be "the programmers' building
up knowledge of a certain kind, knowledge taken to be basically the program
mers' immediate possession, any documentation being an auxiliary, secondary
product" 10. Nevertheless he substantiates his view by referring to discursive pro
cesses, which he obviously regards as necessary in the course of programming.
The "Theory Building View" is motivated precisely by discursive situations in
which the programmers are required to understand, justify or modify a program
in virtue of new or changed requirements. He takes it for granted that there is
always a shared language and knowledge platform, on the basis of which the per
sons involved can easily come to an understanding about the meaningful aspects
of the world and the program. At this point Naur's approach proves unsatisfac
tory. After all, the need to build a theory in software projects and to reflect upon
it arises not least because of the necessity of reaching a common understand
ing of the various requirements and different perspectives among the persons
involved. Thus the specific implications of cooperation in software development
for the process of theory building must be systematically taken into account as
wellll .

Naur's approach may justifiably be seen as neglecting the historical process
because he divorces the process of software development from the cumulative
social "theory building process", and gives it an exclusiveness and uniqueness
that is untenable. The understanding of the world that Naur claims is "part of
the mental possession of each programmer" 12 and the programmer's ability to

9 [Naur, 1985b, p. 260]
10 [Naur, 1985b, p. 253]
11 See also Floyd, Chap. 3.2.
12 [N aur, 1985b, p. 260]

318 Fanny-Michaela Reisin

build theories and engage in intellectual and discursive actions are, like it or not,
embedded in a socia-historical context. The process of program development and
the subjective and objective results obtained by it must be seen in this context
and must be able to be reconstructed as constituents of further development if
the scientific discourse on it is to remain capable of development and continue
to make any sense at all.

The conclusions Naur reaches as a result of his view of theory building, and
hence of programming as a whole, take no account of this necessity. I can follow
Naur's view that programming and program modifications are not rule-based -
which is why they cannot be divorced from the programmer (who is the carrier, so
to speak, of the theory), let alone be automated. There is, however, no plausible
reason why it should not be considered legitimate to attempt to understand
the process of theory building itself, especially if we take it that Naur's aim is
to impart a new understanding of programming. In the last analysis, what he
proposes is merely another methodological approach.

All the same, I consider N aur's arguments to be highly important. Faced with
the fundamental difficulty of grasping what is meant by the term 'creativity',
of pinpointing the essence of 'innovation' or identifying a 'theory of innovation
and change', the very radicality of his reasoning may prove helpful. Particularly
with a view to the creative elements of software development, the aspects of
programming that N aur has highlighted - even though he claims them to be
intangible - must be systematically reflected upon by software engineering as a
discipline. Of course, such guiding insights remain little more than a 'flash in
the pan' as long as the conditions for their practical realization are not made
explicit.

I continue below to use the term "theory building" borrowed from N aur, but
give it a somewhat different connotation. My reason for characterizing certain
elements of the software development process as "theory building" follows from
the identification of software development as a creative and directly cooperative
work process.

Theory building in cooperative work processes

The notion of work embraces "theory building" in terms of both general and
specific creative mental activities. Viewed from a historic perspective, 'intellec
tual' and practical 'activities' make up the notion of work. I therefore view the
activity of "theory building" in the frame of a working process in which means
of work are newly created for future use.

The concept of anticipations of purpose is crucial to my further reasoning
because I assume that purposive activities and, hence, anticipated purposes form
the basis for the development and implementation of software objects.

Anticipations of purpose can be seen as conceptions, as ideas about essential
features of objects for future use and of the activities which they mediate. Hence,
in relation to a work activity, anticipations of purpose constitute a conceptual
frame of reference and orientation to which human beings relate in the course
of their activities and through which the external activities that are geared to

7.3 Anticipating Reality Construction 319

the object acquire their bearings. I view the establishment of a new anticipation
of purpose as "theory building" about the use purposes of the future software
objects.

The interplay between the conceptual and the productive activities may also
be characterized as dynamic feedback between the anticipated purposes and the
work object. Perception of the work object during the production process takes
place, as it were, through the 'idea' of the conceptualized final state aimed at.

This does not necessarily imply that the conceptualized anticipated purpose
exists in every case as a fully matured idea - remaining then unaltered through
out the work process - before the production activity even begins.

Klaus Holzkamp assumes that, especially in the early forms of social tool
making, activities based on the anticipation of the use purpose of future work
products were mingled in various different ways with trial-and-error activities;
findings made by chance were then reutilized. Anticipations of use purpose
changed in measure with the resistance offered by the material and the skills
of the tool-maker, and only attained a greater degree of clarity in the course of
the work process13 .

This assumption can be generalized for genuinely creative work processes
right up to the present day. Scientific and technological development projects
are characterized by the fact that their underlying idea is undetermined at the
beginning of the work process and is evolved in step with the product, so to
speak, in the course of the work process itself.

Software development is therefore neither pure theory building nor pure pro
duction; instead, it may be defined as a creative work process in which the an
ticipation of purpose of a new work object is established in the form of a theory
about its use and production and directly implemented in concrete terms.

However, in the context of cooperative work processes, the question is how
to establish a new theory that is binding upon all the persons involved, in other
words that is shared by them all. The anticipated use purpose cannot merely
remain each individual's 'own theory'; it must be adopted by all those involved
as a 'shared theory'.

For participative projects, this question must be posed in more extreme
terms: How can users and developers, who have no common sphere of expe
rience, build a shared theory about a new domain of reality to which they can
refer discursively and from which they can take their bearings in the course of
their respective separate or joint activities of constructing, trying out and using
a software object ?

In participative software projects, 'theory' means a common and moreover
a mutually mediated anticipation of purpose as a frame of reference for the
cooperative work processes. This implies that it is possible not only to build a
theory on an individual level ("the knowledge a person must have in order not
only to do certain things intelligently but also to explain them" 14) , but also on
a cooperative level.

13 [Holzkamp, 1978, p. 123]
14 [N aur, 1985b, p. 255]

320 Fanny-Michaela Reisin

Cooperative theory building above all presupposes shared practical experi
ence. This is acquired in cooperative exploration and experimentation and is
imparted interpersonally by means of communication and mutual learning pro
cesses.

Shared theory is, basically, communicated individual theory. The expertise
required to determine and evaluate the use purpose of a software object can
only be acquired in the course of a communicated, mutual learning process.
This applies particularly where not only objective and economic considerations
have to be taken into account, but also the individual and collective quality
requirements of the users.

The communication and mutual learning processes between developers and
users during design constitute the genuinely creative work processes from which
all other modelling and implementation activities follow and to which they are
subordinate. It is in the course of these work activities that, in a sense, a new
domain of reality is constructed.

My several years of experience with a continuous and cooperative process
of theory building in the course of the PETS project have led me to conclude
that new requirements entailing revision of the software version installed at their
workplace constantly confront the developers with the problem of understanding
exactly what the users want. It occasionally becomes apparent that a jointly
established understanding, a shared theory, cannot be simply developed further,
but must itself be subjected to revision before the program can be revised.

An important factor here are the differing perspectives of the users and de
velopers with respect to a particular situation, and hence with respect to the
aspects of the 'world' they consider of significance - perspectives that remained
insignificant earlier on in program development, allowing misconceptions to arise
on the part of the developers that bar the way to direct understanding of the
new requirements. Here, then, developers and users are again confronted with
the tasks of finding a shared theory about the domain of reality in question.
The advantage of cooperative theory building, in situations such as this, lies
not so much in the theory itself, but is rather derived from a common language
platform and skill base for design between the participants that has been estab
lished on the basis of joint experience in a practical development situation. One
final crucial factor here is the adoption of a proven methodological approach in
building a theory about new problems and the implementation of solutions to
them in terms of modifications or extensions to the program.

7.3.3 Methodological approach to cooperative theory
building

Communication and learning processes are of central importance in design be
cause they go to make up a shared process of experience between users and
developers.

7.3 Anticipating Reality Construction 321

It is also true, though, that purpose or reality anticipations communicated by
exclusively oral means only constitute a transitory mutual basis of agreement.
The common knowledge acquired in the course of verbal communication and
learning processes is only sporadically symbolized. The validity of design goals
about which a consensus is established communicatively is limited in space and
time. As frames of reference, they remain tied to particular individuals.

Techniques to support cooperative design, such as Experimental Prototyping15 ,

Mapping16 , Simulations, Coopemtion Scenarios and Future Worksh ops17 pro
mote the evolution of communication and learning processes between the de
velopers and users. They do not, however, support an overall synchronization
and coordination of the reflective and creative activities of cooperative theory
building in terms of a progressive work process. This calls for means that allow
a continuous and stable symbolization of the design knowledge. The process of
building a shared theory must be capable of being reconstructed and controlled
in its continuity and progress by developers and users alike. Therefore, cooper
ative processes of theory building must include the production of descriptions
symbolizing the current state of the theory in a description language and, thus,
indicating its progress.

It is precisely the discontinuity of creative work processes that makes it nec
essary to record the knowledge acquired by the users and developers in com
municative feedback and mutual learning activities in terms of a shared theory,
such that it assumes, for all parties involved, a degree of permanence above and
beyond the immediate communication processes.

Since software development is, in essence, a creative work process, the defini
tions of purpose, which will only take concrete shape when the software object
is being implemented and subsequently used, can be communicated prior to the
work processes only in the form of a recorded description.

The future domain of reality that is constructed anticipatively in the commu
nication and learning processes must also be symbolized and recorded in order to
enable a consensus to be established between those involved about its essential
characteristics and the way they are connected. Hence, the notion of 'theory' in
participative software projects extends beyond mental processes to embrace a
descriptive product that the developers and users may agree to adopt as their
common frame of reference and as a means of orientation for their respective
separate and joint work activities.

The description of this common frame of reference must not necessarily sym
bolize all aspects of significance of the future domain of reality and software
object. If it is to be characterized as a theory, such a description must symbolize
the use purposes of the software object anticipated by the users and developers
and agreed upon collectively by them.

15 [Floyd, 1984, Reisin and Wegge, 1989]
16 [Lanzara and Mathiassen, 1984]
17 [B~dker et aI., 1987, Kensing, 1987]

322 Fanny-Michaela Reisin

It is therefore crucial that a description resulting from the design process
symbolizes the essential characteristics defining the invariant purpose of the
cooperative software development process and having a decisive bearing on the
implementation and use of the software object. Such a description can be viewed
as a shared reference theory and will form the common frame of reference coor
dinating the cooperative and respective individual work activities.

Only by means of a theory that is built cooperatively and.established on the
basis of a consensus is it possible to ensure that the developers anticipate the
purposes pursued by the users as their own purposes and embody them in the
software object; and, conversely, to ensure that the users recognize in the pur
poses the developers embody in the software objects their own purposes.

The inner relation between the emergence of a common knowledge and ex
pertise between users and developers during design, and the assessment of the
quality of the software object in use is frequently given emphasis in reports on
participative software projects18 . Such a connection has been corroborated by
my own practical experience with development projects19 .

I discuss20a methodological approach to cooperative theory building that was
tested in the context of the research and development project PETS and that
essentially comprises the following three stages:

The first stage is to draw up a Reference Glossary that can be viewed as a
dictionary containing reconstructed and newly constructed terms of the theory
language. The Reference Glossary contains the identifier (reference) and the
description (referent) of the conceptual terms used while exploring the given
and designing the anticipated reality domain. Hence, it constitutes the basic
vocabulary of the project's language, which evolves in the course of the process
of cooperative theory building.

The second stage is to develop Reference Schemes based on the Reference
Glossary and other anticipative design, communication and learning processes
and symbolizing the essential relations of the software objects' use attributes in
the future work processes, the meaning of which is described in the Reference
Glossary.

A Reference Scheme is used exclusively to symbolize the anticipated at
tributes of a software object, the actions that can be performed, the constraints,
and if necessary different individual perspectives that have to be taken into
account in the context of its use.

In contrast, software objects are viewed in this approach as effective means of
work of the future work process and thus of the anticipated domain of reality. A
Reference Scheme refers to the use interface of the practically effective software
objects and thus to the characteristics and active attributes of their virtual

18 [Bjerknes and Bratteteig, 1988, Bjerknes et al., 1987, Andersen et al., 1990,
Floyd et al., 1989b]

19 [Floyd et al., 1990, Reisin, 1989, Reisin and Wegge, 1989]
20 [Reisin, 1990]

7.3 Anticipating Reality Construction 323

use. At the same time, though, it refers to the individual frames of reference of
the persons involved in the project and can therefore be viewed as a symbolized
modal frame of reference on which a general consensus can be reached.

The final stage in theory building is the adoption of a Reference Theory.
This involves common acceptance by the users and developers of the Reference
Glossary and the Reference Schemes previously established as a valid description
of the anticipated use purposes of the future software objects. If a description
of the anticipated software object is understood by all the persons involved and
accepted as a valid representation of the invariant meaning aspects that are
anticipated in the course of further cooperative activities, it may be generally
accepted as an objectified, modal frame of reference, i.e., as a shared Reference
Theory and easily justified as such.

Bearing this in mind, I see the building of a shared theory primarily as a
process of abstraction that takes place on the basis of interpersonal communica
tion in cooperative learning processes. The most important work activities here
may be characterized as the reflective and creative exploration of the significant
meaning aspects of the existing and future work processes. They are based on
the dialogical reconstruction of the respective expert and everyday languages
employed by the developers and users, on experimentation and, generally, on
common practical experience.

Insofar as they relate to the theory built during design, I emphasize the
importance of the reconstruction of everyday language and the construction of
the description language by which the newly created meaning aspects of the
future software objects are described. The description language called for in
each case is brought forth in the course of the theory building process. As they
acquire design knowledge, the users and developers establish a sort of common
language base.

The essential thing about building a theory in this way is that a common
language is established between the developers and users, together with an in
terpersonally evolved skill and knowledge base, embracing not only the software
object, but also the individual perspectives and the different work styles.

The visible result of the cooperative design process is the common frame of
reference that is described by a Reference Glossary, symbolized in the Reference
Schemes and agreed upon as a valid description that can be viewed as a shared
theory about the anticipated domain of reality. The orientation function of the
theory recorded can only be understood in the context of a common knowledge
platform established during design by the developers and users.

The validity of the theory can be verified by all parties involved since it was
built, evaluated and jointly accepted by them in the course of a common work
process. The language of the theory, the meaning of its terms and rules, can be
regarded as having been interpersonally evolved because it was built on the basis
of common experience.

The advantage in referring to the everyday and expert language of the users
in building a shared theory is that the description of the knowledge base acquired
in the design process - though produced by the developers - can be evaluated and

324 Fanny-Michaela Reisin

revised by the users. The users are able to examine and criticize the description,
resulting in feedback that promotes a common understanding of the description
and the evaluation of its validity. This helps prevent the developers from 'taking
off on their own' at an early stage of the development process.

The description of the theory should not be equated with typographically sym
bolized software objects. These are, once in use, primarily characterized not by
their typographical symbolizations, but by their effects.

However, by typographical symbolization of the effects and, hence, of the
effective use meaning of implemented software objects, it is possible to obtain an
additional bearing for the description characterized as the theory. For even when
implemented in concrete terms, typographically symbolized software objects can
be directly related to the theory as its models. This applies throughout the
process of software modelling.

After all, the versions of the software objects implementing the common
frame of reference may, as models, quite well exhibit characteristics, actions and
assurances that go beyond those laid down in the Reference Theory. On the
other hand, a software object is determined, ultimately, only in relation to the
implicit theory built on the basis of interpersonal communication between the
developers and users.

The objects and processes we make use of in reality invariably exists only in
relation to a theory. The specification of a 'real thing', its designation and its
description are performed in the language underlying the theory.

Objects, relations and situations in everyday reality that are not grasped
in real terms and abstracted from, that are not reconstructed and described in
terms of language, cannot be communicated on an interpersonal level and cannot
therefore be the object of cooperative work processes. Hence, if the means and
content of work as well as work activities and products are not subjected to
communication and description, they are of no lasting significance in cooperative
software development.

7.3.4 Conclusions

If we agree that anticipatory reality construction - and thus theory building in
the sense discussed - is always imparted in creative work processes, and if we
further acknowledge the fact that software development, as compared with mass
production, is a creative and at the same time a productive work process, then
we have to draw on the creative elements of the process.

The most important conclusion is, then, the insight that it makes no sense
to divide the process of software development into proper work activities, by
which traditionally is meant formal construction and correct implementation of
the program on one hand, and other necessary - though not proper - working
activities comprising communication and learning processes on the other.

In participative projects, cooperative design and thus communication and
mutual learning processes, in the course of which individual anticipations are
mutually externalized, realized and modified constitute the genuinely creative

7.3 Anticipating Reality Construction 325

work elements from which all other modelling and implementation activities
follow on. It is in the course ofthese work acitivites that the new domain ofreality
is constructed, not only mentally but also externally. The notion of cooperative
theory building for the anticipatory - and thus subjective - side of software
development and the concept of a shared theory as its result - though never
complete - are of methodological value.

A Reference Theory consisting of a Reference Glossary and a set of Reference
Schemes - although it is subject to continual modifications in the course of the
project - reflects at all times the state of the theory building process. Together
with protocols recording the reasons that led to the various design decisions it is a
simple but appropriate concept to support software development as a cooperative
working process in the course of the relatively short project-historical and the
long socio-historical run. After all, software development projects are part of the
societal working process and its evolution.

7.4 On Controllability
Wolfgang Dzida

7.4.1 Introduction

Controllability is regarded as an essential requirement for the design of interac
tive systems as well as for user-interface design. A system is said to be control
lable if the user can influence the selection and sequence of application programs
as well as the flow of data and control.

This paper is written from the user's point of view and does not contribute
to any technical implementations of controllability. Rather, it is intended to put
forward arguments for this requirement, so as to enhance its priority among
other requirements, particularly in comparison with the degree of automation
a system should achieve. Automation almost always implies that the process
to be programmed can be regarded as the "one-best-way" of doing something.
In day-to-day work this assumption is sometimes falsified due to exceptional
circumstances the user of a program is faced with. But the designer of a program
is unable to anticipate all circumstances which determine user activities. When
automating parts of those actions the designer should allow for modification of
its control flow so as to enable the user to work more flexibly.

Just as the "one-best-way" of accomplishing a task rarely exists, so is there
no "one-best-way" of human-computer dialogue. The designer is also overbur
dened with the decision as to whether "direct manipulation" or other modes of
interaction are well suited to individual user needs. Hence, one should leave it
up to the user to choose among alternative dialogue styles. Providing multiple
ways for users to access application functions increases their understanding and
appreciation of control.

Controllability will be examined here with regard to the design of interactive
application programs as well as their use by various modes of dialogue. These
two domains of controllability correspond to the distinction between "global"
control and "local" controIl, with the first being control among dialogue and
computational components of the system and the second being control within
dialogue.

The first part of this chapter is dedicated to the controllability of modes
of interaction, while in the second part an idea is outlined as to how one may
improve the potential of a user's intervention into the execution of an application
program. Consequences for user interface design are also discussed.

1 [Hartson and Hix, 1989, p. 52]

7.4 On Controllability 327

7.4.2 The user in control of the mode of dialogue

When designing a human-computer interface as part of a computer program,
a system developer's effort should not be aimed at an interface providing "the
one best way" of interaction. There are some empirical results confirming the
assumption that users prefer a dialogue offering individual action strategies.
Strongly predetermined dialogue structures were evaluated negatively2. In view
of this result, let us next investigate the predetermined dialogue caused by an
interaction language.

Formal interaction versus "direct manipulation"

The development of software for human-computer dialogues provides a reality
which drastically changes the conventional way of handling tools. For a dialogue
to be carried out a user is urged to learn and to apply a language which is still
quite artificial. Additionally, in contrast to conventional tools the concrete visual
conceptualization of what is happening in the machine has been lost. To cope
with this intangibility interface designers have invented "direct manipulation"3
as an interaction concept. The manipulation of a displayed object is "direct" in
the sense that the user's action causes an immediate and observable response.
Furthermore, the control is achieved by means users have encountered in other
contexts; for instance, buttons, scroll bars, or pointing devices. Direct manipu
lation is not achieved by using an artificial language but by "grabbing" objects.
Which mode of interaction is advantageous depends both on the technical so
phistication of the user and the complexity of the task.

The user training factor

Whether formal descriptions are useful in human-computer interaction depends
on the degree of qualification a user has achieved during user training courses.
Of course, untrained users will be unable to manipulate a system by means of a
formal language. On the other hand, users who can cope with a formalized level
of interaction may work more efficiently. They carry out a mode of operation
which is aided by abstract cognitive action schemata. These schemata are more
precise and generalizable. Although there is as yet only insufficient empirical ev
idence available, this mode of operation appears likely to be the most efficient4 .

It can be shown, for instance, that a formal and thereby abstract mode of access
to data bases provides more efficient results5 . Therefore it is at least questionable
whether a tangible and convenient mode of use is always the most efficient one.
Nevertheless, application programmers tend to design human interfaces under
the premise that most people want to interact easily with the system and are

2 [Spinas, 1987]
3 [Shneiderman, 1987, p. 201]
4 [Dzida, 1987]
5 [Katzeff, 1986]

328 Wolfgang Dzida

not interested in becoming proficient enough to do their work at a demanding
level. However the design of work tasks and the qualification of working per
sons are aspects which go hand in hand6 • "Skills are particularly important as
prerequisites of control" 7. Hence, user training is indispensible.

The impact of the training factor on dialogue control can be investigated
in the daily work of software engineers, who are undoubtedly the most highly
trained group of users. They highly appreciate controllability during their own
interaction with the system. For example: provided the task at hand can be
represented in terms of a macro (a sequence of commands indicating an action
schema), a macro editor is welcome as an interface tool for adapting the control
structure of the task steps. Thus, the usual way of user-computer dialogue can
be extended. The user is enabled to develop a style of interaction similar to
programming. Since the user has access to a programming language, he is in
control of the degree of automation of the dialogues. Depending on the user's
preference for utilizing action schemas (macros), complex procedures as well as
routine tasks can be carried out flexibly.

Sometimes the tendency of work processes to become increasingly formal
ized, abstract and desensualized is complained about, and it is supposed that
abstract and desensualized work activities are less efficient. I do not agree with
this assessment, insofar as formalization does not necessarily involve an intangi
ble presentation of an interaction language. In Katzeff's experiment (mentioned
above) the formalized data base query language was presented in terms of "Venn
diagrams" which are common in mathematical logic and set theory. Provided the
user is familiar with the diagrams he or she will be well able to use the formalism
as an efficient interaction language. By the way, various engineering disciplines
apply graphical though formalized representation languages which can also be
used in human-computer dialogue. From this discussion I conclude that it is
not always the formal and abstract mode of interaction which causes the user
trouble; the lack of adequate training appears to be the real cause.

However, this lack is but one factor affecting the efficiency of an interaction
style. The complexity of the task needs also to be considered.

The task complexity factor

As pointed out, abstract action schemata and formal interaction languages en
large the potential for dialogue control. The advantages of formal interaction
languages, however, should not be overgeneralized. Disadvantages may be recog
nized when taking into account the mental load probably engendered by abstract
modes of operation. Therefore, "direct manipulation" has been introduced as an
interface conception to visualize those contents of the human-computer dialogue
which are tangible and thereby allow more freedom of physical actions on the
objects displayed. Thus, a user's cognitive operation needs not stay within the

6 See Volpert, Chap. 7.5
7 [Frese, 1987]

7.4 On Controllability 329

limits of the abstraction. Operations may be performed with the aid of a con
crete and continuous presentation of the objects manipulated. "Direct manipu
lation" might be favourable when the task at hand is relatively complex. Then
the human working memory is active at full capacity and does not welcome the
unnecessary mental load caused by a formal interaction language. Visualized ob
jects may play the role of an externalized human information store relieving the
internal human working memory from the burden of retaining or remembering8 .

The rationale for this hypothesis points to the distinction between task (work)
preparation and task performance. It is the visual feedback provided by "direct
manipulation" which reduces mental load during complex work preparations.

On the other hand, a user need not carryon a dialogue in concrete, visualized
terms, when dealing with undemanding routine task performance. In this case,
it is both the ponderous movement of the manipulation device and the forced
stepwise course of action which hampers routinization. Performance in terms
of a formal command language appears to be more appropriate then, since the
complexity of the underlying task has already been reduced during the prepara
tion phase, and is cognitively available as an abstract action schema. The user
can automate this action schema quite easily with the aid of command language
facilities, such as command procedures or pipes.

Advice for design

In designing a user interface, both a formalized and the "direct manipulation"
mode of operation should be considered. The user should be permitted to decide
which mode is purposeful and preferable. It can be shown that the very same
human interface feature may affect users differently, depending on the task to
be performed9 . Hence, it is not up to the designer to develop "the one best
way" of human-computer dialogue, but to provide for alternative interaction
modes. Advantages or disadvantages of modes of interaction cannot be predicted
perfectly due to a severe lack of psychological theory on human problem solving
in the workplace1o. Furthermore, it is actually difficult or even impossible to
specify a priori the category to which to assign a user, since the user is a learning
and developing person. A user's preference for any mode of system use may not
be regarded as fixed for all time.

7.4.3 The user in control of the application program

At the design level of the traditional system development process, both data flow
and control flow must be represented. For control flow, often a graph-structured
model is designed, indicating the normal sequence and synchronization of events.
At this level, very little may be known about the details of user control needs.

8 [Schonpfiug, 1986]
9 [Hacker, 1987b]

10 Carroll, Chap. 4.3

330 Wolfgang Dzida

Hence, when modelling an application domain there is the danger of over
automating data flow and control flow, with the user's control becoming ancillary
to these processes. Controllability, however, is essential in the ergonomic mod
elling of human-computer interaction 11.

Hartson and Hix distinguish "computation dominant control" and "dialogue
dominant control", the first one providing a system "that can be efficient in
execution but lacks the flexibility necessary for easy modification of system
sequencing" 12. The second kind of control is dependent on user control inputs.
Let us next discuss the design of interactive application systems. I will complain
about the preference for designing systems with computation dominant control.
This preference is caused at three sources of expertise, producing different kinds
of biases.

Biased modelling of reality

At least three sources of knowledge determine the analysis of an application
case: 1) the user's expertise in the application field, 2) the formal representation
method used in system design to describe the model of the user's application
domain, and 3) the engineer's expertise regarding the possibilities of new tech
nology. These three sources of knowledge produce different biases in modelling
of reality during systems analysis and design: a) the user bias, b) the methodical
bias, and c) the implementation bias.

The user bias is caused by the inability to reproduce knowledge about the
application field at all levels of detail and abstraction. Much of this knowledge
is private to the user, not because the user is unwilling to describe the tasks
and how they are performed, but because of inability. The user knows more
than he/she is aware of knowing13. With regard to user control of application
programs, a block of knowledge needs to be elicited for the design of dialogue
functions which indicate such user requirements as how to proceed with a task
at hand in readily comprehensible steps, how to receive information for task
planning, how to interrupt the dialogue, etc. During system design, however,
these nitty-gritty details cannot be anticipated completely. Thus, the model of
the reality is biased by incomplete information about user control issues.

Another kind of bias is called methodical bias. In system design, this short
coming becomes evident if one takes into account that most traditional "design"
methods are also used as methods for requirements analysis or specification.
As a consequence, the outcome of requirements analysis is a representation of
the application field mainly from the developer's point of view. Furthermore,
methods such as RIPO, SADT or PSL/PSA result in a representation of the
application field reflecting the characteristics of the method applied14 . Thus, the
model of reality is biased by leaning the representation towards the methodical

11 See [DIN66234, 1988].
12 [Hartson and Hix, 1989, p. 53]
13 Cf. [Feigenbaum, 1977].
14 [Valder and Weller, 1984]

7.4 On Controllability 331

requirements of system design or system specification. With regard to dialogue
dominant control, Hartson and Hix point out that a design representation would
result in increased complexity due to the necessity of mixing different levels of
abstraction. For the sake of clarity, design representations provide information
at an abstract level, thereby hiding details inappropriate to that level. However,
when details of local dialogue control are considered, a mixture of abstraction
levels takes place, since global control and invocation of functional semantics
relates to more abstract levels than local control. "This is especially evident in
state transition diagrams where detailed functions such as token level, (syntac
tic) error processing and help request handling are often found at the same level
of abstraction as global transitions among dialogue and computational states" 15 .

The third kind of bias in modelling reality is called the implementation bias.
On the one hand, systems analysis and design are attempts to elicit and under
stand the knowledge pertaining to an application domain. On the other hand,
specification and implementation deal with the realization of what has been
modelled during systems analysis. Understanding an application domain and re
alizing an application system are activities which should be kept distinct. If this
division of developer roles is neglected and the system design is carried out by
the implementer, the "system designer" is inclined to understand the applica
tion domain from the perspective of his implementation expertise. Swartout and
Balzer have pointed out that specification and implementation are inevitably
intertwined. Developers who believe in an absolute separation of specification
from implementation are overly na·ive. Does this also apply to system design?
Whereas the implementation bias in system specification seems to be unavoid
able because role sharing is impossible16 , the same kind of bias could be avoided
in systems design by an organizational separation of roles.

In view of these kinds of design biases, I conclude that in traditional system
design "computation dominant control" is given preference over "dialogue domi
nant control" . Thus, controllability has been given little consideration and rarely
gets implemented. Less effort has been invested so far in placing global control in
the dialogue, because it is assumed that a dialogue-oriented application system
"requires increased (possibly substantial) computer systems resources" 17.

A challenge for system design in the future is to go beyond the boundaries
of the pure technical system design and consider the user and the computer
system as a whole, thereby enhancing the efficiency of the whole by submitting
its technical subsystem to user control. The next paragraph is intended to discuss
some ideas about how to improve conventional design techniques with regard to
controllability.

Modelling by complementary representations

To address the problems associated with biased modelling of application do
mains, I propose extending the traditional design approach. Systems analysis

15 [Hartson and Hix, 1989, p. 54]
16 See [Swartout and Balzer, 1982].
17 [Mason and Carey, 1983]

332 Wolfgang Dzida

can be regarded as knowledge engineering, which is aimed at modelling an ap
plication domain in terms of a knowledge domain18. Systems analysis thus may
bring about a model of the application domain which comprises as usual a repre
sentation of data flow and control flow. One part of the model involves instances
and conditions of an application domain which can be regarded as normal activ
ity, e.g. the day-tO-day data and control flow in an organization. For this purpose
traditional diagrams may suffice. Additionally, some "knowledge" about these
parts of the domain should be represented, particularly about user control needs
and corresponding exception handling.

During the execution of a task, a user is sometimes faced with exceptions
and must react to the new situation. The current task may require modification;
the means of performance may need to be adapted. Hitherto, little attention has
been given to these control needs. But they could be taken as an amendment of
conventional design. A complementary part of the model should involve "knowl
edge" about control needs, particularly about the handling of exceptional cases
and heuristic exception handling, which limit or augment the governing of the
normal sequence of actions within the user-computer-system. For this purpose,
a rule-based representation of the application domain model might be adequate.
The rule-based part should comprise "knowledge" about user control issues and
automated control flow.

"Most programs are structured so that control is fixed, an entity built
into the system, and not readily accessible to the user. But by making
control explicit and available for modification, the same program can
become more flexible and efficient. In many domains, a production sys
tem formalism for representing and using knowledge confers this easy
modifiability and understandability" 19.

One might take into account a presentation of data flow by means of conven
tional diagrams and a complementary representation of control flow in terms of
production rules.

Aside from the above points, the knowledge engineering approach does not
imply any preferences for rules to be assembled. Even contradictory rules are
not prevented from entering the knowledge base. Thus, the systems engineer
(knowledge engineer) has the opportunity to gather various facets of an appli
cation domain without any prejudice to later design decisions.

One effect of complementary representations may be that the users' domain
knowledge will be formulated more precisely, and the impact of a single design
or implementation view on the model of the application case can be neutralized.
With regard to system design, Winograd and Flores2o pointed out that we create
our world (i.e., our systems) through language. Besides the designer's modelling

18 [Dzida and Valder, 1985]
19 [Terry and Englemore, 1981]
20 [Winograd and Flores, 1986]

7.4 On Controllability 333

language, it may have important consequences for design and system use, if the
user's language can be considered more seriously in the design of control actions.
Rules are close to the language of users.

Objections concerning the use and integration of different languages (rep
resentation of data flow differs from that of the control flow) should be taken
into account. From the development of knowledge representation systems, how
ever, one can learn that the use of different formalisms no longer causes serious
problems. In the case that data flow and control flow are formulated in different
formalisms it is possible to integrate them. If this attempt fails, the authors of
the Babylon system21 suggest implementing a meta-interpreter.

Implications for human-computer interaction

The application domain modelling approach suggested may provide significant
advantages for the use of a system, and thereby for the "controllability" in
human-computer interaction. The user-directed treatment of control issues is
aimed at improving interaction during the execution of programs.

As an example, consider the UNIX program ''find'', which operates on a vari
ety of data. Let us assume that during runtime a user decides to tell the system
that certain data need not be considered, in order to avoid unnecessary waiting.
To satisfy this user requirement, the user needs to have been informed about
which data are under potential operation of the program. Only then would the
user be capable of recognizing which kind of data are irrelevant for the operation.
Only the user can recognize which data are irrelevant for the operation, and it
is most efficient to do this at runtime, because it may be impossible for the user
to remember all kinds of irrelevant data in advance (i.e., before executing the
command "find"). Unfortunately, the UNIX program "find" does not meet this
user requirement; a control facility is missing.

From an ergonomic point of view, a user should at least be able to de
automate an automated process, if it affects an act requiring the freedom to
respond to unanticipated circumstances.

Drawing on the idea of rule based control it may be possible to develop a
user-interface component allowing the user to govern the system's control flow
in terms of rules representing control actions. Unfortunately, however, no such
implementation is yet available. Recently, knowledge based system designers
have made some progess which could also be applied to design control structures.
The key idea of Randall Davis is to separate information about control out of
the object-level knowledge and present it explicitly (in meta-rules). "The explicit
representation of information about control embodied in meta-rules also makes
it possible for a system to reason about that control information" .22 In view of
this possibility one may ask whether a user would also be able to reason about
that control information.

21 [di Primo and Wittur, 1987]
22 [Davis, 1980, p. 210]

334 Wolfgang Dzida

The prospects for a solution of this problem are not poor, since Kowalski il
lustrated the separation of logic from control in conventional algorithms. He par
ticularly emphasized that "computer programs will be more often correct, more
easily improved, and more readily adapted to new problems when programming
languages separate logic and control ... »23. Davis came to a similar conclusion:
Explicit representation of control information makes a system "more transpar
ent, less prone to what we termed partial order bugs, and easier to modify" 24. As
usual, ergonomic requirements such as "controllability" prove quite well-founded
from both technical and economic standpoints.

7.4.4 Perspectives

Designing for controllability appears to be a challenging perspective for com
puter science and ergonomics. Computer science has been concentrating too
much on the automation of offices and industrial environments. Accordingly,
modern system development merely follows the old beaten track of industrial
changes brought about by conventional mechanical inventions. The operator of
this kind of machine was degenerated to an appendage and expected to simply
react with relatively passive patterns of behaviour. In the Federal Republic of
Germany, a special research programme on the humanization of work was un
dertaken because of the mental and physical consequences for operators of such
machines. There is some hope that we learn from the faults of the past when
applying a new technology.

With the advent of "interactive" systems we are now able to utilize the
potential of a new technology. Up until now, however, many computer scientists
have concerned themselves with adaptive, intelligent programs and planning
systems aimed at aiding and controlling the user to perform tasks correctly and
consistently, instead of focussing their attention on improving the controllability
of machines. Shouldn't the user be allowed to make mistakes and learn from these
opportunities? Does Walter Volpert's conclusion in his critique of Tayloristic
work design apply that wherever possible, human beings - those rather imperfect
and unreliable machines - are to be replaced by real machines?25 Brown and
Newman26 suggested that system design should focus on the controllability of
errors, instead of the minimization of their occurrence - thereby challenging
genuine human capabilities, i.e., self-organization of behaviour, flexibility and
intelligence.

System designers sometimes argue that people don't want to bother with con
trol issues, since they enjoy the comfort of automation. It should be emphasized
that controllability and automation are not necessarily in conflict. The central
issue of "controllability" is to what extent a system restricts the control of its

23 [Kowalski, 1979]
24 [Davis, 1980, p. 219]
25 See Volpert, Chap. 7.5.
26 [Brown and Newman, 1985]

7.4 On Controllability 335

user. But it is the user who should decide under which circumstances processes
are to be automated, so as to free mental capacity for other tasks.

It also has been objected that controllability exacerbates the complexity of
system design as well as system use. Software developers and users, however,
seem to be "complexity-reducing beings,,27. To decrease the complexity of sys
tem design the separation of data flow and control flow design issues has proven
to be useful. This section has argued that an adequate design language can be
applied to help cope with complexity. For system use to become less complex,
users almost always prefer applying the concept of "easiness in effort needed for
use". This section argues that the complexity of system use can be individu
ally optimized when the user is permitted to decide which mode of interaction
or interaction language is appropriate28 . Frese29 pointed out a source of con
fusion in the controllability/complexity controversy. It is not complexity per se
but complicatedness which is difficult to control and which leads to degraded
performance.

27 [Frese, 1987]
28 See the paragraph on formal interaction versus direct manipulation.
29 [Frese, 1987]

7.5 Work Design for Human Development
Walter Volpert

7.5.1 Introduction

In the following sections we present human criteria for the design of working and
learning processes to promote human personality development. Taking a global
view of this problem means abandoning models which equate human beings with
machines or computers. In their place, we propose a perspective on human beings
and organizations that is based on the theory of evolution and the psychology of
action. From this perspective, we formulate three general principles of evolution,
and from them derive nine aspects which are of importance in designing working
and learning processes that are conducive to personal development. Finally, we
present a guideline designed to enable work tasks to be evaluated in relation to
these aspects.

From the psychologist's point of view there is one particular problem requir
ing special attention in system design: What are the characteristics of a work
ing situation which may be considered conducive to human development, i.e.,
which promote personality development and allow the worker to satisfy needs
and develop skills? And what are the corresponding characteristics of learning
situations?

Such questions cannot be answered by empirical means alone. Answering
them necessarily requires reflection on different concepts of the human being
and undertaking a personal commitment to a particular view of the human
condition. Philosophical and anthropological awareness is needed if we are to
tackle the concrete, practical issues involved here. But this entails a number of
difficulties. Is it possible to develop universally valid criteria for determining what
is conducive to human development? Is that not too ambitious an undertaking,
and are not the criteria different for each individual?

Even accepting the existence of such difficulties, this should not prevent us
from seeking a coherent conception around which a broad consensus might be
obtained. We may also aim for some listing of the essential features of working
and learning conditions for which a degree of general, supra-individual validity
might be claimed. These are the human criteria which practitioners in the field
of work design have been calling on psychologists and educationists to provide.

It is obviously still a major problem, even today, to design working and learn
ing processes that are humane and adequate in human terms. One of the main
reasons for this is doubtless the prevalent world-view illuminated so critically in
the earlier chapters of this book, a view based on the metaphor equating human
beings and organizations with machines. If we accept this metaphor, the design
of working or learning processes follows well-defined principles. It involves spec
ifying precisely the overall goal; planning in advance the exact procedure to be

7.5 Work Design for Human Development 337

adopted; specifying it in fixed terms; dividing it up into sequences; and keeping
an exact check on the success achieved for each stage. If, at some point, deviant
results are obtained, then the program requires branching. This branching must,
however, be directed back towards the goal. These are the routines followed in
the Tayloristic organization of work and in the behaviourist programming of
learning.

There are, of course, alternative lines of research which view human beings
and organizations not as externally controlled or cognitive machines, but rather
as living beings that have emerged through quite specific processes of evolution
and are continuing along their respective paths. One of the research traditions
of particular interest in the narrower context of work design is the sociotechnical
approachl.

I shall attempt in the following sections to formulate some basic principles of
evolution and derive from them nine aspects or human criteria for the design of
working and learning processes. In doing so, I shall refer to more general concepts
such as the theories of self-organization2 , activity3, and action regulation4 . Here,
the following procedure is adopted:

• First of all, I present a very brief (and, necessarily, highly condensed) char
acterization of human life and action in terms of a 'principle of evolution'.

• I then go on to ask which situational conditions of working and learning
correspond to these characteristics. Here, I differentiate a number of aspects
in each case and formulate these as arguments addressed to the work de
signer. The guideline presented in the final section provides procedures for
evaluating work tasks in relation to each of these aspects.

• Finally, I try to give some indications of the conclusions which may be drawn
or the methodological implications which may be derived from this approach
and applied in the design of work-related learning processes, particularly for
vocational and on-the-job training.

7.5.2 The principle of personal paths of development

Whatever our exact conception of evolution may be, it invariably presupposes
two things: Firstly, that there is a context within which evolution takes place.
Basically, this is constituted by the history of the process with its own internal
logic, and its surrounding conditions, in a very broad sense. Both give the current
process a specific form, and structure its potential for progression - which, in a
certain sense, invariably constitutes a restriction, too. And secondly, that there
can be no evolution without this progression, i.e., without innovation and self
renewal - factors that are not fully predictable from the context, and for which
the terms freedom and autonomy are sometimes used.

1 Cf. [Emery and Thorsrud, 1969].
2 (Jautsch, 1980]
3 See Raeithel, Chap. 8.4.
4 [Volpert, 1989]

338 Walter Volpert

Human evolution represents a qualitatively new dimension here. The context
is shaped by socio-historical conditions. Self-renewal is translated into potential
for autonomous action, into the ability to determine the further course of evo
lution in accordance with the intentions of the individuals or groups involved.
This makes the personal paths of development an essential characteristic of hu
man evolution.

So much for the general principle. Let us now turn to the situational condi
tions which make possible or promote such evolution. There is no escaping from
the contextual conditions in which the process of personal development takes
place; but there is a significant difference in the degree to which such conditions
open up or restrict possibilities for development. Such differences are discussed
below in terms of distinct aspects.

The first aspect is one to which the work-related social sciences have always
paid particular attention when considering the effects of work on learning and
development. What is meant here is the scope of action. This is the degree to
which working people act self-reliantly at the workplace, and to which they are
able to make autonomous plans and decisions about goals and the means for
attaining them. It is generally recognized that this scope of action is determined
primarily by the nature of the work task; its impact on different spheres of human
experience and behaviour is well-documented5• Using terms from the psychology
of action, we speak here of the regulation requirements of such work tasks, which
are at the same time regulation opportunities6 . The degree of self-reliance provided
for in a particular working situation determines (as a rule) the worker's scope for
personal development, culminating, in its highest form, in a personal work style,
which is what characterizes the especially masterly command over a particular
field of work.

This aspect might be paraphrased as follows in terms of an argument: In
order to promote personal development, work tasks must allow for a broad scope
of action, i. e., have high regulation requirements.

If we consider analogous principles for the design of learning processes, we
note that such principles are by no means unknown in this sphere. Thus, a brief,
fairly general reference to these learning processes will suffice to begin with. It
will be a different matter, though, when we turn to look at concrete work-related
learning processes, especially in the field of on-the-job training. Here, the design
of learning processes would, in most cases, still appear to bear the mark of the
very same machine models which determine the way work tasks are shaped. It
might, therefore, be useful to reflect on some specific learning methods in this
connection.

We turn our attention accordingly to the first aspect, the scope of action.
The overall concern here is to ensure that opportunities for self-reliant action
in complex situations are considered as both the general goal and, at the same
time, a design criterion for learning processes. All learning and educating should
promote the emergence of self-reliant action regulation. This self-reliant action

1; Cf. for example [Kohn and Schooler, 1983].
6 Cf. [Oesterreich and Volpert, 1986].

7.5 Work Design for Human Development 339

regulation should be considered the subjective counterpart to the criterion of
high regulation requirements and opportunities applied to work tasks. Training
methods based on the action regulation theory set out, in this respect, primarily
to improve the cognitive regulation basis, in other words the appropriation of
techniques for the self-reliant definition of goals and means for attaining them
with respect to complex work tasks 7 . Instances of such methods are:

• special training with regard to particularly important theoretical foundations
and planning procedures,

• learning aids to be studied and applied on a self-reliant basis,
• directions for coming to terms with the demands of a specific task by making

notes, watching experienced colleagues, etc.

The second aspect, which is quite obviously connected with the first, is the
temporal scope for accomplishing a specific task or 'autonomy in time'. I treat it
separately because in practice it plays an important role. It is often found that
too tight a schedule for performing a particular task nullifies an otherwise quite
generous scope of action.

Every form of social organization of working processes requires an element
of timing. However, the temporal disposition margins enjoyed by individuals
or groups vary considerably. They are narrowest where work is subject to the
tight schedule of a rigid organization run along serial production lines. The
temporal scope increases as the time schedules or relevant agreements acquire
an increasingly global applicability, and as the periods of time to which they
relate are extended (without this necessarily making them any less binding).

Cast in the form of an argument, the second aspect might read: In order to
promote personal development, work tasks require the provision of wide temporal
scope.

Applied to learning processes, this second aspect means the possibility of
individualizing learning speeds, such as is the goal of didactic models of exter
nal and internal differentiation. It is this principle, though, that is so frequently
violated in connection with training in industrial practice, for instance, by be
haviouristic learn-step sequences, or by a precisely graded system of training
measures which put unreasonable pressures on workers and make it practically
impossible for them to catch up once they fall behind.

A third aspect of situations that is crucial to the principle of personal paths
of development may be termed structurability. This refers to conditions which
challenge workers:

• to gain insight into, and a mental grasp of, the overall situation, i.e., of the
social and technical aspects of the production process;

• to try and develop, on the basis of this knowledge, their own practical ex
perience and personal dispositions, own ways of viewing and interpreting
their respective work tasks as well as the difficulties and potential solutions
connected with them; and

7 See [Volpert, 1989].

340 Walter Volpert

• to develop subsequently their own personal working style, which assumes the
character of an intuitive, matter-of-fact confidence which is both effective and
non-stressful.

Structurability as a situational feature allows behaviour of this sort, by not
only permitting different forms of task interpretation and mastery (already en
hanced by the scope of action), but by actually calling for and encouraging in
various ways this type of personal structuring.

Worded as an argument, it might run: Work tasks must provide facilities for
developing a personal approach to grasping and mastering demands in terms of
structurability.

This also involves what Ulich8 calls differential and flexible work design, i.e.,
responding to individual idiosyncrasies in task interpretation and offering scope
for workers to influence the nature of tasks. Individual structurability is closely
interwoven with the social organization and technical design of the production
process. A machine ideology with its 'one-best-way' dogma rules out any alter
native or personal approaches9 • But the interpretation of the nature of tasks
prevalent within a particular organization can encourage such alternative ap
proaches. For example, in the case of computer-related work, the design of the
program system may help make the technical process more transparent, thus
opening up possibilities for adopting an individual approach in handling it10 .

A similar picture emerges if we turn to look at learning processes. Individual
structurability, in the sense of autonomy in interpreting and assessing events as
well as in decision-making and action, is one of the basic tenets of the reform
movement in education. In contrast, those approaches to work design which
follow the machine model adhere to a firmly preordained learning goal and the
optimized 'one-best-way' of reaching this goal.

If we go on to consider the learning methods proposed by industrial psychol
ogy, mention should be given first of all to the forms of exploratory learning
which have recently been shown to be especially relevant to work involving data
processing devicesll . Another aspect of crucial importance here is the use of
heuristics or general rules of procedure12 • These methods are designed to pro
mote the self-reliant and task-optimized mastering of complex situations, and
also to indicate how these rules may be abridged and internalized.

The fourth aspect is the notion of freedom from regulation hindrances. In
practical task performance in organizations, it can be frequently observed that,
despite a broad scope of action, performance can be impeded by specific circum
stances not inherent to the nature of the task itself. These could, in principle,
be eliminated, but it is precisely the scope of action granted the worker which
prevents this. The worker is compelled to live with hindrances to task mastery
which are rooted in organizational or technical deficiencies and faults, in other

8 For example[Ulich, 1987].
9 Cf. [Greif and Gediga, 1987].

10 Cf. Dzida, Chap. 7.4j [Ackermann and Ulich, 1987].
11 Cf. Carroll, Chap. 4.3j [Greif, 1989].
12 Cf. [Hopfner and Skell, 1983].

7.5 Work Design for Human Development 341

words which 'need not exist'. This results in various forms of additional work
effort, including increased action-related risks, which constitute the negative fac
tor mental load. (In contrast, regulation requirements may be seen as the positive,
demanding aspect of conditions affecting task performance.) Such hindrances
can be further refined into impediments, interruptions and hindrances of various
other kinds13 .

The following argument applies to all of these forms: In order to promote
personal development, work tasks must avoid objective hindrances to the work
activity.

In the case of learning processes there are a wide variety of hindrances which
may be similarly categorized. Examples of these are inadequate learning aids or
unfavourable learning conditions, as well as the difficulties frequently encoun
tered by instructors in industrial practice in clearly specifying and structuring
the essential elements of the learning tasks and translating these into guides for
action.

7.5.3 The principle of embodied being-in-the-world

We have so far looked at four aspects which are derived from the general princi
ple of 'personal paths of development'. The second general principle of evolution
is one which follows from the perspective of the theory of evolution. It needs
emphasizing because it is often overlooked in approaches based on the machine
metaphor. Take, for instance, the fundamental notion of cognitivism, which is
based essentially on equating human thought and action with the processes of a
serial digital computer. Here, the perceptive and active human being is viewed as
a cognitive decision-making machine, the outputs of which are viewed as changes
in the internal model of the machine. By the same token, in mechanistic con
cepts of organization, the human being is seen as an abstract node in a network
of procedures whose functioning is dependent on his fitting in as smoothly as
possible into a formalized, abstract and quasi-automatic process.

Embodied being-in-the-world, then, requires particular emphasis as a general
principle of human development. Physical existence, real movement and action
in terms of intervention and change are the starting-point and objective of all
thought and perception. We exist only through our physical embodiment, and
we experience the world only through this body of ours and by handling the
objects in this world.

But is it not an illusory and anachronistic undertaking to present the work
designer with a principle of this sort, faced as we are with the tendency for work
processes to become increasingly formalized, abstract and dehumanized - take,
for instance, the control consoles in power stations or refineries. To suggest the
existence of a quasi-natural force behind such a tendency is merely to fall once
again for the machine metaphor. Precisely the work performed by the console
operator - together with other jobs like programming CNC machines - may be
considered demonstrative of the fact that such abstraction of working activities

13 Cf. [Greiner and Leitner, 1989].

342 Walter Volpert

is inefficient and detrimental to the personality of the worker. And, what is more,
it may be seen as indicative of the fact that meaningful working activities can
only be secured by enriching a task with elements which re-establish in some
way a basis for direct practical experience as well as active sensory contact with
the production process.

These examples may also serve to demonstrate that enriching work require
ments with theoretical, or even scientific, elements does not necessarily involve
the loss of the concrete, sensory relation to production. On the contrary: in
dustrial psychologists and sociologists have repeatedly found, particularly with
respect to demanding technical work activities (such as those performed by the
skilled worker), that integrated and holistic sensory experience, with all its emo
tional components, constitutes an essential prerequisite for true mastery of a
particular activity. Let us consider, for example, the operation of a numerically
controlled machine tool. Here, work quality is highly dependent on the possi
bilities afforded the operator of experiencing the ongoing process via different
senses, and especially through the physically felt feedback from his own inter
vention. The notion of quality is, in this connection, to be understood both in
relation to workmanship and to subjectively experienced work load14.

Three aspects may now be derived directly from the evolution principle out
lined above. These are listed below, consecutively, in the form of arguments
addressed to the work designer.

Fifth aspect: In order to promote personal development, work tasks require
provision for sufficient and varied bodily activity.

Sixth aspect: In order to promote personal development, work tasks must call
for the use of a wide variety of sensory capacities.

Seventh aspect: In order to promote personal development, work tasks must
provide for the concrete handling of real objects and ensure a direct relation to
social conditions.

If we now relate these aspects to the area of education in general, we address
some quite fundamental principles behind the efforts of the reform movement. Of
relevance here, too, is the old established principle of learning by doing. It should
be stressed that this principle has nothing to do with blind, unreasoning action
or tedious drill (with which it is today sometimes - erroneously - associated).
Instead, it is concerned with uniting goal-reflection, path-planning and active
mastery.

This consideration may also serve to establish a link with learning methods
which are designed to promote speech, cognition and imagination processes in
the acquisition of skills and the more complex forms of know-how. First of all,
though, we have to work these methods 'against the grain', for it is precisely
the cognitive element that they emphasize, whereas we are concerned here with
physical embodiedness, concreteness and the sensory element. The action reg
ulation theory has, however, always emphasized a close correlation here with
concrete, executive action - in contrast, say, to the pure acquisition of knowl-

14 Cf. [Bohle and Milkau, 1988].

7.5 Work Design for Human Development 343

edge or the presentation of abstract guides for action. This applies particularly,
in the sphere of sensorimotor learning, to the assortment of methods which may
be subsumed under the heading training through internal realization (training by
mental rehearsal, by observation or by verbalization15). Generally speaking, we
as scientists still know far too little about what goes to make up the specifically
human quality of mastery or expertise - characterized as it is by swift, intuitive
grasping of situations and a 'feeling' for people and materials - and how it is
acquired.

This leads us on to our eighth aspect. Cognitive approaches are mostly atom
istic, emphasizing the function of rules. They combine individual stimuli to form
objects, and individual objects to form situations. And, in the same rule-governed
manner, they derive actions from these with the help of a decision-making ma
chine. In contrast, the approach based on the evolution theory highlights the
fact that perception, in its original sense, means the holistic grasping of situa
tions, and that action is the direct expression of this process of grasping. In the
course of evolution, this has become differentiated in various ways. Especially
significant - often particularly difficult or dangerous - elements of a situation
are pinpointed and viewed as objects. Intermediate links are inserted into the
situation-action interlacement. Instances of these are: the global 'emotional' as
sessment of the situation as a whole; the cognitive analysis of its component
parts and the consequences of potential actions; and the 'deliberate' decision in
favour of one of several possible actions. It is important here, though, that the
original embedment in a holistic grasping of the situation and the close connec
tion with actions are not (or at least, ideally, should not be) lost in individual
human development and in the learning process.

It is, again, precisely this swift and sure assessment of the situation as a whole
and the close connection between perception and action on which expertise, the
knowledge gained over many years of experience, is based. And it is evidently
on this basis alone that intuitive solutions and creative innovations are possible.
This is true at least of those areas where, in view of the complexity of the
problems involved and the wealth of available knowledge, many years of practical
experience are required to come to a proper understanding of the essential issues.

Sufficiently elaborate process models are already available for the basic as
sumptions relating to a differentiated development based on holistic situation
perception and situation-action interlacement, e.g., the associative or holographic
memory. They rest, basically, on the assumption of a resonance process between
a current stimulation constellation - corresponding to the situation perceived -
and a flexible pattern, 'transported through time' by the individual, (compris
ing the results of individual experience and appropriation). This pattern includes
emotional judgments and programmes of action, and possesses the characteris
tics of a schema, a concept which has long been well-known in psychology. There
is a pure or kernel form of the pattern (which can usually be illustrated by a
'prototype') and a range of permitted variation, the limits of which are, in turn,
changeable depending on experience.

15 See [Volpert, 1989].

344 Walter Volpert

But how can our deliberations help us to derive from this a new argument
relating to situations that promote personality development? Forming flexible
patterns in a complex domain requires the ability to tackle the same basic is
sue, problem or task in a number of different guises, in a variety of real-life
situations. Reducing this contextual variability - through the standardization of
situations - evidently hinders the learning process and the mastery of situations
which transcend this standardized range. But the same goes, presumably, for a
contextual variability that is, so to speak, vagabond, i.e., not centred on specific
requirements and task kernels16.

Our eighth argument might, then, run as follows: In order to promote personal
development, work tasks must be characterized by centred variability, i.e., while
the basic structure of the tasks remains the same, they must provide for a variety
of different implementation conditions.

Numerous training methods used in the spheres of work and sport emphasize
the need to vary training conditions in order to ensure that patterns of action
are flexible enough to meet differing requirements. There is also another type
of centred variability in learning tasks which extends and complements their
'horizontal' dispersion about a task kernel. Particularly for the attainment of
complex learning goals, a 'vertical' arrangement of learning tasks, reflecting a
gradual conditioning to the complexity of the overall action aimed at, may also
be considered useful. This conditioning serves to prevent both an overtaxing of
capacity and a fragmentation of the learning process. It might be characterized
as adapting the task to the development needs of the learner. This procedure
is also a familiar one in educational theory and practice. In action regulation
theory, it appears in the guise of the antecedent genetic form concept. Here,
emphasis is given to the holistic and action-related nature of the learning tasks
in a graded learning procedure.

Recent successful applications of this principle have been reported by Krogoll
et al. 17 for basic training on CNC machine tools, and by Greif1s for learning a
word-processing program. It is apparent that the principle of the antecedent
genetic form is of particular importance where new tasks are to be learned in a
complex technical context.

7.5.4 The principle of social and societal embeddedness

The definition of humans as a social being is an ancient one, and, if it is to
be correct, invariably refers to both their association with others, i.e., direct
communication, as well as the determination of individual thought and action
by the socio-historical situation.

In the course of historical development and in the process of individual evo
lution, social determination is always essentially mediated by direct interaction.
Our relations with the world are conditioned by our association with others.

16 For the domain of sensorimotor regulation here [Munzert, 1989].
17 [Krogoll et al., 1988]
18 [Greif, 1989]

7.5 Work Design for Human Development 345

In this association, our existence acquires its systems of meaning and its de
velopmental impulses. To fulfil the principle of embodied being-in-the-world, it
is essential that the social contact is immediate (i.e., non-mediated). In other
words, it must primarily take the form of oral dialogue and accompanying body
language. Written, and even technically mediated, communication is sometimes
unavoidable or even actually useful. It does, however, invariably reduce social
relations, making association with others both more abstract and more difficult.
For this reason it should not be allowed to gain predominance over other forms
of communication.

Our ninth aspect, then, might be worded as follows: In order to promote
personal development, working conditions must both provide for and encourage
cooperation and direct interpersonal contact.

This demand is not new to work designers either, at least in terms of ac
quaintance with the particular wishes of working people. It is, however, difficult
to fit such forms of direct contact into organizational forms based on the ma
chine model. And this is why the attempt is generally made - on the grounds
of certain unspecified constraints or in order to ensure clarity of organizational
structure - to hinder and restrict such contacts. Let us recall here F.W.Taylor's
recommendation to suppress any sort of workers' groupings on the grounds that
they are not expedient and merely lead to unrest19 .

These considerations can also be applied without any great difficulty to the
design of learning processes. The essential features of this aspect are to be found
above all in the various forms of group instruction with their different social
learning goals. Regarding the structuring of work-related learning on the basis
of the action regulation theory, the reader is referred, first of all, to the method
of task-oriented information exchange20 . In this method, workers are encouraged
to form groups responsible for producing specific material, mainly manuals ex
plaining how to achieve a proper mastery of their work tasks. This is shown to
have a number of effects: not only is there an improvement in task mastery (with
respect to both performance and stress reduction), but workers also develop sug
gestions for improving work design. In addition, the material compiled provides
a good basis for on-the-job training of other workers.

A slightly different, complementary approach has been presented by Kotter
and Gohde21 . They are concerned with the question of how working groups can
be prepared for production along the lines of the 'group technology model' (so
called 'production islands'). They recommend defining a central task for each
group, and requiring them to learn their task in a stage-by-stage process. Here,
the connection with the notion of the antecedent genetic form - introduced in
conjunction with the previous aspect - becomes apparent.

In discussing this ninth aspect, we have come up against a boundary. This
is the transition from system design to organization development. In the sphere
of learning, one could, by analogy, speak of the boundary between individual

19 Cf. [Taylor, 1911].
20 Cf. [Neubert and Tomczyk, 1986].
21 [Kotter and Gohde, 1989]

346 Walter Volpert

appropriation processes with isolatable goals and collective open systems. For
our research group, this boundary is an essentially pragmatic one - the guide
line presented below is concerned with task analysis only. Confinement to this
aspect should not, however, be taken to mean that there are not, beyond this
boundary, important aspects relating to working and learning conditions that
promote personality development. Nevertheless, the nine aspects outlined above
do provide a basis for crossing this boundary with a view to developing common
design processes for working and learning conditions. The latter are actually
inherent in them.

Detailed consideration of the ninth aspect we have just discussed also im
plies arriving at higher-level task-independent communication and, with that,
reflection on the common goals of action above and beyond immediate task per
formance, thereby addressing more directly the social determination of action. If
we avoid restricting the requirements relating to scope of action and structura
bility, and above all avoid confining these to individuals, scope is enhanced for
participative design of working and learning conditions. In the same way, groups
which accordingly assume responsibility for the individual development of their
members are likely, in the long run, to change their work tasks so as to bring
them into line with this development. Moreover, they will relate their action
to societal (development) processes and, by so doing, pose the question of the
'meaning' of this action.

This idea must be seen from two different perspectives. On the one hand, it
refers to the relation of working and learning activities to other spheres of life,
i.e., to the life-worlds, of individuals and groups. On the other hand, it indicates
that working and learning conditions can only be seen as conducive to personality
development if they enable individuals or groups to reflect on the social utility of
their action, and hold out the prospect of such reflection yielding positive results.

7.5.5 The guideline for contrastive task analysis

In our research group we have developed a guideline22 enabling the system de
veloper to evaluate work tasks on the basis of whether they take into account
the aspects or human criteria considered above, and thus whether they are con
ducive to personality development. The procedures provided by this guideline
also make it possible to evaluate future work tasks, i.e., those still at the plan
ning stage. Particular attention is paid here to the question of which subtasks
might be transferred to automated procedures, and in which cases this might be
considered unreasonable or even detrimental, since it would impair rather than
promote specifically human strengths. This is why we speak of contrastive task
analysis.

The method used for investigation is the observation interview, which involves
asking the user of the guideline (the industrial and administrative practitioner)
questions about the work task. The information required for answering these

22 Cf. [Dunckel et al., 1991].

7.5 Work Design for Human Development 347

questions can then be acquired by the user in an open dialogue with the working
person while observing the work activity.

The guideline comprises two main parts: the general procedure, and the spe
cial procedures relating to the above-mentioned human criteria. Each of these
parts contains a detailed manual and questionnaire. The manual provides in
formation on the aims and functions of the respective parts or sections, on the
procedure to be adopted in the investigation, and on how to deal with the ques
tionnaire.

The general procedure is subdivided into four parts. Part A, when processed,
provides a general picture of the department or organizational unit under inves
tigation. The aim of Part B is to supply general information about the individual
workplace and to give a clear definition of the work tasks to be performed at this
workplace. Part C is designed to provide an initial picture and a more detailed
characterization of the individual work task. It contains, in particular, the ques
tion whether information and communication technologies are of importance for
performing the work task, and if so, which ones. Part D enables a rough analysis
of the work task to be made with reference to the human criteria formulated
above. Particular attention is already paid here to whether any impairment of
the human criteria by the information and communication technologies is ob
servable. Part D must be processed separately for each different work task in a
particular department or organizational unit. By way of a result, Part D indi
cates those human criteria which may have to be dealt with in more detail by
the special procedures.

The other main part of the guideline comprises special procedures which
briefly cover the various human criteria outlined above (Parts E to M), and
another part (Part N) summarizing the results of the analysis. Here, too, the
essential question is to what extent the human criteria are either impaired by
information and communication technologies or supported by them. This second
part of the guideline is constructed according to the 'modular design principle',
i.e., it also allows for consideration of each human criterion in isolation.

So far, our experience in using the guideline has been promising. It has proved
easy to handle and suitable for use in a wide variety of different fields and for
work tasks of varying complexity. Depending on this complexity, the analysis of
a workplace normally takes between 4 and 6 hours. Moreover, it has been found
that the results of the analyses are also seen by industrial and administrative
practitioners as being important for system design.

7.5.6 Concluding remarks

Calls for the design of working and learning conditions conducive to personality
development take their place today alongside a number of other similar ideas.
These point out that people must adopt a different attitude towards conditions of
life and identity from the one prevalent so far - based as it is on the dogma of the
mechanistic world-view and the inordinate desire for command over behaviour
and the world. Such ideas also include questions concerning our relationship to
nature and the way we deal with natural resources and energy supplies.

348 Walter Volpert

Basically, what we are concerned with is a new view of human beings and the
world in which they live, taking account of the whole biological and socio-cultural
process of evolution and the shared responsibility of humanity for the quality of
their existence. But more so than in the fields of, say, environmental protection
or energy management, there exist clear and distinct alternatives to mechanistic
ideologies for the design of working and learning processes conducive to personal
development. These alternatives cannot simply be disposed of by offering the
global excuse that none of them constitutes a 'viable economic proposition'. The
design of working and learning processes that promote personality development
may be considered an initial test of whether we have a serious concern for a
responsible and life-oriented design of technology and the environment.

Acknowledgements
Translated from the German by Philip Bacon. My thanks go to Nigel Nicholson for
his helpful comments. The text draws on work carried out in conjunction with the
research project Contrastive Task Analysis. Other members of the project team are: H.
Dunckel, K. Hennes, U. Kreutner, R. Oesterreich, C. Pleiss and M. Zolch. The project
is funded by the German Federal Ministry for Research and Technology as part of the
research programme on the Humanization of Working Life.

Part 8

Epistemological
Approaches to Informatics

8 Epistemological Approaches to Informatics 351

Christiane
We cannot hope to establish adequate foundations for computer science with
out probing into philosophical traditions concerned with human thought.

Heinz
As implied by the illustration, a closer look at the computer gives rise to
profound philosophical questions. The computer has emerged from human
reality and carries this reality within itself. If we wish to understand com
puter science, we must see it in the context of the history of thought and, at
the same time, show how the history of thought is reflected in it.

Reinhard B.
In the heading to this part of the book, we have chosen to use the term
"informatics" to suggest a conception of our science that goes beyond a mere
"computer science" . For, traditionally, the computer is the focus of attention,
human reality being reduced to an abstract image on the computer screen.
It dwindles to mere form, vanishing, as it were, in the computer.

Reinhard K.-S.
In our view, though, informatics should concern itself with the interactions
between the formalized technical world of the computer and the living world
of the human being, throwing light on ways in which formalisms can be
integrated into human action. This would also enable it to adopt an explicit
orientation to human values.

Christiane
Traditional computer science is based essentially on logic. And it fits per
fectly into the philosophical school of Logical Positivism. It has developed
for itself sophisticated logical calculi to model increasingly complex facts
and ideas. And many computer scientists continue to believe that logic is
sufficient as a foundation for our work.
But if informatics is to concern itself with interactions between human con
texts of action and technically implemented formal artifacts, it must rest on
richer foundations.
In his introductory chapter to this part, Joseph Goguen goes into the reasons
why computer scientists should address philosophical ideas that transcend
the domain of logic - such as hermeneutics, for example - with a view to
arriving at a deeper understanding of "truth" and "meaning".

Reinhard B.
We also need a more comprehensive understanding oflanguage. For language
serves not only as a basis for formal calculi, it is also a vehicle for commu
nication among all the parties involved in the meaningful development and
use of computer technology.

Christiane
In the next chapter, Dafydd Gibbon highlights the connections between in
formatics and the philosophy of language. There is a wealth of correlations

352 8 Epistemological Approaches to Informatics

here. Programs are texts; they are written in special languages; all modelling
is carried out in terms of language; our understanding of language shapes
our understanding of informatics ...

Heinz
... and language also constitutes the means for critical reflection on our work.
Thought, language and action are interlocking and inextricably linked to
one another by our bodily experience. And our experience is mediated by
technology.

Christiane
These interrelations are viewed quite differently by the different schools of
thought in philosophy.
Rafael Capurro establishes relations between informatics and hermeneutics,
which sees human existence as "Being-in-the-World". He also refers to the
ideas of Winograd and Flores, giving a critical appraisal of them from his
own standpoint. For him, the key issue is not merely the designability of
technology, but our way of dealing with it, which shapes our thinking and
our whole lives.
Arne Raeithellooks at the design of computer-supported systems in terms of
activity theory. This Marxist school of thought has developed and elaborated
a notion of activity geared to social action - computer-supported action
representing a special instance of such activity.

Reinhard K.-S.
The activity-theoretical approach is historical. Beyond that, our concern
must be to integrate all of these connections into the biological and socio
cultural evolution process.

Christiane
By way of a conclusion, Klaus Fuchs-Kittowski gives a comprehensive treat
ment of the information concept in biological, social and technical systems.
For him, an adequate understanding of the nature of information is the key
to a richer notion of informatics and to responsible handling of information
technology.

Heinz
This part of the book is pretty hard going. Each chapter needs to be read
and appraised on its own merits.

Reinhard K.-S.
Personally, I'm not particularly fond of these elaborate abstract edifices of
thought. The book should not end there, but turn back to daily practice.

Reinhard B.
I agree. But that's not something that can be done by adding even more
chapters to the book. This book and what it offers in the way of ideas must
be absorbed and integrated into our work in science and design.

Christiane
And it is up to each individual reader to constantly rebuild this bridge in
terms of his or her own particular context.

8.1 Truth and Meaning Beyond Formalism
Joseph A. Goguen

8.1.1 Introduction

Logic and formal semantics have been enormously helpful in understanding pro
grams and programming languages, and in automating some aspects of the pro
gramming process. Therefore computer scientists have good professional reasons
to be interested in truth and meaning construed in a narrow technical sense,
through symbolic logic and formal semantics.

But computer scientists also need to better understand the processes that
create and sustain software, and in particular, the complex relationships be
tween computer systems, individuals, and societies. Moreover, we also need to
develop more humility about our own role in the scheme of things. Unfortunately,
these problems raise deep questions about truth and meaning which cannot be
addressed by formal semantics.

This short paper is intended to suggest why computer scientists might be
interested in the work of Heidegger, Wittgenstein and others!, and to stimulate
some further thought about some of the questions that they address. Although
Heidegger did not write very much that is explicitly about formal logic, what he
did write is quite pertinent, and much of his other work is relevant to questions
of meaning in the larger sense. Wittgenstein was concerned with the limits of
language, that is, with "what cannot be said". We will see that their views are
fundamentally opposed to those of logical positivists such as Carnap, as well as
to the whole Anglo-American tradition of analytic philosophy, and in particular,
to Russell and Moore. We will also see some interesting parallels to Buddhist
philosophy.

At the end of the paper we return to consider what all this has to do with
computing.

8.1.2 Heidegger, Carnap and Wittgenstein on
"the Nothing" and Dread

This section tells the story of an encounter (in print) between three of the
most influential philosophers of the early twentieth century. In 1931, the log-

1 Among the attempts to summarize Heidegger's philosophy that I have found the most
useful is [Palmer, 1969]; see also [Winograd and Flores, 1986] for other indications
of its relevance to computer science. [Janik and Toulmin, 1973] is an excellent source
of background information on Wittgenstein.

354 Joseph A. Goguen

ical positivist Carnap2 took Heidegger's 1929 essay "What is Metaphysics?"3
as a paradigmatic example of what he called "metaphysical pseudostatements" .
Carnap's program was to develop an ideal language based on logic, in which
all words would refer to observable sense data, experiences or things, and in
which a "logical syntax" would guarantee that all sentences are meaningful by
eliminating all "nonsensical" combinations of words that are still permitted by
grammatical syntax. Such a language would eliminate metaphysics (and much of
the rest of philosophy) as well as all literature and poetry, in much the same way
that Orwell's "Newspeak" in Nineteen Eighty-Four would eliminate all language
that is inconsistent with the ideology of Big Brother. As Orwe1l4 says,

Newspeak was designed not to extend but to diminish the range of
thought, and this purpose was indirectly assisted by cutting the choice
of words down to a minimum.

According to Carnap5,

The meaning of a statement lies in the method of its verification. A state
ment asserts only so much as is verifiable with respect to it. Therefore
a sentence can be used only to assert an empirical proposition, if indeed
it is used to assert anything at all Logical analysis, then, pronounces
the verdict of meaninglessness on any alleged knowledge that pretends to
reach above or behind experience The (pseudo)statements of meta..
physics do not serve for the description of states of affairs, either existing
ones (in that case they would be true statements) or nonexisting ones
(in that case they would be at least false statements).

Specifically, Carnap criticizes Heidegger's use of the word "nothing" in the fol
lowing assemblage6 , by showing that it violates his "logical syntax":

What is to be investigated is being only and - nothing else; being alone
and further - nothing; solely being, and beyond being - nothing. What
about this Nothing? ... Does the Nothing exist only because the Not, i.e.,
the Negation, exists? Or is it the other way around? Do Negation and
the Not exist only because the Nothing exists? ... We assert: the Nothing
is prior to the Not and the Negation Where do we seek the Nothing?
How do we find the Nothing? ... We know the Nothing Anxiety reveals
the Nothing That for which and because of which we were anxious,
was 'really' - nothing. Indeed: the Nothing itself - as such - was
present What about this Nothing? - The Nothing itself nothings.

2 Cf. [Carnap, 1978].
3 [Heidegger, 1977d]
• See [Orwell, 1989].
5 See [Carnap, 1978].
6 The italics and deletions are Carnap's, and it is worth noting that by taking

these widely scattered sentences out of their contexts, and by his selected itali
cization and capitalization, Carnap creates a very distorted view of Heidegger's text
[Heidegger, 1977d].

8.1 Truth and Meaning Beyond Formalism 355

As an example of Carnap's analysis, Heidegger's sentence "We know the noth
ing" is represented as "K(no)" and then claimed meaningless because "nothing"
(denoted "no") is used as a noun. But Heidegger says "The nothing is neither an
object nor any being at all."7 Hence, Carnap is accusing Heidegger of something
which Heidegger clearly says cannot be done, namely taking "the nothing" as
"a something" .

Indeed, Heidegger anticipates precisely the sort of attack which Carnap mounts
when he says8:

But perhaps our confused talk already degenerates into an empty squab
ble over words. Against it science must now reassert its seriousness and
soberness of mind, insisting that it is concerned solely with beings. The
nothing - what else can it be for science but an outrage and a phan
tasm? If science is right, then only one thing is sure: science wishes to
know nothing of the nothing.

This quotation indicates that Heidegger knows he is playing with words. But in
order to explore the foundations of something, it is necessary to step outside its
bounds. As Wittgenstein says9, in direct contradiction to Carnap,

I can readily understand what Heidegger means by Being and Dread.
Man has the impulse to run up against the limits of language10• Think,
for example, of the astonishment that anything existsll . This astonish
ment cannot be expressed in the form of a question, and there is also
no answer to it12 . Everything which we feel like saying can, a priori,
only be nonsense ... Yet the tendency represented by the running-up
against points to something. St. Augustine already knew this when he
said: What, you wretch, so you want to avoid talking nonsense? Talk
some nonsense; it makes no difference!

(The history of this little passage is interesting. A "sanitized" version appeared
in the Philosophical Review in 1965 without the first sentence and without the
original title, which was On Heidegger.)

Unfortunately, Wittgenstein himself did not take St. Augustine's advice to
"talk nonsense," and as a result, the Tractatus is in some ways very obscure.

7 See [Heidegger, 1977d].
8 See [Heidegger, 1977d].
9 See [Wittgenstein, 1978].

10 Murray explains in [Murray, 1978] that this is a reference to Kierkegaard, who was
the first philosopher to give a serious treatment of anxiety ("Angst" in German,
translated "dread" in the previous sentence) before Heidegger.

11 This is a reference to the last sentence of [Heidegger, 1977d] which is "Why are there
beings at all, and why not rather nothing?" This fundamental theme of Heidegger
is, for example, the central question of [Heidegger, 1959].

12 Although this is a criticism of Heidegger's formulation, the last sentence of this
quotation from Wittgenstein suggests that they may not differ so much after all.

356 Joseph A. Goguen

In fact, Wittgenstein was rather systematically misunderstood, and hence dis
torted, by the logically oriented philosophers of the Vienna Circle and the Anglo
American tradition13. Russell's preface to the Tractatus14 is a good example,
since it criticizes Wittgenstein on precisely those points where his contribution
was perhaps most original and significant, namely the pages from Proposition
6.4 onward, which discuss such topics as ethics and the "problem of life" .

It is notable that Carnap and Wittgenstein share not only a common interest
in logic, science and language, but also in what cannot be said. However, their
attitudes towards this area were entirely different: Carnap considered that every
thing outside his ideal logical language was nonsense without meaning, whereas
Wittgenstein considered that everything of the greatest value and interest was
contained in this realm. In contrast, Heidegger was not only willing to talk "non
sense" , he was willing to break the bonds of language by making up new words,
and by using old words in new, often ungrammatical or "illogical" ways to in
dicate deeper meanings which strictly speaking cannot be said at all, but only
pointed at.

Carnap15 recognized that art operates outside of the strictly verifiable, but
he still considered that the metaphysician

confuses [science and art] and produces a structure which achieves noth
ing for knowledge and something inadequate for the expression of an
attitude. . .. The metaphysician believes that he travels in territory in
which truth and falsehood are at stake. In reality, however, he has not
asserted anything, but only expressed something, like an artist .. ,. [The
statements of metaphysicians] serve for the expression of the general at
titude of a person toward life Metaphysicians are musicians without
musical ability.

Thus, Carnap does not intend to ban everything that falls outside his language,
but only to label it meaningless. However, both his view of meaning, and his view
of art as expressing a general attitude toward life, are very limited. In contrast,
Heidegger says "Art lets truth originate. Art ... is the spring that leaps to the
truth of beings ... " 16.

8.1.3 What is "the Nothing"?

It is no coincidence that Heidegger, Carnap and Wittgenstein collide on the issues
of "the nothing" and anxiety. All three philosophers can be seen as advancing
Kant's program to stem the turgid tide of traditional metaphysics that still
today flows on at us from out of the Middle Ages. One major goal of Kant's
"critical philosophy" was to show the limits ofreason from within, that is, using
the tools of reason, in order to prevent its misuse. In particular, Kant wished

13 This is clearly explained in [Janik and Toulmin, 1973].
14 [Wittgenstein, 1922]
15 cr. [Carnap, 1978].
16 See [Heidegger, 1977b].

8.1 Truth and Meaning Beyond Formalism 357

to separate the realm of reason from that of value. For example, Kant wrote
a treatise which denied that there could be any justification for blaming the
great Lisbon earthquake of 1775 either on the presence of a few Protestants
there (as did many Catholics in Lisbon) or on the adherence of the majority to
Catholicism (as did some English clerics).

Kant took subject-centered rationalism to its limit, declaring that we con
struct objects according to a priori given faculties of mind, which include space,
time, causality, objecthood, number, affirmation, negation and possibility. This
analysis assumes a world of "things in themselves" and an idealized human sub
ject, both of which are unknowable. Thus, Kant's so-called "second Copernican
revolution" actually went in the opposite direction from that of Copernicus, since
it placed man in the center again, as the constructor of perceived objects (the
phenomena). Since the time of Descartes, this kind of move has been seen as
necessary to secure a firm grounding for the objectivity of science.

Wittgenstein's Tractatus can be seen as a Kantian critical (i.e., from within)
deconstruction of logical positivism, despite its significant contributions to the
technique of logic (e.g., truth tables). In particular, Wittgenstein argues that it
is impossible to express the meaning of a formal language within the language
itself, and instead uses a "picture" theory of meaning in which interpretations
can be shown but cannot be said. Russell and Carnap tried to counter this by
proposing a "meta" -language in which the meaning of an "object" language can
be expressed, and even an infinite tower of meta-, meta-meta-, meta-meta-meta-,
... languages. But as Russell admits in his preface to the Tractatus, Wittgen
stein's argument seems to apply just as well to such a tower of languages as it
does to a single language.

If it is impossible to express the meaning of a sentence within its language,
then it is necessary to move outside the language. This led the later Wittgenstein
to investigate the conventions which determine when and how sentences can be
used. He called these flexible rule-governed symbol using activities "language
games" 17. They, in turn, get their meanings from the even more flexible and
larger-grained patterns of symbol using activities of which they are parts, which
he called "forms of life". This point of view is quite different from that in the
Tractatus, which had simply assumed that the relation between language and
reality is one of "picturing" (i.e., representation). But in late Wittgenstein, it is
the rules of language games which determine the limits of what can be said.

This whole development, starting from Kant's clarification of the subject
centered approach of traditional metaphysics and science, and proceeding to
the work of Heidegger, Derrida, Barthes and other modern French thinkers,
can be seen as an ongoing deconstruction of the self, which is nothing other
than the exploration of "the nothing" as it applies to the knowing subject of
Descartes and Kant. The inevitable conclusion is that there is no rational basis
for assuming such a subject. Instead, subject and object continually emerge and
dissolve together.

17 See [Wittgenstein, 1968].

358 Joseph A. Goguen

Many books have been written in the Buddhist tradition about "the nothing,"
called shunyata in Sanskrit18 . Buddhism says that the experience of shunyata is
egolessness, the lack of any subject, and says that egolessness is a fundamental
fact of human existence. One way that this experience can manifest is described
by the Tibetan meditation master Trungpa Rinpoche19 as follows:

It is a very desolate situation. It is like living among snow-capped peaks
with clouds wrapped around them and the sun and the moon starkly
shining over them. Below, tall alpine trees are swayed by strong, howl
ing winds and beneath them is a thundering waterfall. From our point of
view, we may appreciate this desolation if we are an occasional tourist
who photographs it or a mountain climber trying to climb to the moun
tain top. But we do not really want to live in those desolate places. It's
no fun. It is terrifying, terrible.

No wonder, as Heidegger says, "science wishes to know nothing of the nothing."
For science wishes to banish dread and proceed with its objectivity firmly es
tablished in the subjectivity of its scientists, reducing "the nothing" to mere
negation, which is a rational operation on beings, as opposed to the terrifying
emptiness from which beings emerge into authenticity.

However, if Heidegger and the Buddhists are right, it is the possibility of non
being which gives beings their character of luminosity20, and hence the nothing,
i.e., shunyata, is not only prior to negation, but also to beings.

The effect of this, as Heidegger says, is to rob logic of its claim to supremacy,
and in particular, to rob it of its claim to provide foundations for science and
even for mathematics. Indeed, we must conclude that foundations in the sense
sought by logicians are simply not possible. The judgements that we make, and
in particular negative judgements, are necessarily grounded in our being-in-the
world, and not in any pre-existing unshakable truths, or eternal world of ideal
things.

More significantly, we may conclude that it is the finitude, limitation, or
mortality of beings which makes them luminous. The fundamental importance
of finitude for Being is expressed in the thundering series of questions which
close Heidegger's major work, Being and Time 21 . The finitude and luminosity
of beings are two of the many suggestive points of contact between Heidegger
and Buddhism. For "impermanence" (i.e., finitude) is one of the Three Marks
of Existence (the other two are ego less ness and suffering).

18 One of the most famous is the Mulamadhyamakakarikas of Nagarjuna, from
around the second century A.D.; a more recent one is Religion and Nothingness
[Nishitani, 1982] by Nishitani, considered the dean of the Kyoto School of philosophy.

19 Cf. [Trungpa, 1976].
20 It is impossible to "define" the experience of luminosity. But perhaps it might be

some help to say that it refers to the flickering of beings between presence and non
presence. On the other hand, this may be an example of something which really
cannot be said.

21 [Heidegger, 1962]

8.1 Truth and Meaning Beyond Formalism 359

8.1.4 What are truth and meaning?

The intimate relationship between truth, meaning and being in the Western
philosophical tradition goes back to the ancient Greeks, and is extensively dis
cussed, for example, by Aristotle; these three correspond (roughly) to the Greek
words aletheia, logos and on.

Most attempts to explicate these notions and their relationship have taken
as paradigmatic the "eternal" sentences of mathematics (such as "2 + 2 = 4"),
whose "meaning" is a truth value that is independent of any context in which the
sentence might be uttered. But such sentences are exceedingly rare in "earthly"
discourse, where meanings can be far more complex than just "true" or "false,"
and where context has a profound effect upon meaning.

In his essay "On the Essence of Truth" 22, Heidegger criticizes semantic the
ories that are based on the so-called "Correspondence Theory of Truth" :

"Truth" is not a feature of correct propositions which are asserted of an
"object" by a human "subject" and then "are valid" somewhere, in what
sphere we know not; rather, truth is disclosure of beings through which
an openness essentially unfolds.

That is, according to the Correspondence Theory, a statement is "true" just in
case what it asserts is a fact about the world. Although the assertion is made by
a (human) subject about some object, the true statements themselves are ideal
forms in a Platonic realm that is only dimly perceived by humans. Instead of
this, Heidegger says that truth is a process of unfolding, of disclosure. That is,23

The essence of being is physis [i.e., appearing] Appearing makes mani
fest. Already we know then that being, appearing, causes to emerge from
concealment. Since the essent24 as such is, it places itself in and stands
in unconcealment, aletheia The Greek essence of truth is possible only
in one with the Greek essence of being as physis. On the strength of the
unique and essential relationship between physis and aletheia, the Greeks
would have said: The essent is true insofar as it is. The true as such is
essent. This means: The power that manifests itself stands in unconceal
ment. In showing itself, the unconcealed as such comes to stand. Truth
as un-concealment is not an appendage to being.

This is a radically different notion of truth from that which we find in logic
or empirical science. It has nothing to do with operations of measurement or
of verification, carried out by some human subject. Rather, it has to do with
authentic presence, with the power of beings to emerge from the nothing. This

22 [Heidegger, 1977a]
23 See [Heidegger, 1959].
2~ The word "essent" was made up by the translator Ralph Manheim to translate

Heidegger's made-up word "Seiende," which (roughly speaking) means "something
that exists," an "existent." In this chapter, I have mostly used the word "being" for
this.

360 Joseph A. Goguen

approach to truth and being does not presuppose a knowing subject, and does
not reduce beings to objects of knowledge; for Heidegger and the ancient Greeks,
being and truth are pre-conceptual.

It seems clear that from this perspective, "meaning" is not an "object,"
whether as part of some formal causal theory, as an abstract logical intention,
or as some set-theoretic entity. The following may provide some reference points
in a search to understand our alternative sense of "meaning":

1. Meaning is ontological. All experience is inextricably bound up with Being
and with beings, Le., with luminous appearance. In particular, meaning arises
through openness to being, or as Heidegger says, "The essence of truth is
freedom" 25.

2. Meaning is dialectical. Meaning is only disclosed through engagement with
beings, through uncertainty and questioning, through making mistakes, ex
ploring oppositions, and seeking roots26 .

3. Meaning is historical. Because meaning is dialectical, it only emerges through
time, through the accumulation of questionings, encounters and revealings,
in the context of a tradition or lineage27 .

Interestingly enough, recent efforts to extend formal semantics beyond math
ematics and science, for example to natural languages, can be seen as embodying
(diluted versions of) similar principles. In particular, recent work in philosophy
and linguistics has proposed new formalisms for complex meanings that can
vary with context, and can model discourse and other interactions. Examples
include the work of Montague, using intensionallogic28, the work of Barwise,
Perry and others on "situation semantics" 29, of Strachey and Scott30 on "de
notational" semantics, and many other formalisms developed for the semantics
of programming languages. But all these theories posit abstract entities, such
as "intentions," "situations" or "denotations" that are quite remote from the
human experience of meaningfulness, and it is not clear that they can tell us
anything important about what it means to be human. In particular, they do
not deal with truth as the un concealment of beings.

On the other hand, it seems clear that these advances are technically use
ful. For example, they may help us to write programs that are more accurate,
more general, more efficient, and more reusable; they may also help us to write
programs that can help us in programming. They may even some day lead to
machines that can understand and speak the sort of utilitarian languages of
which Carnap would approve.

25 See [Heidegger, 1977a].
26 For some further discussion of the development of meaning, see Chap. 2.2; for more

on error, see Chap. 5.l.
21 See Chap. 2.2 for some related discussion.
28 Cf. [Montague, 1974].
29 Cf. [Barwise and Perry, 1983].
30 Cf. [Scott and Strachey, 1971, Stoy, 1977].

8.1 Truth and Meaning Beyond Formalism 361

8.1.5 Where are we?

The Tractatus31 concludes with the following mysterious proposition,

What we cannot speak about we must pass over in silence.

which is perhaps intended as a summary of Wittgenstein's arguments that the
meaning of a language cannot be expressed in the language itself.

In a sense, this whole paper has been about that which cannot be said. We
first presented arguments against Carnap's narrowly dogmatic "logical syntax"
and his rejection of Heidegger as nonsense. While accepting that a line of the kind
that Carnap wants to draw can in fact be drawn, we agreed with Wittgenstein
that all the most important things lie on what Carnap would regard as the wrong
side of it. On the other hand, I cannot agree with Wittgenstein that we must
remain silent about these things. Even though they may not make strict logical
sense, they are too important not to bring into the open through dialogue.

As an illustration, we tried to explore Heidegger's "nothing" and why it might
be prior to negation, with some help from the later Wittgenstein and Buddhist
philosophy. This also perhaps gave some insight into the foundations of logic. We
next tried to follow Heidegger's approach to truth, beginning with his rejection
of the Correspondence Principle, and then moving on to physis and aletheia,
which reveal a completely different perspective from that of formal semantics.
We concluded with some pointers toward the meaning of meaning, followed by
a short summary of some recent work in formal semantics.

But how does all this relate to computing?
I think we must conclude that the techniques of computer science, such as

formal semantics, logic, and even simulation, cannot tell us the meanings of
computer systems, in the broad human sense of "meaning". This becomes an
issue especially for so-called "embedded computer systems". For example, con
sider the question of what the Star Wars weapons system really means: is it a
defense system, as its proponents tend to claim, or is it really an offensive sys
tem, intended to provide some protection after a first strike has been launched?
Such a question cannot be answered without a careful consideration of social
and political factors, as well as a careful assessment of technical capabilities. To
remain silent on such issues is to invite manipulation, or even tyranny.

To address such questions, it is not necessary to be "an expert," that is, to
have everything already worked out. Indeed, it is not even desirable, because
genuine meaning only arises through uncertainty and questioning, even through
confusion and error. It is necessary to enter into a dialogue in order for truth to
emerge from concealment.

Similar considerations hold for many less dramatic and more ordinary situa
tions. For example, suppose that we are part of a team that is producing a large
business system, and one day the customer tells us of an unexpected change
in the tax laws, which it turns out will require keeping much more data than
had previously been anticipated; unfortunately, this means that the system will

31 [Wittgenstein, 1922]

362 Joseph A. Goguen

have to run on different hardware, because the old requirements led to choosing
hardware that cannot handle so much data. The customer has trouble under
standing why his system will now cost more, and threatens to sue. The head of
the company threatens to counter-sue. Some team members panic and consider
quitting.

Is there any way that formal semantics can save the day? No, there is not.
We will have to negotiate. Of course, formal semantics might play some role,
for example, in revising the specifications, but the real meaning of this situation
is a human one, involving a conflict of interests between the company and its
customer.

Numerous other examples could be given. There are many aesthetic decisions
to be made in programming. These are not without meaning. If a program is
elegantly designed and coded, then it may be easier to debug, maintain, and
reuse.

Also, the members of a programming team have to work together, and the
project will only prosper if there is a spirit of friendly cooperation, rather than,
say, envy, bitterness, or competition. Formal semantics might be used to specify
a component, but anger could cause someone to write it in a particularly obscure
way.

In all such situations, it is vital to understand the difference between issues
that can be resolved by appeal to formal semantics (e.g., "is this code right?")
and issues which cannot (e.g., "is this code elegant?"), and it is vital to approach
each kind of meaning in an appropriate way. I would like to think that the
philosophy of Wittgenstein, Heidegger, and the Buddhists might be some help
in this regard, and I have tried to explain how this might be so. But really,
common sense is likely to be more valuable than philosophy here, unless perhaps
some antidote is needed against previous large doses of positivistic or analytic
philosophy. Moreover, even this would require thinking about things that are
difficult or even impossible to say clearly. So I do not imagine that I have done
more than provide a few pointers for those who may want to pursue such issues
further, and I hope that the reader will take this chapter in that light, and
will enjoy looking into some of the original source material, and thinking things
through on his/her own.

Acknowledgements
I would like to thank my wife Kathleen and my son Healfdene for reading through
several drafts of this paper and providing many helpful comments and conversations.
I would also like to thank both the Naropa Institute in Boulder, Colorado, and the
Center for the Study of Language and Information at Stanford University for providing
stimulating environments in which to think about the kind of issue discussed here.

8.2 Informatics and Hermeneutics
Rafael Capurro

8.2.1 Introduction

The short cut and the long path

Not only the historical development of informatics as a scientific and technical
discipline but also its core problems are, prima facie, far removed from philo
sophical developments arising from soft sciences such as hermeneutics, and closer
to logic or the philosophy of science. Is the relationship between informatics and
hermeneutics of any mutual relevance? What happens when we reflect hermeneu
tically on the foundations of informatics? Winograd and Flores have made the
attempt, and one result was their insight into "the non-obviousness of the ratio
nalistic orientation" of informatics. Consequently, they found themselves "deeply
concerned with the question of language" 1.

My purpose is to show why Winograd and Flores have grasped, on the one
hand, some key issues of Heidegger's hermeneutics, while at the same time dis
torting some of his insights, particularly with regard to science and information
technology.

Their critique of what they call the rationalistic tradition is based on the
following premises:

1. The process of understanding is a never-ending one; it always implies unspo
ken conditions; it is limited.

2. Language does not represent objective meanings, but is a social process
through which commitments are generated.

3. Computer technology is a tool belonging to our being-in-the-world (In-der
Welt-sein): "in designing tools we are designing ways of being" (p. xi).

In opposition to these premises, the rationalistic tradition's view of human un
derstanding is characterized by the idea of representing a so-called objective
world through mental processes. Language is considered to be the result of such
mental data processing, which is basically autonomous and independent of the
social context. Consequently, computers which manipulate language are said to
be intelligent, to understand, to think, to be able to replace experts, and so on.

1 [Winograd and Flores, 1986, p. 17].
See the reviews by [Vellino,1987, Stefik and Bobrow, 1987, Suchman, 1987] and
[Clancey, 1987]; also the "Response to the reviews" [Winograd and Flores, 1987] and
my review [Capurro, 1987].
On hermeneutics, see [Shapiro and Sica, 1984].

364 Rafael Capurro

Winograd and Flores criticize this conception. They view computers essen
tially as tools for conversation, to be implemented as aids where the user's back
ground expectations are confronted with non-obvious situations.

In such situations of what they call breakdown, tools are normally no longer
of any use. Instead of their readiness-to-hand - a Heideggerian concept which I
shall explain in detail below - we are confronted with their presence-at-hand as
objects. By a hermeneutical design of computer programs, some possible break
down situations can be implemented in order to help the user when something
goes wrong with the normal functioning of the system. In other words, the flexi
bility of the system depends on its capacity for anticipating such situations, i.e.,
on its capability to remain a tool.

These as well as other insights are important not only for informatics, but
also for hermeneutics. But some of them are one-sided. I shall comment below
on this one-sidedness. My critique concerns the following points:

a) Winograd and Flores' opposition between hermeneutics and the rational
istic tradition, taking as a basis some key concepts from Heidegger's "Being
and Time" and leaving aside their connection to Heidegger's overall project of a
philosophical foundation of the natural and socio-historical sciences.

b) Their interpretation of computer-based information systems as tools, tak
ing Heidegger's tool analysis as a foundational paradigm for modern information
technology and leaving aside Heidegger's explicit characterization of modern sci
ence and technology in his later works.

Is there an opposition between hermeneutics and the rationalistic
tradition?

Since the authors devote the first part of their study to discussing specifically
some basic concepts of Heidegger's hermeneutics, and since they do so by ex
plicitly avoiding "the twists and turns of academic debate" (p. xiii), i.e., by
taking the short cut of popularized accounts, it is useful at least to indicate
where the long path might lead to, in order to see to what extent the views
arrived at via the short cut are distorted ones. This is particularly the case
with regard to Heidegger's tool analysis in "Being and Time" taken as a philo
sophical basis for understanding computer technology. Moreover, Winograd and
Flores' interpretation gives the general impression that Heidegger's hermeneu
tics is anti-rationalistic. Neither in "Being and Time" nor in his later writings
was Heidegger merely criticizing modern science and technology; he was looking
for a point of view which would allow us to see their specific demarcations. If
we take the long path - and I can only point to it here! - then we may learn
that there is no such opposition or definite point of view; in other words, that
taking the long path means abandoning the illusion of definite borderlines and
foundational oversimplifications based on paradigm changes.

8.2 Informatics and Hermeneutics

Can a tool-oriented view of computer-based information systems
cope with the radical ambiguity of modern technology?

365

Taking Heidegger's tool analysis as a key for the interpretation of modern in
formation technology means distorting both phenomena. What is left aside in
this instrumental interpretation is - according to Heidegger's explicit analyses
of modern technology - its radical ambiguity. Recognizing this ambiguity means
seeing the impossibility of surmounting it by trying to master it, because such
a project - for instance, by trying to replace an old paradigm by a new one -
is based on the premises of what it tries to replace: it is a petitio principii. This
ambiguity is, as I shall point out in the final section, a key issue with regard
to software development, since software is not just a tool, but a specific form of
reality disclosure and transformation. The question is, then: what kind of real
ity are we constructing when we develop software, and what are the limits and
chances of such a form of reality construction? In order to perceive such limits,
we have to take the long path. This is merely an invitation to take such a walk,
not the walk itself.

In the final section, I shall plead for what I call an open constructivism, i.e.,
for a confrontation of software development with metaphorical forms of reality
constru ction.

8.2.2 Heidegger's tool analysis in "Being and Time"

The task of philosophical destruction

Since Heidegger's phenomenological interpretation of our being as There-Being or
Dasein on the basis of a pre-conceptual comprehension of Being (Seinsverstandnis)
as a condition of possibility for the interpretation of beings, hermeneutics has
left the domain of text interpretation to become a philosophical research pro
gramme2•

In "Being and Time" (§6) Heidegger calls the task of questioning the obvi
ousness of a dominant tradition destruction (Destruktion). This term does not
have the negative meaning of eliminating the past, but rather suggests the task
of criticizing a present theory or world view by an analysis of its presuppositions.
Since this analysis, being itself historical, cannot be regarded as definitive, we
are left with the figure of a circle - a hermeneutical not a vicious one. From a
hermeneutical perspective, then, it makes no sense to replace old paradigms by
new ones; the question of their destruction concerns the critical appraisal of their
forgotten historical roots in order to perceive their limitations. In other words,

2 I am referring to [Heidegger, 1987]: "Sein und Zeit" (1927) (engl. transl. 1987).
The best introduction to Heidegger in English is still [Richardson, 1967]. See also
[Steiner, 1978] and [Capurro, 1991]). For a brief exposition of some of Heidegger's
major works, see [Capurro, 1988]. On Heidegger's interpretation of modern science
and technology, see [Kockelmans, 1984] and [Kockelmans, 1985]; [Loscerbo, 1981,
Schirmacher, 1983] and [Seubold, 1986].

366 Rafael Capurro

with the help of hermeneutics we learn to see theoretical and practical traditions
and their terminologies as answers to forgotten questions, and we learn how to
question the questions themselves, too.

Being-in-the-world and the outside world

Winograd and Flores oppose the dualistic view of the rationalistic tradition,
with its conception of a subjective mental world and an outside world of phys
ical reality, to the phenomenological insight into the "more fundamental unity
of being-in-the-world (Dasein)." (p. 31). This approach is, in my opinion, dia
metrically opposed to Maturana and Varelas' radical constructivism, to which
Winograd and Flores refer directly, leaving aside the dimension of openness (Of
fensein) or being-outside (Draussensein) as the way human beings are (which is
also the reason why Heidegger chooses the term Da-sein), retaining only the
hermeneutical process of understanding, reinterpreted now as an autopoietical
one. Heidegger also calls our way of being existence (Existenz, Ek-sistenz). This
term means being open to a field of possibilities, and it expresses the contrary of
what we usually mean when we point to the existence of things, grasping their
being as actual being. Thus, we can paradoxically say that human beings are
not, but that they exist3 .

In their somewhat eclectic approach, Winograd and Flores fail to see the con
tradiction between Heidegger's hermeneutics and what I call strong or radical
constructivism4 • The dimension of openness, not that of a so-called external re
ality, lies at the very heart of Heidegger's "Being and Time" . He writes: "When
Dasein directs itself towards something and grasps it, it does not somehow get
out of an inner sphere in which it has been proximally encapsulated, but its
primary kind of Being is such that it is always 'outside' alongside entities which
it encounters and which belong to a world already discovered. (...) And fur
thermore, the perceiving of what is known is not a process of returning with
one's booty to the 'cabinet' of consciousness after one has gone out and grasped
it; even in perceiving, retaining, the Dasein which knows remains outside, and
it does so as Dasein." 5 This is the exact opposite of an autopoietic system,
which "holds constant its organization and defines its boundaries through the
continuous production of its components."6

3 The term Dasein does not denote an asexual human being. It means the primordial
structure of being-with-others as the condition for different concrete possibilities of
living sexuality. Human sexuality and the human body are not conceived merely as
biological phenomena, but as being within the field of openness, which is basically
related to our affections or moods (Stimrrungen). See [Heidegger, 1978, Boss, 1975]
and [Derrida, 1988].

4 See [Schmidt, 1987].
5 [Heidegger, 1987, p. 89]
6 [Winograd and Flores, 1986, p. 44]

8.2 Informatics and Hermeneutics 367

Tools and breakdowns

The way in which we exist in the world is intrinsically a social and a practical
one. Through our being-together-with-others (Mitsein), we are immersed in the
world, but not just in the common spatial sense we think about when we say
a chair is in the room. World (Welt) does not mean the totality of beings out
there, but the complex and open web of meanings in which we live. How do we
become aware of the world in terms of the open dimension of our existence in
which we are normally immersed? In order to answer this question - and not in
order to describe the phenomenon of modern technology - Heidegger shows how,
through the negative experience of using tools, the world hood (Weltlichkeit) of the
world, i.e., our specific way of being in it, becomes manifest7. The phenomeno
logical analysis of our everyday immersion in the world shows human beings as
concerned with things in terms of using them as tools. This means that things
are inserted into a project, building a structure of references for practical pur
poses. This implicit purposefulness remains tacit unless a disturbance occurs.
Winograd and Flores call such a disturbance breakdown, thus simplifying the
Heideggerian terminology and missing the point. What happens in these cases
is not simply that tools become present-at-hand (Vorhandenes) instead of their
former practical way of being as ready-to-hand (Zuhandenes), but that the world
itself, i.e., the possibility of discovering beings within a structure of references,
becomes manifest.

At this point, I would like to draw attention to one oversimplification of Wino
grad and Flores' short cut. They write: "Another aspect of Heidegger's thought
that is difficult for many people to assimilate to their previous understanding
is his insistence that objects and properties are not inherent in the world, but
arise only in an event of breaking down in which they become present-at-hand."
(p. 36). If we read Heidegger's analysis (§16), we find a very detailed description
of different modes of concern in our everyday encounter with entities we use for
doing something, through which the phenomenon of world becomes manifest,
namely:

7 Heidegger's examples of tools are: "ink-stand, pen, ink, paper, blotting pad, table,
lamp, furniture, windows, doors, room" ("Being and Time", p. 97). With regard to
the hammer - the example to which Winograd and Flores explicitly refer - Heidegger
remarks that there is no real opposition between looking at things merely theoret
ically or practically, insofar as practical behaviour is not atheoretical in the sense
of sightlessness, and, correspondingly, theoretical behaviour is looking without prac
tical circumspection, but not without rules: "it constructs a canon for itself in the
form of method." (ibid. p. 99). Other examples of tools in this context are shoe and
clock. Nature itself is discovered (as environment) in its ready-to-hand kind of being
from the point of view of toolmaking. Finally, not only the "domestic world of the
workshop" but also the "public world" with its "roads, streets, bridges, buildings"
is ready-to-hand. At the end of his analysis (p. 102), Heidegger remarks explicitly
that its aim is not to discover that presence-at-hand is founded on readiness-to-hand,
but to exhibit the phenomenon of the world, which is not just the sum of both
characteristics.

368 Rafael Capurro

a) Conspicuousness (Auffalligkeit): when we meet tools as something unusable,
i.e., "not properly adapted for the use we have decided upon. The tool turns
out to be damaged, or the material unsuitable." (p. 102). In this case, we
do not merely have an event of breaking down from readiness-to-hand to
presence-at-hand, but a case where tools, in their readiness-at-hand, cannot
be used. Heidegger writes: "Equipment which is present-at-hand in this way
is still not just a Thing which occurs somewhere. The damage to the equip
ment is still not a mere alteration of a Thing - not a change of properties
which just occurs in something present-at-hand." (p. 103).

b) Obtrusiveness (Aufdringlichkeit): whereas, in the case of conspicuousness, we
come up against unusable things within what is already ready-to-hand, there
are also cases in which things are not to hand at all, namely when we miss
something. In such cases, we look at what is missing in such a way that the
more urgently we need it, the more obtrusively it reveals itself. Things seem
to lose their character of readiness-to-hand completely.

c) Obstinacy (Aufsassigkeit): finally, we have the case where we encounter things
which are neither unusable nor missing, but merely standing in the way.
Tools reveal their unreadiness-to-hand, although they are not damaged and
although we do not miss them; we just do not need them here and now.
They disturb us in such a way that they obstinately call our attention. We
must deal with them before we do anything else. The unreadiness-to-hand
means, in this case, that we have to do something before we can go on with
our concerns.

In all three cases, as Heidegger remarks, tools do not become mere things,
i.e., tools show themselves to be still ready-to-hand in their presence-at-hand.
Readiness-to-hand does not simply vanish. What we experience through these
three modes of concern is, therefore, not just the readiness-to-hand of tools, but
the phenomenon of the world itself Why? Simply because we go thematically
beyond things, i.e., we discover ourselves as the ones whose nature it is to go
beyond things, or whose essence is existence or openness. The experience of the
unfamiliarity of tools reveals that we do not just operate within a system of
thematic and non-thematic references, but are radically (or, as Heidegger says,
ontologically) open to Being itself as the horizon of significance, allowing us
to discover beings in the modes of concern of readiness-to-hand and presence
at-hand. As one can clearly see, Heidegger's tool analysis does not set out to
describe the phenomenon of modern technology - this is precisely what it does
not do - and it is not intended to be in pragmatistic opposition to the theoretical
view of the sciences.

8.2.3 The existential conception of science

It is important to remember that, when Heidegger reinterprets the whole analysis
of our being-in-the-world under the explicit notion of temporality, he gives as
an example of authentic existence not only the temporal structure of world
discovery under the horizon of purposeful instrumentality, but also the process

8.2 Informatics and Hermeneutics 369

of scientific discovery (§69). Why? Because science is a kind of disclosure, where
man must make explicit the preconditions for the discovery of beings, no longer
as tools, but as objects. In other words, the scientific disclosure shows the unity
of man and world. The process of knowing is neither a projection of a worldless
subjectivity on an outside reality, nor is there an objective world influencing
a subject. It is an encounter, where the project of Dasein is not an arbitrary
construction of reality, but always relies on a pre-understanding as the horizon
for a specific non-thematic-practical and thematic-theoretical approach, enabling
human beings, during the encounter, to disclose their own structures.

Heidegger insists that the emergence of the theoretical scientific attitude does
not simply lie in the disappearance of praxis (p. 409). To no longer regard a ham
mer as a tool, but "as a corporeal Thing subject to the law of gravity" (p. 412),
is not the result of a breakdown but of a change-over (umschlagen) of our under
standing of Being. There is no opposition or even contradiction between taking
something as present-at-hand and the scientific attitude, merely because that
which is ready-to-hand can also be made the subject of scientific investigation,
for instance, economics. The main point is not the modification of the kind of
being of things, but the modification of our understanding of Being, i.e., of the
way we project a priori the horizon that is to serve us as a guide for the disclo
sure. Heidegger concludes: "When the basic concepts of that understanding of
Being by which we are guided have been worked out, the clues of its methods,
the structure of its way of conceiving things, the possibility of truth and cer
tainty which belongs to it, the ways in which things get grounded or proved, the
mode in which it is binding for us, and the way it is communicated - all these
will be determined. The totality of these items constitutes the full existential
conception of science." (p. 414) The primordial difference between this type of
constructivism and a subjectivist one is that, for Heidegger, Dasein's projects are
based on the facticity or thrown ness-character (Geworfenheit) of Dasein itself. Its
being as Being-possible is not a free-floating potentiality but a thrown possibility
(geworfene Moglichkeit), already got into definite possibilities, being free for (not
of) them (p. 183). As Being-possible, we are a pro-jection, a temporal transcen
dence, always outside with others within a process of practical and theoretical
disclosure of beings.

Since Dasein is neither the creator of itself nor of beings, this process of
un-concealment is, given our finitude (natality and mortality), groundless. To
be concerned with concealment means ultimately to face death as the horizon
that makes all other possibilities of existence come forth as finite possibilities.
Because of the limited nature of its possibilities, Dasein is not able to comprehend
Being under conditions other than finite ones. This way of encountering beings
presupposes a being whose mode of being is to be this encounter itself, a temporal
being. We interpret the world as the web of relations in which we are embedded
on the basis of a finite or temporal pre-understanding of Being. This is not a
solipsistic process. It takes place as listening to others in the way we are originally
open to each other, capable of dialogue and communication. Dasein articulates its
being-in-the-world, anticipating the structure of beings and letting them appear
during the encounter through mood and speech.

370 Rafael Capurro

8.2.4 Some comments on Heidegger's analysis of modern
science and technology

In his later works, Heidegger poses the question of the specific nature of mod
ern science and technology. This is another part of the long path that remains
untrodden in Winograd and Flores' short cut and that should be taken into ac
count when reading their critique of the rationalistic tradition using as a basis
Heidegger's "Being and Time".

Heidegger on modern science

Heidegger's starting point in his phenomenological analysis of our being-in-the
world is actually a pre-scientific view of our everyday comprehension of beings
within a practical perspective or project. This primacy of the practical does
not mean, as I have already shown, a devaluation of the scientific or rational
view of the world. Science is, in actual fact, a genuine possibility of our being
in-the-world. What Heidegger is questioning throughout "Being and Time" is
not rationality (or even science) as such, but the critical problem as posed by
Neo-Kantians: how does a knowing subject emerge from its subjectivity in order
to establish contact with an external object in the real world. This Cartesian
dichotomy and the corresponding realistic and idealistic positions disappear as
soon as our way of being is grasped as being always outside, as There-being.
This is the reason why Heidegger does not simply use the word consciousness or
subject. We are not, as Medard Boss puts itS, a capsule-like psyche re-presenting
things from an outside world and communicating these representations to other
psyches.

The concept of science in "Being and Time" aims at giving sciences an on
tological foundation in man's being-in-the-world, instead of their modern tran
scendental constitution in subjectivity. One should remember that "Being and
Time" begins with a reference to the crisis of scientific research (§3) and to the
logical precedence of the question of Being in order to be able to distinguish
between the different areas in their ontological specificity.

Heidegger's later analyses of modern science9 make explicit the differences
between science in Antiquity and in the Middle Ages, showing modern science
to be a particular project or dis-closure of Being on the basis of subjectivity.
Some of the characteristics of this project are: materialism (= everything be
comes raw material), uniformity, functionality, objectivity, calculability, domi
nation, productivity, exploitation1o . Modern (natural) science reveals nature in
its objectivity, but this is not the only possibility for dis-covering it. Heidegger
contrasts the conception of subjective re-presentation of beings with his view of
human existence as primarily open or receptive to Being. While, according to

8 See [Boss, 1975]. See also [Capurro, 1986] as well as [Capurro, 1985].
9 See for instance [Heidegger, 1975] and [Heidegger, 1972].

10 For a more detailed elucidation of these characteristics, see [Seubold, 1986, pp. 218-
227].

8.2 Informatics and Hermeneutics 371

Heidegger, in Antiquity the projective and the receptive paradigms coexisted,
modern science superimposes only the projective standards, now founded not
in Being, but in subjectivity and, ultimately, in its "will to power" (Nietzsche).
But it is the openness to Being that enables us to inquire into the foundations of
beings, as we do in science. We experience this basic dimension in our relation
to beings when we regard them and ourselves with the eyes of the artist, i.e.,
when we open ourselves to the aesthetic dimension of existence. This is, in fact,
not just another possibility, but the implicit condition of modern science, and
its future, too.

Recapitulating, we could say that,while in "Being and Time" Heidegger was
looking for an existential foundation of science, in his later works he became
aware of the peculiarity of modern science. Whether we agree with this analysis or
not, one thing is clear: questioning the rationalistic tradition is not just a matter
of changing paradigms. The pragmatistic will to surmount paradigms belongs
closely to the tradition it sets out to criticize. The change from one paradigm to
another is not just like changing clothes This is the reason why Heidegger
also prefers the term overcoming (Verwindung) to surmounting (Oberwindung)
when talking about our relation to Western metaphysics, of which science and
technology are the outstanding results. The term Verwindung is related to the
way in which we overcome a disease or a pain or the loss of a loved one. It means
letting our possibilities come over us, individually and socially, and becoming
acquainted with them as something we cannot simply throwaway or surmount,
according to the different modern idealistic or materialistic theories of progress.

Heidegger's analysis of modern science is closely related to his views on mod
ern technology.

Heidegger on technology

Winograd and Flores refer to the possibility of designing computer technology
as a tool, and they do so by reference to the analysis in "Being and Time".
Heidegger's analysis of the question of modern technology can be found in his
later writings, particularly in "The Question Concerning Technology" 11. The
connection between modern science and modern technology is usually seen in
terms of the one - technology - emerging, as applied science, out of the other.
Heidegger sees modern science as being already technological. Technology is not
a collection of tools to be designed according to a pragmatical idea, but a spe
cific form of un-concealing or disclosure of beings. Where does the specificity
of this kind of disclosure lie? Heidegger considers this question with regard to
technological disclosure in Ancient Greece and in the Middle Ages, as well as to
other forms of non-technological disclosure, particularly art. The first approach
leads to the conception of modern technology as challenging disclosure (hera us
forderndes Entbergen). Both art and technology are similar insofar as they bring
forth beings which cannot, as in the case of nature, disclose themselves. But, in
that case, technology does not exactly mean using tools for manipulating things.

11 [Heidegger, 1977c]

372 Rafael Capurro

This characteristic - already implicit in the Greek conception of causes or 'aitiai'
- becomes predominant in the case of modern technology. Ancient technology
was less challenging and therefore nearer to art. The univocity of modern tech
nology accentuates such characteristics as control, by considering things to be
in supply (Bestand). Even nature is now being conceived from this one-sided
anthropocentric and subjectivistic view, i.e., everything is viewed as supply or
as 'ob-ject', lying before man's challenging disclosure. Modern technology is a
generalized attitude towards the world, whose characteristics are summarized by
Heidegger in the single concept: Ge-Stell. This is a word that normally means
'frame', 'stand', 'rack'. An English translation might perhaps be 'framework', as
suggested by Mitcham and Mackey12. This generalized attitude is not something
we can simply change ad libitum. It belongs to our Western tradition, and it is
particularly interrelated with the non-challenging disclosure of Being we call art.
Technology belongs to our destiny, but not in the sense of a tragical necessity
or Nemesis. Pessimism and voluntaristic optimism are re-actions which presup
pose either the idea of a hidden power behind history, or of man as having such
power over reality. Being is not God or its substitute, but merely the very fact
of finite givenness of man and the world in a changing, non-perennial tradition.
For Heidegger, entering into a free relation with technology means being able
to see and let coexist different attitudes to the world. Instead of surmounting
technology or indulging in back-to-nature dreams, he looks for possible forms
of its overcoming or Verwindung. According to Heidegger, we have understood
what modern technology is when we do not see it merely as a tool or as man's
activity, but as a kind of world disclosure. At the origin of technology - in Greek
'poiesis' and 'techne' - the character of challenging does not entail the primacy
of the non-dominant attitude of bringing forth things. This gives us a clue in our
search for a definition of modern technology or, in other words, when looking
for a free relation to it. This is, I feel, neither a naIve nor a romantic view of
modern technology. And it is not, of course, an anti-rationalistic one!

Heidegger's reflections on information technology may serve as an illustration
here13 . What are the characteristics revealed by information technology as it
appears in modernity? Analogously to the view of modern technology as a whole,
information technology is not just a tool for manipulating language. Nor does it
suffice to look on it, as Winograd and Flores do, as a tool for designing human
conversations. In actual fact it is what I suggest calling the information Ge
Stell. This term is meant to recall the Heideggerian characteristics of technology
- and particularly that of challenging disclosure - in their relation to language.
This characteristic becomes manifest when we consider language from a non
dominating attitude, as in the case of poetry. The crucial point about modern
information technology, as well as modern technology as a whole, is not how to
design computer-based systems from the hermeneutical premise that they should
be regarded merely as tools. According to Heidegger, we can only overcome
(verwinden) technology, if we are able to see its ambiguity: it looks like a tool, but

12 [Mitcham and Mackey, 1983, p. 26]
13 For original quotations see [Capurro, 1981].

8.2 Informatics and Hermeneutics 373

it is a challenging disclosure ofthe totality of beings. This is not something we are
simply able to change, in the case of information technology for instance through
a different kind of software design. We must first learn to see its ambiguity, just
as we learn to see our image and the image of things in modern art - say in a
cubist picture by Picasso - not as the deformation of an ideal, but as an original
perspective of what things are. By the same token, we must learn how to see
information technology as the modern challenging perspective of our being-with
others in the world. In other words, we must learn to see it as the perspective it
is. Consequently, we must consider this perspective as a genuine possibility to be
inserted into the plurality of other possibilities of social interaction. By assuming
a certain distance to it, we learn to view it ironically, by abandoning the illusion
that we could cope better with human conversations merely by readiness-to
hand design and breakdown programming. We do, of course, need user-friendly
systems. But their friendliness does not lie in their strong capability to assimilate
conversations, but in their weakness to do so. By making them suitable for
conversations, we may be distorting both.

8.2.5 A plea for an open and weak constructivism: The
power of software and the weakness of imagination

Sense and meaning or living metaphors and software development

Information technology, as well as technology in general, can be seen as a threat.
And we have good reasons for seeing it in this way, particularly where we use it
for transforming all other possible forms of human interaction under the premises
of this perspective. Within this approach, we see the originality of the perspective
as the only possible one. This is merely the other side of the coin, as we might
try to replace or surmount a so-called wrong or deformed cubist picture by a so
called right one. Instead ofthat, we must educate our eyes to see the information
Ge-stell in its own original perspective. Discovering its originality by assuming a
certain distance from it, also enables us to see it not as a threat but as a chance.

To show what I mean, I would like to use Paul Ricoeur's concept of liv
ing metaphors to illustrate the difference between world disclosure or reality
construction through software technology on the one side, and poetical world dis
closure on the other14. Ricoeur's ideas are basically related to the distinction
made by G. Frege between sense (Sinn) and meaning (Bedeutung)15. In the field
of poetry, the creation of metaphors can be seen as:

(a) a production of sense, i.e., of expanding language within language, or
(b) a heuristic function, discovering new possible aspects of reality16.

This last function is not only one of disclosure (revelation), but also of transfor
mation.

14 See [Ricoeur, 1986].
15 [Frege, 1892]
16 [Ricoeur, 1986, p. ii]

374 Rafael Capurro

Both aspects also appear in a perspectivist manner if we look at the infor
mation Ge-Stell, and particularly at the field of software development. In this
field, we also have, on the one side, a production of sense, i.e., of expansion
of language, but it is mainly an expansion of formalisms and it is governed by
mainly univocal rules. Unlike literature, for instance, software is primarily lim
ited in its potentiality of sense production. Otherwise, it could not be applied to
the referent for which it was conceived. On the other side, software is developed
not merely to describe, but to actually dominate, i.e., to transform or control
specific dimensions of reality. In other words, the relation between the creation
of living metaphors - a poem, for instance - and software development can be
seen as a reverse one: a poem opens up a field of possible sense interpretations
and can be used heuristically for the disclosure and transformation of reality17.
Software development aims at a mainly univocal reduction of the metaphorical
sense of language, i.e., it looks primarily for meaning in order to transform or
control reality. The will and/or power to dominate reality that is at the basis of
a meaning-relation constitutes, in my opinion, the difference between software
technology and, say, pure mathematics or logic.

Strong constructivism versus weak constructivism

We need, of course, both kinds of creative or constructivist relation to the world,
i.e., to the field of open possibilities within given traditions, in order to continue
being the finite project we are. If, as a result of a one-sided view of the informa
tion Ge-Stell, we see in it the only possible perspective, then it presents to us the
illusion of an ideal language, of pure intelligence, of objective information, and
so on. But if we have learned to see it as a possible perspective among others,
then its claims become weaker, and we learn not to believe that our demands are
fulfilled just because we adopt an anthropomorphic terminology. Analogously to
the idea of conjectural knowledge in the field of science, we might also begin to
see weak technology as good technology. We could then consider it for what it
is, i.e., not primarily as a method for the production of an artificial mind, for
instance, nor merely as a tool for conversations. It allows both views because it
is an ambiguous project of world disclosure. It adopts the perspective of modern
subjectivity and can therefore even try to substitute it. But, at the same time,it
does not enable this subjectivity to look behind itself in order to become aware
of the thrownness character of its world projects.

My final plea is, therefore, not for modern subjectivity in the form of radical
constructivism to be given the tools it needs for the construction of reality as a
whole, including human conversations, but rather for this global claim to be ques
tioned - a claim common to the rationalistic as well as to the instrumentalistic
tradition. In other words, my plea is for a weak or open constructivism through
stressing the potentialities of human imagination in a dialogical process of sense
creation. Such an open constructivism is the opposite of Maturana and Varela's
autopoietical systems, which reduce the openness of our being-in-the-world to

17 See [Eco, 1977].

8.2 Informatics and Hermeneutics 375

the idea of egocentric or closed systems. On the ethical basis of the dialogical
experience of openness to each other and to our common world, we can learn
how to see computer-based information systems in all their social, historical and
cultural ambiguity, reducing in this way their, as well as our own, hermeneutical
ambitions. To this extent, I see computer-based systems not as a threat, but as
a chance: as a chance to insert the originality of the challenging perspective of
human interactions into the plurality of other kinds of non-challenging ways of
reality disclosure and construction. How can this be done? Well, our Conference
on Software Development and Reality Construction was a start.

8.3 Language and Software, or: FritzI's Quest
Dafydd Gibbon

8.3.1 FritzI and the problem-solving problem

A linguist surveying the challenging peaks and valleys of the computational
cognitive science landscape was awed by the forceful arguments and brilliant
solutions offered by various teams of guides to the problem of traversing this
impressive terrain. The AI team turned up with its helicopters, the software
engineers offered their snowcats, the philosophers brought along a variety of skis
designed for a dizzy slalom 'alpine' or a circuitous debate 'de fond'. And the
local travel agent (Frame Problems, Inc.) had a special offer of three styles of
planning: the checklist plus rules of thumb (risking accidents), the exhaustive
step-by-step chart (with the risk of never finishing) and the list of things that
don't have to be taken along (with the risk of never starting).

However, being a sociable sort of person and accustomed to linguistic study
in the field, the linguist sought out FritzI, a speaker of an unintelligible local
dialect but reputed in the village to be a real expert on the area, and patiently
learned enough of the lingo to persuade FritzI to communicate his enthusiasm
for life in this area, explain the interesting features of the terrain, and finally
to cross the area together, ending up at FritzI's favourite hostelry on the other
side.

Why is it, the linguist wondered on his return, that so many people ignore
the advantages of looking at language closely? Reminiscing, he picks up one of
the travel brochures he had perused before the trip! and recalls the comments
of many of his friends and colleagues about Zuhandensein and Vorhandensein,
which he had not found in the local dialect, and autopoiesis, which seemed a
big word for explaining how FritzI and the villagers had survived through the
centuries. And he noticed that indeed the language dimension was emphasized
in the brochure, but had somehow tended to be overlooked: there were sections
on language, truth and the world, on language, listening and commitment, even
on listening in a background, on meaning, commitment and speech acts, on
formalization as special language use, on breakdown, language and existence,
on levels of representation, on understanding language, on artificial intelligence
and language understanding, on understanding as pattern recognition, on what
it means to understand, and indeed on management and conversation and on
tools for conversation!

Surely this would have been enough to allow the specialists to get on with
FritzI? Particularly since one of the authors came to fame with a simulated

1 [Winograd and Flores, 1986]

8.3 Language and Software, or: FritzI's Quest 377

natural language understanding robot (called Shrewd Lou) and both, as well as
others they criticize, are in the business of designing and selling helpful tools for
the purpose.

Obviously FritzI has special knowledge, indeed down-to-earth, flesh and blood
skills, which are of great interest, and if we can find special technical languages
in which to represent them, and strategies for simulating them, for instance in
a silicon environment, then we are in the same business2 • The linguist, too, will
need to exercise his own knowledge in order to describe such a special language,
since some of FritzI's skills are verbal: insofar as he can transmit his own skills to
the next generation, he has such a technical language already, and the linguist
will need to describe it and translate dialogues in this language into a more
comprehensible dialect.

Now, who is FritzI? Although he may be a court of last appeal, he is no
abstract 'homunculus', and certainly not a 'deus ex machina'. Nor is he a per
sonification of the trip designer's 'alter ego' when he sits at his desk and works
out examples to illustrate his theoretical predictions.

FritzI is the fellow who can actually perform the tasks required on an intu
itively intentional basis, who can talk about them in a rational, analytic, func
tional manner to those who listen carefully, and who could, if motivated, be
trained to design devices which satisfy or extend part of his own bodily require
ments or skills, such as energy storage (his rucksack), protection (his woollen
underwear), aids to perception (his hand raised against the glare) and locomo
tion (his skis and ropes), and high-level symbolic representation systems (his
charts and maps). He could, if given the chance, tell experts how to make even
better tools for him. However, he would get extremely insulting if anyone sug
gested that such a device could replace him, or the linguist, for that matter, as
a guide to the physical and linguistic intricacies of village life in that area.

This assumes, of course, that FritzI's consultants had learned his dialect,
or taught him theirs. Usually, however, an interpreter is required. So it falls
to the linguist to outline strategies for understanding FritzI and either do the
interpreting himself or train others to do so. Naturally, there are other experts
with somewhat different specializations who could also do the job: the logician,
who would instantly translate FritzI's words into an unambiguous, completely
explicit set of axioms, or the ordinary language philosopher, who would discover
the conditions under which FritzI's statements were at least felicitous, if not
actually true, or the sociologist, who would observe FritzI's everyday verbal and
nonverbal activities at his work in detail, uncovering pairwise patterns, or the
psychologist, who would either offer FritzI higher and higher rewards for ever
more complicated patterns of behaviour, or make him press buttons on seeing
pictures of the mountains, thus revealing his internalized mental map.

But what would the linguist actually do? He would try to account for sim
ilarities and differences in the languages used by the participants in the above
scenario, explain why FritzI or the linguist himself and his Consultants have
difficulty in understanding each other at different levels of comprehension, and

2 Cf. [Fluck, 1976, Weingarten and Fiehler, 1986].

378 Dafydd Gibbon

try to provide a link between the methods of the linguist's colleagues in other
disciplines and the details of the forms, meanings and functions of language.
And the linguist would not succeed, for the same reason that others would not
succeed: his own technical language would be different again, and of course ev
eryone knows his language anyway, so who needs a linguist? However, FritzI had
not yet reached this level of self-questioning.

8.3.2 Cognition and computation: the linguistic stance

Regardless of these minor hurdles, the following report on the principles under
lying FritzI's verbal expertise is intended to be generalizable to anyone speaking
in any dialect on any topic under the sun. It represents a linguistic stance on
questions of cognition and the representation and construction of reality; the
intentional, functional, and physical stanceiJ appropriate to functional models
of computational modelling and, in particular, artificial intelligence, are seen in
terms of a pragmatic stance, the semantic and syntactic stances, and a physi
cal stance towards our models and constructs. The basic ideas underlying this
approach may be outlined in terms of the following points.

Cognition and causality: FritzI's cognitive processes are causally explainable by
his biological makeup, and are specific to it4. Abstract and concrete compu
tational models of FritzI are selective, with a shifting selection line, and never
fully simulate human intentional properties such as intelligence, but are, rather,
conjectural tool-like extensions of his own bodily requirements and skills.

Cognition and representation: FritzI's cognitive processes, and hence his tech
niques for constructing realities, including the new one with the linguist in it,
are knowable only via their representations in his external symbol systems, which
are causally linked to his cognitive processes, i.e., his dialect.

Underlying representations: FritzI's most fundamental external representation
system is his everyday verbalization in speech. FritzI can write a quite acceptable
variety of German, as the linguist soon discovered, but systems such as standard
languages or writing are more like highly specialized and context-specific tech
nicallanguages. To suggest the existence of mental representations inside FritzI
seems somewhat superfluous, though external representations of his hypothetical
mental states are a scientific necessity for the self-respecting modern linguist.

Reality and representation: FritzI's representations of the world and of himself
appear to be located (in terms of their main vocabulary fields) on a scale of
intention, meaning, form, and physical substance. This closes into a cycle when
the linguist observes FritzI talking. Introspection seems to lead him make utter
ances which we give representations in terms of the vocabulary field of intentions
(we know these, because we have them too). These can be structured in terms

3 [Dennett, 1987]
4 Cf. [Searle, 1980].

8.3 Language and Software, or: FritzI's Quest 379

of vocabulary fields covering the meanings and the forms of utterances, and in
terms of expressions describing their physical form. An observer could alterna
tively traverse the cycle in the other direction: she may analyse FritzI's organs
and behaviours, say, in terms of a physicalistic language, extract from this the
formal patterns discovered thereby, interpret these in terms of perceived reality
in general, and put these into the context of intentions which we attribute to
FritzI. For FritzI, the frame problem turned out to be a problem of linguistic
focussing - foregrounding and backgrounding information - and of stereotypic
versus experienced views, of the explication of information so far left implicit,
and of coping with vagueness.

Representation and explication: FritzI's initially indistinct utterances, while per
fectly adequate in context, may be replaced in the course of time (under the
pressure of the linguist's incomprehension) by more explicit formulations which,
while not being exact paraphrases, are intended to say much the same thing
but more clearly. And FritzI's own understanding of the subject matter itself is
thereby enhanced. This process may continue cyclically, as in scientific endeav
our, becoming eventually so complicated that additional storage media (writing,
computers) and access techniques (page numbering, computer programs) may be
needed for representing things, and the re-translation into FritzI's village dialect
will have become all but impossible. But external representations are no more
than external representations, whether as evanescent movements of the lips, the
fingers, or the air, as traces on stone or paper, or as lithographic or electrical
patterns on silicon chips. This is not to say that the intellectual equivalent of an
optical illusion - the lithoid homunculus - may not be engendered by the quali
tative leap in brain support achieved with the aid of the magnification effects of
the computer in space and in time.

Language, cognition and commitment: FritzI's dialectal representations permit
not only the reconstruction of the notion of his individual mind and its exter
nal symbolic representations, but also a reconstruction of FritzI as part of a
larger conventionally organized, aggregate society which is larger than and dif
ferently structured from the individual, though not in any sense an organism
in the sense that FritzI is an organism. Innate tropisms (like the ant building
its anthill, FritzI's balancing movements), learned stereotypic skills (like FritzI's
mountaineering in general, or his friendly greetings, or his pronunciation), cre
ative action (like FritzI's recognizing an unexpected trap and avoiding it, or
explaining how to do so to the linguist) define the mutual strategies of the vil
lage society for survival or self-destruction. Some are verbal, some are directly
physical strategies.

Language and variety: FritzI adapts his language to different social contexts as
a skill, holistically and without necessarily consciously knowing he does, in a
fashion which the linguist can describe parametrically. He mumbles indistinct
curses when trying to repair his rucksack, raises his voice when exchanging stories
with the other village folk, speaks slowly and with a different vocabulary when
explaining things to his visitor.

380 Dafydd Gibbon

The important point for this report is, essentially, the last: the parametriza
tion of the variety in fritzI's speech. His teacher at school apparently tried to
convince him, fortunately without success, that his pronunciation was awful,
his syntax wrong, his vocabulary miserable and his expression crude. His own
common sense told him that he was entirely right to speak as he did in the
village, that his pronunciation was perfect, his syntax fine, his vocabulary rel
evant and his expression appropriate - in short, that he was accepted by the
community - and that the teacher's pronunciation was awful, his syntax wrong,
his vocabulary ridiculous and his expression quite screwed up. Not only that,
FritzI realized that if he wanted to be a teacher he would have to make some
compromises. Moreover, he also realized that if he wanted to play any number of
other roles in the community he would have to adapt his language in the same
number of ways, without any prescriptive moralizing about whether his language
was thereby "better" or "worse" 5.

Actually, some time later, FritzI wrote to the linguist in puzzlement about all
the changes due to the tourists in the village, and that he had somehow come to
the conclusion that it was all due to the fact that nobody could understand his
dialect. Not only that. He confided that since the specialists had all but succeeded
in duplicating him, he had decided to become a software engineer and perhaps
construct a new reality for himself in so doing. Moreover, he had already found
in the process that whatever language he learned, the same applied: Fortran,
Lisp, C, even Prolog. And, though he was hesitant to admit this, he had finally
decided to become a linguist. A computational linguist, naturally.

8.3.3 Software as language

The term 'programming language', FritzI decided, is not a misnomer; a pro
gramming language shares most common features with more familiar written
colloquial idioms except ambiguity on the semantic side and pronounceability
on the physical side. This is sometimes doubted, but the similarities and differ
ences are not fortuitous, as FritzI discovered.

The forms of a programming language are quite similar to those of other
versions of written language. Its smallest units resemble orthographic words, and
have their internal spelling which often overlaps strongly that of some natural
language. It has a syntax, determining the combinatoric properties and ordering
of words. It has a morphology (prefixes and suffixes, etc.), for instance in the
form of type indices on variables, or in variable names, which express a kind of
co-reference much in the same way that pronouns agreeing in person, number
and gender do. It has a textual syntax, stating how to combine sentences into
coherent texts.

Not only that, a programming language has a semantics, not just in the for
mal logical sense of a set-theoretically defined virtual ontology, or in the usual
programmer's sense of the runtime values of identifiers, but in a common or
garden linguistic sense of having meaning in the contexts in which it is used.

5 Cf. [Gumperz, 1982].

8.3 Language and Software, or: FritzI's Quest 381

The expression "FRITZL" really means FritzI, and "SALARY FRITZL" re
ally means FritzI's salary, unless the programmer is playing with the language,
testing, or otherwise combining signs in a syntactically correct but meaningless
fashion (as We can in other forms of written language, too).

But what FritzI found when he turned to linguistics was that the distinctions
do not stop at syntax and semantics as in computer science. They continue to
pragmatics, as in general semiotics. If syntax expresses relations between signs
in a language, and semantics relations between signs and the world, pragmatics
expresses relations between signs and their users, in traditional semiotics6 • For
FritzI, with his interest in software engineering, this apparently taboo area came
to exercise a considerable fascination, and thus it constitutes the main thrust of
the rest of this report.

8.3.4 Systems as texts

Looking back on his third-year software development project, FritzI recalled
what an immense amount of paper he and his team had generated, most of it
remaining unread in detail, and was thankful for the sophisticated interactive
system he was using to generate his memoirs. More intensely than screens and
blinking cursors, he found, the idea of paper still conjured up the notion of pen,
writing, and all their associations. And he recalled the different sorts of text (at
that time called "hard copy") which they had produced. There Were descriptions
of various tasks, some informal and some as reports, program listings, test runs,
program specifications, inventories, technical documents, and a user manual.
And of course there had been all that endless discussion about the right design
philosophy, the right implementation strategies, the tiresome bugs, and what the
USer needed to know. And how Mariandl, a translator he was friendly with at the
time, had been appalled by the bad grammar and punctuation of the prompts!
Some of these texts FritzI had kept.

Was there a principle behind all this variation? What was the unifying force
behind all these written traces of communicative processes? If there was system
behind it all, perhaps one could conceive of the system as a theory - but surely
not as the private and ultimately incommunicable theory of an individual pro
grammer or team, as suggested by N aur7 . Isn't it the conventional property of
a serious theory to be explicit, shared by a scientific community and, with a
certain finite amount of effort, to be comprehensible? In fact, there appeared to
be no theory, but a roughly coherent set of texts around a major theme: perhaps
this is closer to N aur's idea.

The core was the program itself, which had a precise syntactic specification.
Beyond the localline-by-line details, which made some kind of easily recognizable
formal sense, the program as a whole made not the slightest sense, of courSe. It
might just as well have been an ancient and sacred, as yet un deciphered scroll.
But given the handbooks, things started to fall into place: whole chunks of the

6 For example [Morris, 1946].
7 See [Naur, 1985b].

382 Dafydd Gibbon

program text were given informal but highly intelligible rules of interpretation,
relating them to the world outside. And these interpretations could often be
followed, with a little more effort, down to the more local details of the code.
So FritzI found syntactically correct sentences in the program, and remembered
that they had actually meant something to somebody a long time ago.

So the different sorts of text varied quite systematically in terms of several
parameters: by form or syntax (small technical vocabulary and grammar against
larger, more picturesque informal descriptive vocabulary), by meaning or seman
tics (more precise, specific, highly delimited, specialized versus more vague, gen
eral, informally characterized, widely applicable), and by function or pragmatics
(instructions to the programmer, the program as a 'template' for the computer
to traverse mechanically again and again without variation, the handbook as a
set of explanations and instructions for the user). And also by medium (written,
not spoken, confidential versus published), by genesis (explicitly designed versus
gradually acquired) and along other dimensions.

What a pity, thought FritzI, that they had not recorded the oral discussion
at that time, as Goguen would have recommended; the special features of spoken
language had a particularly intensive effect on finding solutions: how often had he
simply described a problem to someone else, hearing only "Really?!" or "Sounds
okay to me" , for the answer to occur to him just like that. The different kinds
of dialogue had been subject to quite different conventions8 .

8.3.5 The pragmatics of utterances

So, FritzI reasoned further, if software development is largely text production,
what roles do these texts and their parts play in the individual acts of text or
utterance creation, speech acts, and in the constitution of discourses with whole
sequences of such acts? What kinds of speech acts are performed

... by the developer, in producing the software,

... by the user, in using the software,

and who takes the responsibility for these texts or speech acts - promises, threats,
explanations, summaries, predictions - in the contexts in which they are used?

To gain an idea of what is involved, FritzI reviewed some approaches to de
scribing the functions of language. The central approach was speech act theory,
with some historical background in other theories, and with some contextualiza
tion in terms of higher-level speech activity such as dialogue.

The traditional parametrization of speech acts (acts of writing being more
restricted) was based on constitutive factors of communication, such as speech
producer and receiver, channel or contact, message, context, and the code used.
The "functional" approach started with three functions defined on a quadruple
of constitutive factors <Sign, Speaker, Addressee, Context>9, explicating the

8 Cf. [Coulthard, 1987].
9 See [Biihler, 1934].

8.3 Language and Software, or: FritzI's Quest 383

old notion that language is a tool, organon. The three main kinds of function
are:

EXPRESSION (speaker, utterance), with values such as emotion, conviction,
opinion, belief;

APPEAL (addressee, utterance), with values such as persuasion, insult, fright,
impressiveness, rejection;

REPRESENTATION (context, utterance), essentially with referential values:
object reference and truth values.

Jakobson1o extended the factors with somewhat different terminology to include
<Speaker, Hearer, Contact, Context, Code, Message>, and defined three more
functions (using the term "message" rather than "utterance"):

METALINGUAL (code, message), with values involving marking, commenting
on and evaluation of the code itself;

PHATIC (code, contact), with the function of creating, sustaining, closing
channels of communication, securing uptake, marking and correcting errors,
with both physical and social dimensionsll ;

POETIC (message, message), with the idea that some functions of language
are aesthetic in a formal sense, with intrinsic and conventional patterning -
perhaps "art for art's sake".

These views of the functions of language beyond the individual were greatly
refined by contributions from the philosophy and the sociology of language.
And it is interesting to see how the contributions of speech act theory within
the philosophy of language12 look somewhat different from the perspectives of
different disciplines such as linguistics or philosophy.

From the philosophical perspective, speech act theory may be seen as an at
tempt to generalize over the semantics of speech acts (as the statement of truth
conditions) and the pragmatics of speech acts, in particular those which do not,
strictly speaking, have truth values (such as baptisms, commands and promises),
but have other ethical values in terms of commitment and responsibility. How
ever, their felicity conditions are quite similar to truth conditions when looked
at in all relevant details.

From the linguistic perspective, speech act theory links up with other levels
of representation of language: with the choice of words, details of the choice of
sentence structure, the use of speech melody and typography to give contour
to the utterance, and with the use of language of different styles, sociolects
and dialects under the conditions of different relations of social cooperation,
competition, and domination.

A classical, rather detailed exposition of the nature of speech acts is given
by Searle. Searle starts from the basic premise of a Principle of Expressibility13,

10 See [Jakobson, 1962].
11 [Malinowski, 1924]
12 Cf. [Austin, 1962, Searle, 1969] and many other studies.
13 [Searle, 1969, p. 20]

384 Dafydd Gibbon

which includes what speakers mean, but excludes "certain kinds of effects" on
hearers - poetic, emotional, inducing beliefs, etc., contrary to Naur's view:

"A main claim of the Theory Building View of programming is that
an essential part of any program, the theory of it, is something that
could not conceivably be expressed, but is inextricably bound to human
beings." 14

The Principle of Expressibility claims:

... for any meaning X and any speaker S, whenever S means (intends to
convey, wishes to communicate in an utterance, etc.) X then it is possible
that there is some expression E such that E is an exact expression of or
formulation of X ...

This connects to the notion of speech act, i.e., the utterance as having a role
in a speech situation, by virtue of what may be termed the "Literal Utterance
Principle" (not Searle's term), the point being that some speech acts (e.g., "Yes,
of course") are quite inexplicit, and rightly so, in everyday speech:

... for every possible speech act there is a possible sentence or set of
sentences the literal utterance of which in a particular context would
consitute a performance of that speech act.

The importance of the Principle of Expressibility cannot be overemphasized: it
underlies the whole of the work of the linguist, but it also underlies the basic
strategy of scientific explication in every scientific discipline. Starting from a less
well-understood notion, clearer delimitations from other notions and sharper
characterizations of the notion itself are developed in terms of technical lan
guages, and ultimately formal languages, including computer programs.

For Searle, the general form of a speech act is F(p) , where p ranges over
propositions and F ranges over "illocutionary force indicating devices" such as
word order, stress, intonation contour, punctuation, the mood of the verb (im
perative, indicative, interrogative, subjunctive, etc.), and explicit "performative
verbs" such as apologize, warn, claim, request.

Speech acts are defined in terms of constitutive rules (as opposed to regu
latory rules, which channel pre-defined action), which are based on necessary
and sufficient conditions for the successful and non-defective performance of a
speech act. These, in turn, build on institutional (conventional, social) as opposed
to brute (or physical) facts. Typical institutional facts include observations about
speakers and hearers in their discourse roles, rather than in their identities as
biological persons. The performance conditions are illustrated by the speech act
of promising (think of booking an airline ticket as a computational promise by
someone - by whom?):

14 [Naur, 1985b, p. 258]

8.3 Language and Software, or: FritzI's Quest

"Given that a speaker S utters a sentence T in the presence of a hearer
H, then, in the literal utterance of T, S sincerely and non-defectively
promises that p to H if and only if the following conditions 1-9 obtain." 15

Normal context condition (not Searle's term)

385

1. Normal input and output conditions obtain (such as knowledge of the lan
guage, health, non-play-acting, ...).

Propositional content conditions

2. S expresses the proposition that p in the utterance of T.
3. In expressing that p, S predicates a future act A of S.

Preparatory conditions

4. H would prefer S's doing A to his not doing A, and S believes H would prefer
his doing A to his not doing A.

5. It is not obvious to both Sand H that S will do A in the normal course of
events.

Sincerity condition

6. S intends to do A.

Essential condition

7. S intends that the utterance of T will place him under an obligation to do
A.

Uptake condition (not Searle's term)

8. S intends (i-I) to produce in H the knowledge (K) that the utterance of T
is to count as placing S under an obligation to do A. S intends to produce
K by means of the recognition of i-I, and he intends i-I to be recognized in
virtue of (by means of) H's knowledge of the meaning of T.

Utterance condition (not Searle's term)

9. Semantical rules of the dialect spoken by Sand H are such that T is correctly
and sincerely uttered if and only if conditions 1-8 obtain.

If discussion of the commitment dimension of communication (which FritzI in
tuitively understood when he agreed to act as companion through mountainous
terrain) is to be concrete, coherent, and convincing, then it requires a detailed
explication in terms such as those provided by speech act theory.

15 [Searle, 1969, p. 57]

386 Dafydd Gibbon

8.3.6 The pragmatics of dialogue

But the individual utterance is not the be-all and end-all: there are more gen
eral discourse conditions such as conventions for cooperation16 , different dis
course roles, different turn-taking conventions for conducting meetings, for dis
cussion at the desk, for phone calls, for informal chats in the cafeteria with other
colleagues17 .

While Searle concentrated on constitutive rules for speech acts, the maxims
of Grice might be conceived as regulatory rules for the relevance of utterances in
the whole discourse context 18 , together constituting the Cooperative Principle
of conversation which is intended to enable the hearer to recognize the intention
of the speaker19:

Maxims of quantity

1. Make your contribution as informative as is required.
2. Do not make your contribution more informative than is required.

Maxims of quality

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

Maxim of relation

1. Be relevant.

Maxims of manner

1. A void obscurity of expression.
2. Avoid ambiguity.
3. Be brief.
4. Be orderly.

The maxims may be related indirectly to Searle's conditions of performance; the
sincerity condition is clearly reflected in the first maxim of quality, for example.
Informally expressed as these maxims are, their appropriateness should not be
underestimated. Each represents an important question in the philosophy of
language; for instance, the maxims of manner can be taken to refer mainly to
classical problems in semantics: to vagueness or fuzziness, ambiguity, redundancy
or tautology, and to the compositionality of meaning. Intelligent application of
these maxims enables FritzI to draw interesting conclusions such as the following:

16 See [Grice, 1975].
17 Cf. [Sacks et al., 1974, Gibbon, 1985).
18 See [Sperber and Wilson, 1986].
19 See [Grice, 1975)'

8.3 Language and Software, or: FritzI's Quest

Vagueness is not just "noise" but an essential property of non-technical
use of language. Why? Imagine a language game with two people who
disagree on some topic, say, on whether FritzI really knew what he was
talking about. Even their definitions of terms are different. Also imag
ine that they are rather excited, and don't feel like getting on to some
higher level of universal "meaning atoms" to which they can reduce their
disparate definitions (as true empiricists, they might even refuse to do
this on principle). How could they conceivably communicate anything
without vagueness? But, through the explication process, they can ap
proximate more and more closely to precision.

387

Cooperation - like commitment, or responsibility - is not a property of an indi
vidual speech actor: "cooperation with", "commitment to", "responsibility for"
imply roles in a social aggregate. Just to give an example: imagine FritzI in his
role as chairman of a project negotiation meeting. Simultaneously he may at any
given moment participate in the following communicative role structure20 :

CONTROL: chairman (versus working party member, etc.),
STRATEGY: floorholder (versus audience versus eavesdropper),
TACTICS: addressor (versus addressee versus listener),
PRIORITY: initiator (versus responder, e.g., questioner versus answerer),
CHANNEL: sender (versus receiver),
PROCESS: producer (versus perceiver).

Any of these roles can help to determine when FritzI gets to speak or relinquishes
his turn to someone else, and FritzI may indeed choose to project structures of
this kind on to his software communication strategies as constraints to guide or
frustrate the user.

Interaction in communication is governed by a number of dynamic factors,
apart from the underlying role structures. One such factor pertains to situation
specific turn-taking principles21 . How does one know that someone has finished
speaking, or wants to speak? The cues (such as tone of voice, ends of sentences,
lowering of eyes and hands) and role conditions, differ from situation to situation:
meetings, interviews, informal conversations and other kinds of interaction differ
in these respects. How does this apply to the interactive principles involved in
human-computer-interaction? FritzI found no easy answer to this question.

Another factor is the typical sequencing of speech acts which is characteristic
of specific language varieties. A common case is the speech act adjacency pair,
such as <Question, Answer>, <Claim, Refutation>, <Request, Response>,
which may be generalized to a pair <Initiation, Reaction>. But this is not the
whole story. What happens when the language tool slips, as it were, and FritzI
doesn't succeed in making the point he wanted to make? This breakdown situa
tion, where the tool becomes simply an oddly shaped object, forces the routine,
stereotypic running of dialogue into the consciousness of the participants.

20 See [Gibbon, 1985, p. 407].
21 Cf. [Sacks et al., 1974].

388 Dafydd Gibbon

But there are higher level discourse strategies for coping with this kind of
problem, too. These may often be explicated by analysing an existing stage in
a dialogue structure in terms of a further pair, involving transitions of various
kinds, either to the reaction, or to the next structure, confirming the successful
execution of part of the dialogue or its unsuccessful execution, plus a corrective
suggestion. A simple case:

A: Where's the mouse?
B: In the corner.
A: Thanks.

The third item is often used to initiate an "uptake loop" of arbitrary length (i.e.,
until patience runs out), designed to clarify the response:

A: Where's the mouse?
B: In the corner.
A: Which corner?
B: That one.
A: Thanks.

Reactions, too, may be analysed as being prefixed by a transition element:

A: Where's the mouse?
B: Sorry?
A: Where's the mouse?
B: Oh, in the corner.
A: Which corner?
B: Pardon me?
A: ??*!@!!

The so-called "empty words" used in such structures are actually far from
empty22: they bear a high burden of information about the state of the con
versation in terms of the fulfilment of speech act conditions. Moreover, it can
be quite dangerous, literally, to assume from one's own conventions that all lan
guages, indeed all varieties of one's own language, share them. The conventions
for marking these initiations, reactions, transitions, terminations vary from lan
guage to language, and group to group, and indeed situation to situation, though
the basic uptake loop structure is constant. And uptake-oriented forms - real
izations of Jakobson's phatic function of language - figure in effect, though at a
crude level, in interaction with software systems, too.

Applications of principles related to those discussed here have been made
by Goguen, Linde and others23: much communicative interaction is stereotyped,
and can be easily modelled. The difficulties arise when in real-time office situa
tions, in industrial plants, in aeroplanes and elsewhere the stereotypes based on
role and convention are interrupted by noise or unusual events, and real creative

22 Cf. [Schriffrin, 1987].
23 Cf. [Goguen et aI., 1983]'

8.3 Language and Software, or: FritzI's Quest 389

communication based on partial or background information plus immediately
perceived changes of situation is called for. The intricacies of language which
allow language users, both speakers and writers, to signal this kind of prioritiz
ing of information - the light and shade of the verbal landscape - are varied
and complex and somehow, presumably, require to be taken into account in
reconstructions of such realities in the form of computational tools.

8.3.7 FritzI and commitment

Why is language so often overlooked as a source not only of problems but of
stimuli for solutions to problems? The main reason is, perhaps, that we are so
practised in its use that its "readiness-to-hand" as a fluently used tool makes it
all but unnoticeable. And when it breaks down, thereby laying bare the necessity
for following repair strategies, these too, as a rule, are present as higher-level,
fluently used tools. Further, when the breakdown is so thorough that the ne
cessity for conscious reflection on the conditions of language use is laid bare,
these conditions turn out to be so complex, and the cues for indicating them so
varied, that we immediately shy away from them and create our own abstract,
simplified pictures of language, preferentially the kind of language that we think
(that we think ...) that we use ourselves.

It should now come as no surprise to learn that linguists have found out
that the way we actually use language when it is "ready to hand" as a fluently
used tool differs from the way in which we think we use it, i.e., a mode in
which language is contemplated as an object. We tend to think we speak (and
act) according to well-defined norms which we have been trained to think are
"good" . And in a homogeneous society there may well be no such discrepancy.
But society even in FritzI's village is inhomogeneous in terms of the roles of its
members, and at a moment's notice it may become more so, owing to an influx
of inquisitive linguists and other tourists. And our prescriptive ideas about how
we speak are not descriptions of the reality of skilful, fluent language use.

Writing, too, only makes sense when interpreted in a given context, like
FritzI's software project, where the program only made sense when interpreted
with the aid of the handbooks or its developers, and otherwise was simply a
pattern imposed on silicon or on the magnetic coating of a disk, a template to
be traversed with the aid of minimal amounts of electrical energy, again and
again, ever in the same way ('modulo' breakdowns), in response to switches in
keyboards, in mouse keys, or in other sensors, and producing light patterns to be
interpreted much as other writing is interpreted. Where is the commitment, the
responsibility, in such traces? No more in the computer than in the pen fritzI
used to sign his first cheque, but either in the designer of the pen, or FritzI him
self, who both share the responsibility, often in legally defined ways. Breakdown
for technical reasons? Never. Though our less privileged successors in the next
millenium will no doubt have archaeologists who will be puzzled by millions of
tiny silicon replicas of Mosaic tablets, each with hundreds of thousands of sim
ple commandments linked with hundreds of thousands of ANDs and ORs and
NOTs.

390 Dafydd Gibbon

So, having gone through all of this in order to understand what had suddenly
descended on his village, way back then, FritzI realized that he was right after
all: his dialect was just fine. And his command of other languages, and of styles
of speech and writing also became, in due course, finely attuned to the contexts
in which they were used. The specialists had simply been writing, writing, writ
ing in order to use the advantages of a special kind of storage medium with
suitable access techniques in order to support selected aspects of their bodily
requirements and functions, including those of their brains.

Thus, FritzI concluded his report, in the beginning was the word. And, not
unexpectedly, in the end, too.

8.4 Activity Theory as a Foundation for Design
Arne Raeithel

In this chapter, epistemological questions will be analyzed as everyday problems
that present themselves to people doing any kind of work, including household
and other unpaid forms of work. The constant change in the organization and
content of such work processes during several identifiable historical stages is ac
knowledged and taken into account by providing a series of genetic concepts for
the construction of an idealized picture of human societal and personal devel
opment. This originally Marxist philosophy must be, and is, complemented by
recognizing that the cultural dimensions of humanity cannot be found in work
processes only. Therefore, in a genetic unfolding of concepts, the more basic cate
gory of human activity has to be explicated first. A most important insight along
this way is understanding language and other sign systems as instruments for
social and personal self-regulation that are socially constructed, again in several
historical stages.

Thus, the Kantian and timeless framing of epistemological enquiry in philos
ophy - What are the preconditions for the possibility of gaining knowledge about
the world? - is transformed by an activity-theoretical approach into several an
thropological, sociological, psychological and biological research tasks: How to
model and describe empirically the development of the respective types of self
regulation (also called cognitive processes) that enable animals and humans to
regulate their activities according to their vital aims and necessities.

Computer science or informatics appears in this perspective as one of the
sciences of human self-regulation, mainly concerned with electronic and virtual
machines used in this process. Software objects may consequently be seen as
predefined constraining contexts ('forms') for sign processes (semioses) mediating
between human actors, while at the same time presenting virtual objects and
instruments ('means') for self-determined use by the cooperating persons.

8.4.1 Different ways of thinking about computer-supported
work

In their book on understanding computers and cognition, Terry Winograd and
Fernando Flores l used the conceptual tools of three very different schools of
thought to construct their new foundation for design: the theory of speech acts
proposed by John Searle, the philosophy of Martin Heidegger, and the con
structivist theory of natural cognition developed by Humberto Maturana and
Francisco Varela. From the choice ofthese theories, it is already clear that W&F
wanted to think about humans and computers in a radically new way.

1 [Winograd and Flores, 1986]: I refer to the authors as W&F.

392 Arne Raeithel

Using speech act theory, they argued convincingly that the paradigm of pro
ducing results by automatic machinery - taken for granted in the usual way of
looking at computers as information processors - must be complemented by the
paradigm of people undertaking and fulfilling commitments through comput
erized media of symbolic communication. Another possible option would have
been to analyze the paradigm of productive work in industrial or service settings
- used in industrial sociology or industrial psychology - for possible bearings on
computerized work.

Instead, W &F adopted a much less complicated way of looking at work pro
cesses: the phenomenology of craftsmen. On the basis of Heidegger's distinction
between ready-to-hand tools and present-at-hand objects, they formulated an
important rule for the design of software: always prepare for 'breakdowns', i.e.,
disruptions in the smooth flow of work with a software object, because these
will happen regularly even with optimal design. Computer users expect some
means of re-orientation in cases of breakdown, and designers must supply these
in addition to the target functionality of the system.

Finally, W &F challenged the model of human actors that still seems domi
nant among software designers: the Cartesian ideal of a rational mind using inner
representations of an 'objective reality' to plan and steer a course of action, ap
plying rational methods and following explicitly given rules. Interestingly, the
option they propagated instead was not taken from the various recent develop
ments in philosophy or psychology of action2 , but was imported to informatics
from biology. Building on the theory of autopoiesis3 , W &F presented a picture
of human agents as self-organized organisms that make sense of their surround
ings and are connected to other individuals through 'consensual domains' like
language in a specifically human way.

Put succinctly and with some grains of irony: in W&F's book, man appears as
a speaking animal that loves to bargain. Jiirgen Habermas' more comprehensive
theory of communicative action was also mentioned by W&F, but only with
respect to those parts of his work that touch hermeneutics or transcendental
pragmatics. Critical social theory beyond communication research is non-existent
in W&F's book. Furthermore, communication is reduced to verbal or written
language; we find practically no mention of body language, nor of the semiotics
of symbolic representations, and consequently no distinctive concept of models
- instead of using the term 'model', W &F speak (strictly) only of 'systematic
domains'.

But there are important fields of design that are in urgent need of a philo
sophical clarification of the concept of symbolic representations or models: infor
mation systems for planning and decision-making, modelling facilities for natural
scientists including shared data bases, knowledge-based systems for the support
(not replacement!) of experts, media support software for conferences, and so
on. Thus, while W &F's book constituted a significant enlargement of the field of
vision, it should be clear that we have to dig still deeper than W&F were able to

2 See e.g. [Harre et al., 1985, Frese and Sabini, 1985].
3 [Maturana and Varela, 1987]

8.4 Activity Theory as a Foundation for Design 393

in their quest for a new foundation for design. Winograd4 has explained why the
above-mentioned and other possible problem areas were consciously disregarded
in their book, admitting this as a 'blindness' of their own approach. To keep the
philosophical focus steady on the concepts necessary for founding their important
perspective was no doubt a wise decision for writing their immensely readable
and visionary book. But, to tackle the broader problems sketched above, a still
more general theoretical framework will be helpful, providing a language in which
the necessary dialogue can take place between all the disciplines mentioned. The
system of concepts inherent in this language must also be applicable to the prob
lem of coordinating the various different perspectives of software designers and
users.

And finally: by way of a self-application of this general theory to the im
portant, but much more specialized task of organizing interdisciplinary research
work, it should even be possible to formulate a strategy for developing software
design itself. After all, the activity of software designers also falls under the same
heading of computer-supported work.

My favourite candidate for such a general language and strategy is 'activity
theory', a multidisciplinary endeavour in the social sciences and humanities5• In
what follows, I shall not attempt to give a comprehensive overview of this tra
dition, but will rather present my own example of a historical systems approach
to activity theory6 that was heavily influenced by one other candidate for such
a general language and strategy for science, namely, general systems theory - as
seen from a Marxist perspective7 .

A diagram of historical connections between philosophical authors

A look back into the history of ideas (Fig. 8.4-1) reveals the intricate connections
between the philosophical schools that W &F have tried to integrate. Although
many professional philosophers have judged the result of their theoretical effort
as a kind of patchwork, my own impression is that these authors have demon
strated that some such integration is important, and that it can be done if we
do not keep too closely to our 'home bases' in philosophy.

What the diagram also shows is that my favourite, activity theory, has many
common ancestors with W &F's post-modern philosophical orientation in infor
matics, while the ancestry of mainstream computer scientists (whom I have la
belled 'Logicians') is relatively narrow and isolated from both other final nodes.
This diagram is a biased representation, to be sure, but I think it mirrors quite
well the general mood of the group of authors who produced the present book.

The diagram may also be consulted by the reader whenever historical ref
erences are given. And finally, it may be looked on as a backdrop for future
discussions in which a more lasting foundation for design might be produced.

4 [Winograd, 1988]
5 Cf. [Hildebrand-Nilshon and Riickriem, 1988, Engestrom, 1990].
6 [Raeithel, 1983]
7 Cf. [Blauberg et al., 1977].

394

R. Descartes
B. Spinoza _ -----:/ 1596-1650 _____ J. Locke

1632-1677 G.B. V!:~/ ~Leibniz 1632-1704

1668-1~ 1646-1716

I. Kant /
r1724-1804

G.W.F.Hegel ~-___ _

1770-1831 '" F.W. Schelling

1804-1872 -------_ I L. Feuerbach 1775-1854 /

K.Marx~ ~ ~-7'--~
1818-1883 W. Dilthey

1833-1911

£l L. Boltzmann
1844-1906

I
E. Husserl
1859-1938

G.H.Mead
1863-1931

Winograd & Flores

Fig. 8.4-1. Historical connections among philosophical authors

Arne Raeithel

G.Frege
1848-1925

Bolder lines mark discussions, controversies or critique by later workers.
Thin lines show paths of continuing influence.

Dashed lines mark similar orientations, influences are uncertain.

8.4 Activity Theory as a Foundation for Design 395

To be really sound, it would have to include also what the 'Logicians' (e.g., the
logical positivists) saw more clearly than the rest.

8.4.2 The Marxist conception of human activity

Before going into details about the activity theory, I feel I should give some
initial conceptual clarifications of the intended use of the terms 'activity', 'work'
and 'praxis' in the following text.

Human Activity: Pursuing subjective ends while producing objective results. -
In a Marxist, genetic development of concepts, the notion of activity (Tiitigkeit)
comes first, meaning the living action of humans who try to reach their subjective
ends. In this category, all forms of human action can be included, even child's
play and school learning. The scientific goal of using this category is to analyze
why, how and with what persons do the things they do, and what objective
results (gegenstiindliche Resultate) they produce through doing it. These results
are at the same time less and more than was anticipated in the intentions - the
conscious aims - of the active persons.

In view of this, A.N. Leontyev8 has proposed distinguishing the contextual
process level of concrete activities - oriented towards results (objectives) which
do not need to be conscious - from consciously regulated actions, and these
again from the process level of embodied operations by which persons realize
their aims - again without necessarily being aware of all the details. 'Object
oriented activity' is thus a category that is designed for subject-centered study
of human actions, their context, and ways of realization.

Societal Work: Activity in societal forms and with a constrained pool of
means. - To analyze what Marxists call 'labour' (Arbeit), it is not enough to
understand human activity from the inside. It is also necessary to reflect upon
the objective (i.e., encountered and counter-acting) reality in which persons must
currently earn their living. In doing so, we may build the category of societal
'labour' or work - put simply: the daily, recurrent duties of men and women.
Now, the activities of persons may be seen as unfolding in definite social forms,
which can be essentially characterized by constraints on the available means for
action and living.

These constraints are brought about by what Marx has called the societal
distribution of those means. Here, all the numerous problems of property rights
and legislation concerning (not only economic) relations among humans arise.
Social forms are, to be sure, present everywhere - not only in wage labour. This
means that every activity, when analyzed as to the forms in which it unfolds, is
looked at as if it were societal work in the sense used here.

Communal Praxis: Cooperative reproduction of means by social re-creation
of common forms. - Although many people believe that Marxist thinking ends
with the question of who owns the means of production, this is not true. There
is another, still more comprehensive category besides activity and work that is

8 [Leontyev, 1978]

396 Arne Raeithel

designed to include the possibility that social subjects (families, groups, institu
tions, organizations, even whole societies) might try and decide upon the forms
in which they will live. But, of course, the really important question here is not
how we could build this category of communal praxis theoretically, but how we
could invent really new social implements.

This elusive goal of self-determination of human history constitutes the most
basic Marxist motive for building an evolutionary theory. The ongoing world
wide movement of inventing and using more human, i.e., smaller and more re
gionally rooted, forms of immediate or mediated democracy is my own most
important reason for optimism in theory building, especially in this historical
moment where all totalitarian forms of socialism are in the process of being
abandoned for a very long period, preferably forever.

8.4.3 Five essential attributes of human activity

As is evident from the diagram in Fig. 8.4-1, activity theory has a predomi
nantly Marxist heritage that was transformed by applying it to psychological
problems, which is, in itself, very important, because the role of persons and
their actions was thus much better understood than in other versions of Marx
ism. The psychological school from which the activity theory arose was founded
in the Soviet Union in the 1920s by the Russian linguist and psychologist Lev
S. Vygotsky, and was further developed by the psychologists Alexei N. Leon
tyev and Alexander Luria9 . The basic category in this theory is 'object-oriented
activity' (gegenstiindliche Tiitigkeit) , a concept that was developed by German
Idealism (Kant, Fichte, Schelling, Hegel) and its critics Ludwig Feuerbach and
Karl Marx.

In what follows, five attributes of activity are explained in order to convey
an initial impression of the content and scope of this complex concept. I keep
roughly to the chronological sequence in which the respective attributes were
worked out in philosophy and psychology, each time adding a paragraph with
illustrations from informatics. Finally, some implications for epistemology are
presented.

(1) Activity of a living body - use of 'natural' bodily means

Contrary to Hegel, for whom the most important human activity was thinking,
Feuerbach maintained that we humans are living, sensuous beings who live in a
natural world that we can apprehend with our senses. Although Feuerbach also
stressed praxis, his philosophy was more contemplative than revolutionary. This
changed when Marx (who was a Hegelian) read Feuerbach in 1843, and saw this
philosophy in his context of political action (he had to emigrate to Paris). In
his critique of Hegel and Feuerbach, he formulated the basic tenet that human
praxis must be understood as living, sensual activity that produces and changes
the physical and social world.

9 See [Wertsch, 1981].

8.4 Activity Theory as a Foundation for Design 397

A salient attribute of computerized work is the 'de-sensualization' of human
activity10, i.e., the reduction ofthe objects and instruments of work to graphical
displays of texts or diagrams on computer screens that respond to keyboard and
mouse operations. Even in these activities the natural abilities of humans are
indispensable, but, of course, they have to manifest themselves as historically
evolved skills ('embodied means') - hence the scare quotes around 'natural'.

(2) Activity of an extended body - use of technical, semiotic and
social implements

In his political and economic studies, Marx realized that the societally produced
implements change the course of history, often against the will of the acting indi
viduals. Accordingly, he understood human activity not only as motion of living
bodies, but as activity of functionally extended bodies that transforms nature in
a qualitatively new order of magnitude (as Vico and Hegel had already seen).
Taken together, these extended activities comprise the mode of production of a
society and are realized in forms of social intercourse in which new implements
are also used, besides the natural means of communication and cooperation.

'Bodily labour' is therefore always more than mere organismic activity of a
living body, and, furthermore, it should not be pitted against 'mental labour',
because the latter activity is, of course, also realized by motions of the human
body, functionally extended by societally produced means. Only in very rare
cases (e.g., Stephen Hawking's) are theorists able to work without external signs
and operations, and even then their bodily thought processes are guided by the
objective (encountered) characteristics of the 'systematic domains' of thoughtll
that have been constructed by generations of other theorists.

As to work with electronic computing devices, this perspective reveals that
parts of the virtual machines must be regarded as extensions of the 'dynamic
body' of workers. Just as typewriters are handled by secretaries as part of their
own extended body, the virtual design tools of a CAD system should be suitable
for 'natural' incorporation into the activity of the designers, who are then able
to reach and handle the virtual objects "through the interface" 12.

(3) Activity transforms objects, and is transformed by them

Thus the most important insight is that we humans literally produce a new
reality: Object-oriented activity creates a world full of new objects that physically
exist as the material heritage that the next generation has to cope with, and by
which the activities of elders and children alike are transformed (contextually
co-determined, not predetermined) in turn.

The appearance of the objects and instruments of computer-supported work
is produced by the interface that presents virtual objects, and possibilities of

10 [Volpert, 1987]
11 [Winograd and Flores, 1986]
12 [B(1!dker, 1987]

398 Arne Raeithel

action. The underlying data structures and algorithms are not normally known to
the working persons. Therefore, in software design, the correspondence between
appearance and effective implementation must be guaranteed as far as possible13 .
Regardless of the quality of software in this respect, we may expect that all new
computerized workplaces will produce noticeable effects on the activity structure,
and that means the personality, of workers14.

(4) Activity is itself an object for other activities - therefore social
coordination is possible

The self-transformation of human activity is not only brought about indirectly
through confrontation with the products of earlier generations, but can also be
accomplished by communication and reflection: In this case, the activity of Gen
eralized Others (George Herbert Mead) and its regularity and patterns become
the objects of an anticipatory form of activity. In language (oral or written, na
tural or formal), we can operate with the forms of activity, and thus construe
new possibilities of action. Marx has not expanded much upon this symbolic
construction of possibilities.

The Marxist view that language and other sign systems function like other
human implements was mostly developed by Vygotsky. His analysis gives much
the same results as the semiotic philosophy of Charles Sanders Peirce. Vygot
sky's cultural psychology is also very much like George Herbert Mead's symbolic
interaction ism (indirectly influenced by Peirce), and it shares the centeral con
viction that meaning is produced and reproduced in social intercourse with the
philosophy of the (later) Wittgenstein. Vygotsky has found a very simple for
mula to express the difference between productive and semiotic means, or put
simply, between 'tools' and 'signs'15: Tools and machines have 'external effects'
while language and other sign systems are directed 'internally', and thus realize
self-regulation.

Figure 8.4-2 illustrates this methodological rule in three diagrams. Together,
they make up Vygotsky's "initial abstraction", i.e., the most simple symbolic
form from which the full meaning of mediated human activity may be generated
by successively more concrete substantiations of the initial elementary relations.
Both the structural similarity and the essential difference between productive
and semiotic mediation are already visible in this series of diagrams.

To make optimal use of the simple, but essential formula stating the difference
between 'tools' and 'signs', we have to distinguish two shades of the meaning of
'internal' with respect to human subjects: Semiotic action has effects 'inside the
head'; accordingly it changes thinking, perception and regulation of action - a
trivial fact for most modern philosophers. But semiotic action also has effects
'inside social groups', thus changing shared ways of thinking, shared world views,
and finally the culturally patterned actions themselves. This profound insight is

13 For example, by the strategy of object-oriented programming: [B~dker, 1987].
14 [Raeithel and Volpert, 1985], Volpert, Chap. 7.5.
15 See [Vygotsky, 1978, p. 55]

8.4 Activity Theory as a Foundation for Design 399

Subject Object Subject Object Subject Object

Tool Sign Sign

(a) (b) (c)

productive mediation semiotic mediation self-regulation

Fig. 8.4-2. Vygotsky's initial abstraction

Diagram(a): A subject wants to produce a mediated effect (dashed arrow) on an object,
and uses some 'tool' (bodily means included), on which the subject may exert direct
effects (plain arrow), and which, in turn, has direct effects on the object. The other
diagrams show that subjects may have mediated effects on other subjects (b) or on
themselves (c) by using some 'sign'.

also expressed in Gregory Bateson's magnificent vision of 'mind as a between',
as "the pattern that connects" all individual living beings with one another and
within themselves through timel6 . Any such social between is internal to the
community of actors and constitutes the cultural orderl7 , i.e., the system of
meanings of this community.

While Bateson's wording sounds very strange to many of his readers, Vy
gotsky's formula might appear much too simple. Indeed, his initial abstraction
has to be enriched considerably, as will be shown in Section 8.4.7. But even this
initial version will suffice to present a considerable challenge for informatics: If
we believe that informatics is essentially the science of mechanization of semi
otic processes, then we, as informaticians, have to ask ourselves in the light of
Vygotsky's formula: Are we sufficiently aware of our function and effect in social
self-regulation? Are we able to correctly perceive the societal changes produced
by our own work with our very own ways of evaluation and present methods of
assessment?

(5) Activity is essentially social, existing only as cooperation

Of course, informaticians are not the only group of people whose work may have
profound effects on the future patterns of cooperation. On the contrary, from
attributes (3) and (4) it follows that every individual actor participates in the
process of reproduction of the cultural order of some community. Communities,
as a rule, are not isolated social systems, but 'interpenetrate' each other in
various ways, the more so, the more functionally differentiated the respective
society isl8 .

16 [Bateson, 1980]
17 [Sahlins, 1983]
18 [Luhmann, 1987]

400 Arne Raeithel

This means, ultimately, that any attempt to analyze the structure and dy
namics of concrete activities of individual persons must start with the recogni
tion of the historical, societal and cultural contexts (the 'forms' in a Marxist
sense) of human activities. Forms in this sense are socially stabilized patterns of
cooperation19 and provide, as it were, the 'moulds' or 'river beds' in which each
and every person unfolds his or her own version of each activity, thus developing
the necessary cognitive structures for the conscious regulation of these activites
as weIpa.

From this, activity theorists have drawn the conclusion that forms of think
ing - of grasping one's own reality and possibilities - develop as internalized
forms of actual human cooperation. If, for the time being, we take this thesis of
internalization as given, another immediate implication for informatics follows:
If computer systems are designed to have an effect on the structure and con
tent of the cooperation of working groups, then they will necessarily also have
a constraining effect on what the members of this group will normally think
about their world, inside or outside work. This being so, there is some cause for
concern about such - as yet quite unforeseeable - future effects of computerized
and distributed workplaces.

From the existential position of "Promethean shame" 21, feeling helpless and
tiny in the face of the self-produced "Mega-Machine", a person may easily
lose his or her usual hold on scientific detachment22 and drop into the emo
tional whirlpool of some 'culture-pessimistic' nightmare like George Orwell's
"Nineteen-eight y-four" , where state-enforced patterns of cooperation predeter
mine all conceivable actions, if not all thoughts, of individuals. But we may also
free our gaze from looking at this fetish - as soon as we realize that it is mainly
the emotional commitment and unquestioning anticipatory obedience of a ma
jority of actors that produces the appearance of power and might of totalitarian
state authorities. What becomes visible from a more detached position is a vari
ety of interlocking communities and organizations, and a contradictory pattern
of conservative and revolutionary forces that cannot be controlled globally at all
for more than a few decades.

This realistic view of societies by no means rules out the possibility that forms
of human cooperation may be designed locally, in each case for a few concrete
working groups only. But these will develop in ways co-determined by all partic
ipating persons, and as soon as a new form is successfully stabilized, it may then
also be socially generalized either by unsupervised 'imitative' multiplication, or
by using the theory produced by the original groups as an internalization of their
own praxis.

19 See Sect. 8.4.5.
20 [Vygotsky, 1978, Ilyenkov, 1977]
21 Giinther Anders
22 [Elias, 1956]

8.4 Activity Theory as a Foundation for Design 401

8.4.4 Epistemological implications of the five attributes of
human activity

It follows from these considerations that there is one most important decision in
each strategy for epistemological enquiry: the primary role conceded or denied to
individual human actors in producing human knowledge and effectiveness. My
position here is that any post-modern philosophy must be 'threaded' through
cultural psychology in order to be able to present a truly encompassing world
view, in which the unity of nature and culture is revealed as a recurrent historical
reality, brought about by the social and productive activity of each and every
human being.

A psychological phase of enquiry is indispensable because the object domain
of psychology coincides with the core of the problem of understanding the rela
tion between nature and culture: Societies consist of human beings, and every
one of them starts life as a 'mere' unicellular life-form, developing in the pro
foundly human environment of the mother's womb. Ontogenesis of humans - the
domain of developmental psychology - is a process where the 'natural abilities'
or 'gifts' of the child unfold within cultural forms, and all of this must be under
stood, at least in outline, if the epistemic faculties of humankind are ever to be
explained, as Jean Piaget and other evolutionary epistemologists have stressed
many times23 •

Thus, the Kantian and timeless framing of epistemological enquiry in philoso
phy - What are the preconditions for the possibility of gaining knowledge about
the world? - is transformed by the activity theoretical approach into several
psychological, anthropological, sociological and biological research tasks: How
to model and describe empirically the development of the respective types of
self-regulation that enable animals and humans to steer their activities accord
ing to their vital aims and necessities.

In Alexei N. Leontyev's early work24, we find the foundation for a theory
of natural cognition and its evolution into human ways of grasping reality. In
his later works, he extended this theory by a conception of personality develop
ment that builds on the very well known but also quite opaque "sixth thesis on
Feuerbach": " ... the essence of man is no abstraction inherent in each separate
individual. In its reality it is the ensemble (aggregate) of social relations." 25

I have tried to give an inkling of what this may mean in explaining attribute
(4) and the internalization thesis. Leontyev goes one step further and models a
personality as a concrete system of activities and meanings that is reproduced
through the continuous realization of these activities in social cooperation as a
contradictory or harmonious whole26 • It is this holistic process that, in Leon
tyev's view, produces what the individual experiences as his or her "personal

23 See [Kesselring, 1988].
24 [Leontyev, 1981]
25 Marx, cited from [Kamenka, 1983, 157].
26 [Leontyev, 1978]

402 Arne RaeitheI

sense" of life, or as the lack of a clear feeling of meaning, or as the existentially
disturbing revelation that there is no one and only predetermined meaning of
life on earth.

While Leontyev has concentrated his efforts on the explanation of personal
development in cooperative contexts, others have more recently expanded the
scope of the activity theory to the whole field of communication27, to educa
tional processes in or outside schoops, to cross-cultural psychology29 j in short, a
renaissance of the Vygotskian approach to the social formation of mind30 is well
on its way. The development of an interdisciplinary and scientific theory of the
formation and development of social, collective knowledge seems now possible,
if the many valuable contributions to such an end that have been produced by
scholars of other backgrounds31 are taken into account. In my view, the Marxist
approach to societal and cultural development will be able to fulfil this task -
precisely because it is going through a healthy crisis presently.

New possibilities for political action, for various other fields of praxis, among
them the design of computerized work, are being constructed everywhere. To
understand all this and to accommodate the activity theory to new societal
developments, I have found it necessary to go back to the roots of Marxist
thinking in order to reconstruct the basic concepts of this theory. The following
section presents what has become of this endeavour.

8.4.5 'Means and Forms': How to understand natural
evolution and cultural history

From Hegel's grand vision of the development of objective (i.e., social) Mind or
Spirit (objektiver Geist) Marxist philosophy has inherited its essential historical
orientation. Karl Marx and Friedrich Engels discovered what they took to be the
one most important driving force of human history: the dialectics of means and
forms (i.e., relations) of production. When Charles Darwin published his theory
of natural evolution, Marx greeted it most enthusiastically as a kind of biological
backing of his own thinking. And, indeed, the polar opposites of natural varia
tion in bodily means of animals, and natural selection by the conditions of the
ecological niche can be seen today as very much akin to the historical dialectics
of means and forms. To see this kinship clearly, the co-evolution theories of the
New Biology32 are very helpful, because through them we are able to see that
the ecological niches are co-produced by the animal species, in contrast to the
received opinion that animals have to 'adapt' to external conditions that exist
independently of their activities.

27 [Leontyev, 1981]
28 [Davydov, 1982]
29 [Scribner, 1985, Cole, 1988]
30 [Wertsch, 1985]
31 For example, [Mead, 1934, Elias, 1987, Bourdieu, 1977].
32 See [Bateson, 1980, Thompson, 1987].

8.4 Activity Theory as a Foundation for Design 403

Operative means: subjective control structures, encountered object
processes, and mediated, flexible realization according to perceived
conditions

Of course, after acknowledging the basic similarity between evolution and his
tory, the very different time scales of natural evolution and cultural history must
be recognized, and also the fact that the necessary structures for cultural repro
duction are 'stored' in the world of human artifacts with its most important
kernel, the societally produced systems of signs33 . From this 'storage' humans
may take the instruments needed to do their work. It is helpful to distinguish two
broad classes here34 : means of orientation and means of production. Both classes
have precursors in every living species: the perceptual, cognitive and explorative
abilities needed in the orientation phase of animal activity, and the various skills
employed by the animals to reach their species-specific goals in the realization
phase of activity35.

In his latest work, A.N. Leontyev has explained at length why it is necessary
to conceive of the instruments of work as integral parts of the activity of the
human individuals that set them in motion36 • This amounts to a rule that both
orientational and productive instruments should always be analyzed in the con
text of their use37 , especially if we want to understand innovations that usually
start with new ways of using old instruments. In the parallel case of natural
capabilities of animals, this rule seems self-evident, since most of their means,
disregarding several exceptions like the branches and twigs that beavers use,
cannot be 'divorced' from their bodies at all.

In order to understand the use of artifacts in human activity, the general con
cept of 'operative means' (comprising both orientational and productive means)
may be defined as an operational, functional, and developing system encompass
ing the following "three simple moments of labour" (Marx in "Capital"):

(1) The subjective moment, being the regulative, controlling structures that the
individual worker has at his or her disposal as cognitive knowledge, and/or
as 'mere knowing-how' (implicit but effective knowledge). It is helpful to
distinguish "epistemological knowledge" that is ascribed to a person by an
observer, from "cognitive knowledge", that the same person may easily com
municate to the observer38 . Implicit knowledge is thus part of epistemologi
cal, but not of cognitive knowledge.

(2) The objective moment, being the encountered material (physical or semi
otic) process that is transformed into a product, but also has its Eigensinn
(its proper natural or social dynamics) that is never fully known by the sub
ject of work. Because of this dynamical autonomy from the subject, I propose

33 See [Cole, 1990, Norman, 1991] and Keil-Slwaik, Chap. 4.4.
34 See [Elias, 1987].
35 [Holzkamp, 1983]
36 [Leontyev, 1978]
37 See [Bannon and B!1Idker, 1991].
38 [Bromme, 1988]

404 Arne Raeithel

to call it 'counterprocess'. In German the word is GegenprozejI, a new term
that I have suggested as an abbreviation for gegenstandlicher ProzejI and
as a replacement for Gegenstand (object), because the latter term has too
many connotations of static physical structures like chairs and hammers.
This replacement is especially helpful when reproductive or communicative
activities are to be analyzed39 •

(3) The mediating moment, being (recursively) the operative means through
which the action of the subject on the object (and vice versa) is realized.
This recursive organization ends with the physical contact of subject and ob
ject at the most elementary interface. At some quite early level of recursion,
the subjects of work lose the possibility of conscious control of all the de
tails, delegating these, as it were, to their 'natural', embodied, self-organizing
faculties for orientation or realization4o •

This conceptualization of operative means entails their relative autonomy
with regard to the subjects that employ them. In the case of animal activity,
this again seems self-evident, because we do not usually think of animals as
working subjects that regulate their activity with more than simple awareness
of their immediate needs and of the ecological conditions pertaining to these.
But in our own case, there is still much overestimation of the possibilities of
rational control of actions, especially in the design 'philosophies' of mainstream
computer science. Activity theory warns against this modern hubris, stressing
that all our means for orientation and production must still be controllable by
human actors who are, first and foremost, living beings that cannot but rely
upon their 'natural gifts'.

What distinguishes human work (and consequently historical development)
from animal activities (and natural evolution) are essentially the very different
operative means that humans can set in motion. They comprise everything from
the most simply produced tools up to today's automated production plants, from
verbally transmitted rules for action to computer-based simulation devices. Of
course, these means also demand more complicated and flexible control struc
tures, for the implementation of which the human brain has a vastly greater
capacity than nearly all other species, and they permit the transformation (but
not the ultimate mastery!) of a truly universal realm of counterprocesses, much
more than any single animal species can control.

Societal forms: Operational closure and reproductive cooperation
patterns

The category of operative means is incomplete without its polar opposite: the so
cietal (international, state-governed, organizational, institutional, cultural, micro
social) forms of the use of these means. If we employ the conceptual accomplish
ments of Second Order Cybernetics41 , we can define societal forms as opera-

39 [Raeithel, 1989]
40 See [Haken and Stadler, 1990]
U von Foerster, Pask, Maturana, Varela, von Glasersfeld; see also Chaps. 3.1 and 3.2.

8.4 Activity Theory as a Foundation for Design 405

tionally closed, self-referential systems in the following sense: They consist in a
definite selection from all operative means, together with a constraining coop
eration pattern among these selected means that mayor may not leave open a
considerable flexibility and scope for using them. The closure is brought about
by including the reproduction of the selected means via other means into this
form42.

It is important to see that the delimitation and selection of means is usually
maintained by societal power relations among the cooperating subjects. Conse
quently, societal forms cannot easily be equated with "autopoietic systems,,43
that are defined as being essentially autonomous. On the other hand, one of the
profoundest results of Marxist thinking is the insight that societal forms have
a definite autonomy in relation to the humans that produce or try to domi
nate them without full awareness of what they are doing. Here, then, is food
for further thought: How can we discriminate the various grades and shades of
autonomy? How can we describe the relations between individual human actors
and social systems, both considered as relatively autonomous, more precisely and
concretely than Luhmann44 has been able to?

A very important point in the dialectic of means and forms is clear enough,
though: Societal forms can be, and usually are, transformed into operative
means. As an example, compare the machining shops of the late 19th century,
where the cooperative pattern was very much stabilized by social coercion and
concomitant self-restraints of the actors, with the newest automatic machining
cells, where this pattern has been programmed into the process control com
puter and the system has thus become a single operative means, supervised by
one worker. Another example from the domain of orientational means would
be to compare the research activity of a mathematician in the 19th century,
who had to follow a quite rigid discipline in his symbolic computations, with
today's use of a computer-based "system for doing mathematics": The previ
ous self-constraints of the mathematical actors have been transformed into the
programmed rules of the virtual machine45.

8.4.6 Figurations, actors, and means: Three process levels
of collective activity and historical development

What is not so clear is how the societal production of new forms, for instance
in the wake of technological innovations, is brought about. There are diffusion
models of innovation-spreading (analogous to the diffusion of diseases), that al
low fairly good predictions of spreading times, but they do not explain why some
forms of use of new artifacts spread widely, while others remain a regional spe
ciality. Looked at from an activity-theoretical perspective, models like these do
not pay enough attention to the part played by the individuals in these processes.

42 Reproductive closure: [Raeithel, 1983, Chap. 2].
43 MaturanafVarela
44 [Luhmann, 1987]
45 [Wolfram, 1988].

406 Arne Raeithel

Instead, they concentrate on the relative autonomy of operative means, invoking
principles of physical self-organization to explain the emerging new forms.

On the other hand, the definition of societal forms given above is subject
to the same critique, and there are comparable deficits in most post-modern
epistemologies that picture the development of social patterns of grasping reality
as a self-organizing process of autonomous "discourse processes" - i.e., in the
terminology used here: of relatively autonomous means of orientation - without
explicating the essential role of human actors in 'mediating' (a second shade of
meaning of this very general and abstract verb) between means and forms. The
remedy for all these deficits is, in my opinion, to be found in the "figurational
sociology" of Norbert Elias.

The most revolutionary concept of Elias's theory is called "figuration" and
"points to the changing patterns of interdependencies which weave people (both
allies and opponents) together, [it] is to be understood as 'a fluctuating, tensile
equilibrium, a balance of power moving to and fro, inclining first to one side and
then to the other,46. At the hub of figurational processes, then, are shifting bal
ances of power,,47. Using the concepts developed above, we can now state that
the process of societal formation is driven by figurations of human actors, keep
ing in mind this observation of Elias, implicitly addressed to orthodox Marxists:
"With regard to the distribution of power in a society one can say that mo
nopolization of the means of violence or of the means of orientation, that is of
knowledge and particularly of magical-mythical knowledge, plays no less a part
as a source of power than the monopolization of the means of production"48.

Just as we distinguished above an essentially subject-related class of instru
ments, the orientational means, from a dominantly object-related class (means
of production), we should now differentiate between objectified aspects of societal
forms - the 'uneven' (to put it mildly) distribution of means for living that is
constantly reproduced by the balance of powers in international, nation-state
or organizational institutions of violence control - on the one hand, and the
much more subjectified aspects that constrain the balance of power 'from within
the actors', on the other hand: embodied social rules, habitual inter-individual
orientations and so on, whose workings Elias has called "self-restraint of the
actors".

Putting everything together, we get the three-level diagram in Fig. 8.4-3,
which is - just like the Leontyevian scheme of three process levels of human
activity49 - centered on the consciously acting persons. It has the joint activity
of a concrete community, i.e., its figuration, as its synchronic context level - in
contrast to the biographical and diachronic context that is meant by Leontyev's
top-level construct, the personal system of concrete activities5o .

46 Elias

47 [Featherstone, 1987, p. 203]
48 [Elias, 1987, p. 230]
49 Sect. 8.4.2
50 Sect. 8.4.4

8.4 Activity Theory as a Foundation for Design 407

Figurations Self-Restraints/Rules Community Violence Control/Distribution

Actors L ,,"/Mo"~
~

Means Means of Orientation Operative Means Means of Production

Fig. 8.4-3. Three process levels of collective activity

The actors are motivated by a dual system of 'powers': by their personal needs,
developed in the course of their biography, and by the societally defined 'results'
or products of the working community. The products are distributed within
and between working communities, and this process of fulfilling needs by the
consumption of products constitutes a third kind of mediation (upper triangle
in the diagram): contextual mediation between objects and subjects of work -
the dialectical converse of the first kind: operative mediation between subjects
and objects (lower triangle).

In the corners of the diagram, we find Elias's four distinct process universals
"which are common to all societies and with which testable theoretical models
of the structure and direction of long-term processes can be constructed. To
survive, people who belong to groups have to fulfill a set of elementary func
tions for each other and the group: the economic function, the control of vio
lence, the development of knowledge, and the development of self-restraints"51.
In this conception, the highest process level- traditionally called 'superstructure'
(Uberbau) - is not ideational and ideological anymore, like in those orthodox ver
sions of Marxism designed for philosophical warfare. Scientific Marxist enquiry
may thus be redirected from a strictly engaged activity, bound to an allegedly
clear and self-evident 'class interest', to a much more detached observation of
the changing, fluid patterns in which social figurations develop. The results of
this enquiry should be understood not as objective facts, but as new means that
can be appropriated for the sake of orientation by any of the subjects in need of
explanation.

We might add one interesting and straightforward implication: Science ap
pears now as just one special kind of figuration among many others52 , thus the
concept of 'scientific communities'S3 can be made much more precise. Further
more, for the main goal of this chapter, namely the explication of a useful and

51 [Featherstone, 1987, p. 202]
52 [Elias and Martins, 1982], cf. Amann, Chap. 4.1.
53 [Kuhn, 1970]

408 Arne Raeithel

epistemologically sound methodology of design, this diagram may serve as a
general orienting scheme, since it contains some essential distinctions enabling
us to describe, analyze, and eventually design the organization and instruments
of working communities. Yrjo Engestrom has developed a very similar diagram
that has already been used extensively to organize several "developmental work
research" projects54 .

If it were merely concerned with the explication of societal work in general,
this section could end here. But it is computerized work that we have to analyze
- a commonplace of the present discussion being that computers are symbol
processors. Accordingly, we finally have to turn to the question of what symbols
and symbolic processes are, and how they could ever have been invented by
humans.

8.4.7 Evolution of semiotic self-regulation - From natural
signals to symbolic models

It is time to go back to Vygotsky's initial abstraction (Fig. 8.4-2) in which semi
otic mediation is eliminated by combining the previously disconnected diagrams
into one, and adding retroactive effects. It is easy to name what mediates the
effect of the second subject on the first: it is simply another sign. However, it
is highly problematic for epistemology to find a good name for the mediational
entity that realizes the retroactive effect of the object on the subject. As may be
inferred from my using the label 'sign' at this point, too, I am following Peirce
in maintaining the semiotic character of perception and verification of results.

SUbject Subject Object

Sign Sign Sign Tool

Fig. 8.4-4. Semiotic self-regulation of human activity

This decision entails stretching the usual concept of signs and semiotic mediation
to also include natural and organismic signals. Objects appear as complex signs
that are partially anticipated as an effect of the organism's action, and also con
tain some parts hinting more or less clearly at the hidden proper dynamics of the
object 55. The difference between anticipated and perceived effects may be easily
noticed by all living beings. In the case of humans, most of their effects are real
ized by using some tool that has been designed beforehand, and therefore usually

54 [Engestrom, 1987]
55 Cf. [Turvey et al., 1990].

8.4 Activity Theory as a Foundation for Design 409

leaves very well-known markings on the object of work. In short, the appearances
of objects are specified pragmatically - a straightforward generalization of the
justly famous Pragmatic Maxim of C. S. Peirce56 to our case.

Up to this point, we have recognized just one undifferentiated class of ob
jects in the eco-world57 of animals. From a psychological perspective, the most
important sub-class of objects consists of the co-specific animals ofthe same com
munity, because the signals connecting co-specifics constitute a semiotic sphere
of social coordination completely internal to, i.e., completely self-determined by,
the concrete species, and this system of social signs is absolutely necessary for
social self-regulation and reproduction, especially for protecting the young ones
until they are able to care for themselves58.

In the present epistemological context, however, another implication of the
existence of this semiotic sphere internal to every animal community is still
more important: An animal may take the stance of an observer, using the signals
specific to its own species to pick up59 the needs, intentions, and activity patterns
of the other members of its community. This possibility rests on the imitative,
mimetic abilities of all 'higher' animals (e.g., most mammals) to perceive and
re-create in their own activity the bodily postures and gestures inherent in the
stream of signals that present a living, familiar, or even intimate subject-object
- a partner in social interaction - to the observing animal. Using this ability, the
higher mammals, especially the primates, are able to individually learn patterns
of coping with natural or social problems from their elder partners, and thus
animal traditions, i.e., genuinely social forms of semiotic self-regulation, may
evolve in those communities that reproduce for long enough periods without
severe disruptions.

It is decisive for understanding communication to recognize that the observed
animal need not be aware that his visible motions are being picked up as signs by
the observer. This is to say that mimesis, i.e., being able to observe and recreate
activities of others, is the very basis of communication, not as the dominant but
simplified view of information theory would like to have it: being able to 'receive'
and 'decode' prepackaged meanings produced by some 'sender'. That the latter
model is completely inadequate to understand animal or human communication
has been said many times, especially in original work on information theory6o.
It is interesting that this conceptual fact is now more generally accepted as a
consequence of the widespread critique of early attempts to understand the use
of computers as 'man-machine-communication'.

We now have to take a quick look back into the immediate prehistory of
human beings in order to understand the invention of human symbolic commu
nication. The three historical stages of the evolution of human communication
described hereafter should be understood as steps in a logical reconstruction,

56 [Peirce, 1968, p. 62]
57 Umwelt, [v. Uexkiill, 1957].
58 See [Bischof, 1990].
59 [Gibson, 1979]
60 [MacKay, 1969]

410 Arne Raeithel

not as events in a 'true story' about the past of humankind61 . It follows from
this logical strategy that the two 'lower' types of modelling must be described
in a state of development where the 'higher' types are not yet available. There is
not enough space to also present the more complex forms that these basic types
of models may take after development and incorporation of later types.

Dramatic modelling: Iconic performance of an activity for the benefit
of a community of observers

The ability to mimetically perceive intentions and activity patterns of others
may be turned into an intentional staging of a certain activity by an actor in
order to communicate a complex sign by way of 'body language', including vocal
signals and static iconic signs (e.g., line drawings scratched on some surface).
Such a dramatic sign constitutes a general semiotic type, designating a variety
of concrete activities with the same meaning as its tokens. All 'higher' mean
ings of the following stages thus depend on the "primary language games" 62 of
physiognomic communication made possible by the highly developed mimetic
abilities of primates and our prehuman ancestors. Recent ethological studies63

have substantiated the popular belief that monkeys and apes are able to de
ceive their partners by staging 'dramatic lies'. We may now safely assume that
other forms of splitting immediate practical intentions and apparent content of
communications were already available to prehumans before development offull
syntactic speech.

Discursive modelling: Indexical voicing of stories and the breaking of
the time barrier

As Martin Hildebrand-Nilshon64 has made plausible, the emergence of full syn
tactic speech is a consequence of the objective demands for complex cooperation
strategies arising for a social, food-sharing species like ours that builds and uses
permanent home bases for the protection of the very young and the very old.
Compared with dramatic modelling, the presentation of a discursive, language
bound model does not allow the immediate pick-up of meaning possible with an
iconic sign. Instead the indirect, indexical reference to what is re-presented in
signification is constitutive for this stage of communication. But in return for
the greater cognitive effort necessary for the interpreters, this mode of modelling
affords much greater flexibility in expressing and understanding self-referential
messages. For instance, negation of a previous or following utterance is suddenly
very easy by using an intra-linguistic index like 'not' or 'taboo'. Furthermore,
the multiple and rapid shifts of reference to specific actors of some moving story
('me', 'you', 'the aliens') possible in speech are not feasible in dramatic mod
elling, except for the most gifted masters of pantomime.

6! See [Latour and Strum, 1986].
62 [Hintikka and Hintikka, 1986]
63 [Byrne and Whiten, 1988]
64 [Hildebrand-Nilshon, 1989]

8.4 Activity Theory as a Foundation for Design 411

The possibility of reference to something or somebody outside the actual
situation of the communication breaks this temporal boundary and opens up
the typically human reaches of time: the duration65 of memory that reaches
back to the times of the elders, the present re-enactment of actual problem
situations, and the effective presence of several possible futures - as far as they
are expressible in words. The drawback, of course, is that meanings may now
no longer be simply picked up from the analogic similarity of signs and objects.
Instead, they depend on the continuous social reproduction of the respective
language games66 •

Symbolic models as objects for theoretical work

While the gradual emergence of syntactical speech may only be logically recon
structed, being hidden behind the mist of myths and sagas, the last stage in the
development of human communication can be pinned down quite precisely by
historical-empirical facts. The availability of physical, objectified symbols like
the famous clay tokens of Mesopotamia67 affords to the humans that use them
the possibility of pure theoretical and organizational work. While looking for
order in the array of tokens, it is not necessary to think about the referenced
object domain at all. After having found some interesting or sought-for symbolic
result, this alone may be 'de-referenced' to yield a practical bearing. It is clear
that human social self-regulation may now develop as rapidly as new 'systematic
domains' of symbols can be invented, provided that the operational structure of
these domains can be mapped to the operational structure of one or several work
tasks.

This general affordance of symbolic models may, of course, be grasped and
used only by actors that have enough spare time to become masters in these
pure and formal language games. Accordingly, it comes as no surprise to find
that symbol systems like mathematics, astronomy and writing were invented
mainly by members of the ruling class of archaic state societies, and that this
invention was soon accompanied by the first kind of schools known in history.
All of this happened well after the invention of agriculture and cattle-breeding,
and we might suppose a pressing societal demand for symbolic models some ten
thousand years ago, when the growing agglomerations of rural villages in several
different regions on earth needed better means to organize, plan and supervise
the exchange of goods, the erection of major buildings, the control of waterways,
and so on68 • Space limitations prevent us from looking in detail at the subse
quent development of symbolic modelling69 that finally led to today's electronic
symbol processors. We still call these 'computers' because the paradigm of a
rule-governed symbol system has always been the computable number.

65 Henri Bergson
66 Wittgenstein, see [Hintikka and Hintikka, 1986].
67 [Schmandt-Besserat, 1978]
68 [Damerow, 1988]
69 See e.g. [Goody, 1977].

412 Arne Ra.eithel

Symbolic computation by virtual machines: a new surface layer of
semiotic self-regulation

The developmental path of computational devices appears, in the light of the
previous analysis, to wind backwards in history, and may eventually reach the
historical roots of semiosis with some as yet utopian technical re-creation of
organic self-regulation. At present, however, all we have are virtual machines for
working with symbolic models and media that merely assist in distributing the
more basic kinds of models - predominantly textual representations of discursive
models. Today's artificially intelligent software objects emulate just one strictly
circumscribed sphere of human activity: rule-governed symbolic computation.
There is not one convincing simulation of the next underlying semiotic faculty
of humans: the construction, understanding and critical evaluation of arguments
in social discourse.

Some bits and pieces necessary for scientific modelling of human discourse
in virtual machines might be hidden in the present arsenal of cognitive science.
My hunch is that the current wave of connectionist modelling will produce some
more impressive advances, because the problem of coping with vagueness and
similarity70 now seems to be solvable by these first specimens of self-organizing
virtual machines. All of this is merely of interest for basic research, however, be
cause the excessive claims of applicability, sadly still typical for cognitive science,
are simply moves in the language game of bargaining for research grants.

For the design of real-world software objects, it is much more important
to know how working communities presently regulate their joint activity 71, in
order to eventually come up with support systems that enhance human abilities
of semiotic self-regulation. To conclude, a philosophical and psychological sketch
of three genetic stages of using symbolic models will be presented that might be
helpful for both designers and researchers. There will be no further mention of
computers, because they are too recent an invention to have had any discernible
impact on these very general and ancient ways of grasping symbolized reality.

8.4.8 Three modes of reflection: primary centering,
de-centering, re-centering

Any strategy for human semiotic self-regulation requires for its applicability
the basic ability to work with symbolic models, these being again divisible into
dramatic, discursive or diagrammatic variants, depending on which of the pure
types of modelling is the dominant one. In the following sketch of three stages
of using symbolic models, these finer points will not be given consideration.

70 [Rorty, 1961]
71 See e.g. [La.ve, 1988, Suchman, 1987].

8.4 Activity Theory as a Foundation for Design

The naive problem-solver: Primary centering, or sorting out
symbolized possibilities

413

As has been stated already, we humans are the only species known to us that
may consciously reflect upon their praxis using the contents of a 'second world'
of symbolic means and forms. These are, of course, dependent on this very same
praxis, because outside society there are no symbols. But, as objects, they are
at the same time independent of any single observer, as he or she may use them
or overlook them in the course of his or her reflection.

The first mode of such a reflection is entered when the flow of action is
broken by events that were not anticipated and the subject must turn into an
observer. The surrounding world will be perceived in this mode as a separate,
distant array of meaningful things that can be ordered with a view to finding
some new direction of action that will realize the original aim in spite of the
hindrance that has broken the smooth flow of unimpeded action. All the while
the subject remains na'ively centered in him- or herself72 , and is not aware that
the appearance of the objects he or she is perceiving is fundamentally brought
about by his or her activity. Therefore, the meaning of objects is still inherent to
them, i.e., the symbolic structure is inseparable from the perceived reality. The
life-world appears as its own symbolic model.

Our normal way of problem-solving thus consists in halting the ongoing real
ization of our aims, and trying to re-orient ourselves in the space of symbolized
possibilities. The things around us have their names on their faces, as it were, and
in the middle ages people generally believed in the possibility of simply looking
out and 'reading the book of nature'. Since then we have painfully learned to dis
tinguish between this second, exclusively human, world of symbolized meanings,
and the first world of sensual and effectual 'things' that appear stable, but are
processes with complex dynamics of their own. However, this distinction could
never have been reached in na'ively centered reflection, as will be explained next.

The detached observer: De-centered analysis of the functionality of
means

A second, de-centered mode of reflection is entered when the subject observes
another subject's activity. Taken as the Generalized Other73 , this other subject
shows the relation of activity and counterprocess, and thus the possibility of
functional analysis opens up. In informatics, we learnt some years ago to use the
conceptual distinction between algorithms and data structures. In the light of
our discussion, this reflects the fundamental distinction of activity and counter
process in a way that facilitates functional analysis and control.

The subject can even try to see him- or herself from a distance (constructing
the Generalized Me), and this shows that the full power of de-centered reflection
may only be reached with highly developed symbolic means, because, in the
case of a really tough and urgent problem, the flow of activity is so complex

72 Piaget has called this mode 'egocentric'.
73 G.H. Mead

414 Arne Raeithel

that it has to be re-presented in a model of the process. Such a model shows
the relation between activity, counterprocess and the feasible means in a way
that frees the reflecting subject from time pressure and allows full exploration of
the space of possibilities. When models exist, it becomes possible to understand
and productively employ the difference between real, i.e., sensual and effectual,
object domains and their analogous symbolic domains.

There is another very important aspect: In this mode of reflection, not only
can other persons, their activities and means used be examined - but the na
tural world may also be represented and analyzed as an ordered and 'lawful'
process. It appears that the ability of humans to invent natural science might
be a generalization of our ability to observe and understand other humans, a
very important point when we try to establish anew, more ecological orienta
tion to our natural surroundings. In a fundamental sense, all pure and much
of applied science is dependent upon the de-centered mode of reflection, even
though scientific activity cannot be reduced to this, since it is also a personal
and interactive praxis and, furthermore, demands choosing among possibilities
(see next subsection), not being reducible to the impartial, 'value-free' study of
models.

The participant observer: Re-centering, or producing the voice of a
community

There is a danger in radical de-centered reflection: The world is 'revealed' as a
big network of functional relations that determine the subjects 'from outside'
by 'functional laws'. To counter this picture, it is helpful to remember that
the symbolic models merely present possibilities and not 'the' reality to us.
Therefore, another, still higher mode of reflection is necessary to re-establish
the freedom and power of human reality production: We may choose (in the
fullest sense of the word) from the possibilities to find the ones that should be
turned into reality, if feasible. In this process of internal argumentation, real and
symbolic worlds will be coupled again - after the dissociation brought about
by de-centering. A perspective, a domain of anticipated reality, may now be
constituted that, for its orienting power, is wholly dependent upon the reflecting
subject. Of course, the operative means to turn it into an effectual reality have to
be available or must be constructed, and it is in them that the proper dynamics
of the objects will have to be recognized.

This mode of reflection is once again centered, in its highest form not - like
the strategic action of a single economic actor - in an individual subject, but
in the community of which the subject is a member. This also means that the
split between observing and observed subject that formed the starting-point of
the de-centered mode will now be developed into a dialogical relation. In order
to enable the collective subject to choose among possibilities, the participants
must take turns in producing its communal voice that makes the evaluations
of possibilities and the options for choice public between the participants. The
concept of a voice is to be understood in the sense of Mikhail M. Bakhtin74 . He

74 [Bakhtin, 1981]

8.4 Activity Theory as a Foundation for Design 415

was a Russian linguist and literary scholar, most famous for his theory of the
modern novel which he analyzed with respect to the multitude of voices that the
author brought into a dramatic dialogue.

Eventually, this emergent voice will pronounce the final decision of the com
munity - usually it is not correctly remembered which person produced the
decisive utterance; most often it is ascribed to some acknowledged leader. It is
only in such a multi-voiced dialogue that human subjects may reach the 'highest'
level of conscious self-regulation; shared awareness cannot be produced other
wise. Although the paradigm of re-centering is an actual dialogue among people
gathering in the same space with the goal of mutual understanding75 , it is impor
tant not to restrict the scope of this mode of reflection to immediate encounters:
Re-centering is, of course, also possible through semiotic means other than speech
- as evidence, we might consider the book open before us - although it seems
to me that, for consensual decisions, the shared presence of participants and the
concomitant emotional quality of experience that ensures lasting commitment is
necessary.

8.4.9 Conclusion

"Everything that is being said is said by an observer" 76. The present observer
has done his best to participate constructively in the multi-voiced dialogue about
epistemological foundations of design between philosophers, social and natural
scientists and informaticians. Of course, others will be able to spot some 'blind
nesses' inherent in activity theory as in any other perspective. I hope to have
shown, though, that we have at our disposal some very general strategies for the
progressive elimination of anyone blind spot in epistemological vision, as soon
as we become sufficiently aware of the blindness itself, of its potentially harmful
consequences, and of the resulting need for public re-centered reflection.

Acknowledgements
I wish to thank Michael Cole, Charles Tolman, Liam Bannon, Donald Norman, Jonathan
Grudin, Christiane Floyd, Barbara Griiter, Susanne BI/Jdker, and Glen Pate for their
very helpful comments in developing the final form of this chapter from the intricate
reasoning of earlier versions.

75 [Habermas, 1984]
76 Maturana

8.5 Reflections on the Essence of Information
Klaus Fuchs-Kittowski

8.5.1 Point of departure

I wish to proceed from the thesis that automation and life, as well as automation
and social organization, have to be recognized as a genuine unity of common
features and differences.

Information and communication technologies, especially in the area of artifi
cial intelligence still pose deep unsolved problems. Many AI researchers think of
expert knowledge as consisting of static structures that can be divided into rules
and facts and captured by a representation formalism. They assume that knowl
edge acquisition is a process translating mental content into symbols, which can
be formally operated upon in order to produce specific forms of intelligent be
haviour. This paradigm was successful in reproducing some forms of intelligent
human behaviour and has therefore been very influential. Today, there is a grow
ing insight that the classical paradigm is too narrow. There is little reason to
believe that it will prove possible to build such expert systems in fields where
real experts are at work, such as medical staff in critical situations, managers in
economic planning, and so on.

AH the philosophical and social problems associated with the new information
and communication technologies can be directly or indirectly related to one
central scientific category. This category is information.

It has emerged in biology as hereditary information and behavioural control;
in psychology, it is associated with the phenomena of cognition, thinking and
memory, as well as with the question of communication and sense in human
behaviour; in economics, it gives rise to a key technology; and in informatics it
serves as a basis for modelling mental processes.

In philosophy, information has succeeded to the throne of the mind. To some
artificial intelligence researchers, philosophy as a whole appears to be "mysti
cism" , and "consciousness" is held to be "largely a nineteenth-century European
invention" 1. The difference between natural and artificial intelligence is allegedly
no longer scientifically definable. Hence, what is needed is a deeper understand
ing of the common features and differences between automata and human beings.
Taking account of the richness of human information generation and use can help
to widen the classical AI information-processing paradigm.

Reflections on the essence of information are also necessary in order to under
stand the basic structure and the theoretical and methodological assumptions

1 cr. [Feigenbaum and McCorduck, 1984, p. 33].

8.5 Reflections on the Essence of Information 417

of informatics in general, and of software development and information systems
design in particular.

A complex user-oriented information systems design requires practical con
cepts of information and systems, which must be supplied by the theoretical
foundations of informatics. Systems design and software development serve to
formalize information and organization in order to replace human action by com
puter functions. Formalizing information means discarding the contents and the
effects of information in human terms, and reducing it to syntactic patterns.
Formalizing an organization means replacing the creative nature of a social (ac
tional) system by a signal-controlled system that can be compared with the
computer. A human-centred, actional design strategy implies that the applica
tion of the computer metaphor to humans and social organizations is inadequate.
Thus, a new perspective is called for, transcending the scope of mechanistic ex
pectations about the behaviour of systems and their environment2.

Up to now, the guiding principle of informatics, and often of cognitive sci
ence, has been a concept of human beings, in which the wide diversity of human
experience and activity is reduced to information processing and symbol manip
ulation. This approach assumes that human problem-solving behaviour is based
entirely on rigid or heuristic rules and can therefore be classified and predicted.
However, it only considers syntactic aspects, ignoring the other aspects and pro
cess stages of information inherent in human communication.

The present chapter rests on a view of information derived from an investi
gation, which was aimed primarily at understanding biological systems3 . This
conceptual work was carried out by myself together with my former colleague
Bodo Wenzla:ff'4. We have come to distinguish five qualitatively different levels
of organization which support one another. Each level is connected with three
aspects - form, content and effect - pertaining to three qualitatively different
process stages - mapping, interpreting and evaluating - in the generation and
use of information. A synopsis of our view is given in Table 8.5-1, which is used
as a basis for our further discussion.

The levels distinguished here become intelligible only if we take into account
the relation between information and image. In most cases, information is iden
tified with an image of something, as is illustrated in the common phrase "re
ception of information" from the environment. We are convinced that patterns
of stimuli indeed constitute the basis for the generation and use of information,
but that they control the response behaviour of a system only in principle, be
cause in practice the selection of response reactions is much smaller than the set
of possible stimulus patterns. We wish to show that on no level of organization
does the living organism merely receive information as it exists in the outside
world. There is, in this sense, no immediate instructive interaction between the
living organism and its environment.

2 Cf. [Fuchs-Kittowski, 1991].
3 Cf. [Fuchs-Kittowski and Wenzlaff, 1976].
4 See also [Wenzlaff, 1983].

418 Klaus Fuchs-Kittowski

Table 8.5-1. Generation, use and preservation of information in human
communication

Aspect Form Process/Content Effect

process mapping interpreting evaluating
stage

Characterization resulting in structure meaning behaviour
of information

linguistic syntax sematics pragmatics
concept
mode of spatial temporal spatial and
existance temporal

Consciousness Spatial arran- Totality of Communication
of Self and gement of signs personally of meaning in
of Values in meta-forms selected forms personal inter-

(Personal form of language action, creation
of language) of values

Consciousness Spatial arran- Totality of Communication
of society gement of signs socially estab- of meaning in

in language lished forms of social inter-
(Social form of language action
of language)

Levels of Consciousness Spatial arran- Totality of Meaningful
organization of Environment gement of objects in reaction to im-

objects in the situations as pulse patterns
environment indivisible and their cause in

qualities the environment
Nervous Spatial arran- Totality of Interaction of
System gement of impulse patterns the neurons

nerve cells and as an indivisible based on im-
impulse patterns quality pulse patterns
in the brain controlling

behaviour
Macro- Spatial arran- Totality of Interaction of
molecules gements of molecules, their molecules and

molecules and parts and their their parts on
their parts connections the basis of
(e.g. DNA) signals

The principles we wish to argue for are:

• The principle of irreducibility of information.
On none of the levels of organization of living systems can the phenomenon
of information be reduced solely to the aspect of form .

• The principle of no-substance-understanding.
Information is not a non-physical substance, a 'thing' whose identity is in
dependent of any physical body to which it may be temporarily 'attached'.
Information must be understood as a specific effect and as a relationship.

8.5 Reflections on the Essence of Information 419

• The principle of no immediate instructive interaction.
It is insufficient to view the generation and use of information only in terms
of a reception of available information from the outside world in order to
obtain a direct representation.

• The principle of information generation and use.
Information is generated and used in a process that involves stages of map
ping, forming, selecting and interpreting the abstract structure, and evaluat
ing the explicit and implicit semantic content by functionalization (building
and maintaining the organismic reactions).

• The principle of universal interconnection.
The aspects form, content and effect of information correspond to qualita
tively different interrelated stages in a process of information generation and
use, thus constituting a specific form of universal, holistic interconnection.

In our view, informatics has to investigate and to classify informational relation
ships in their specific quality in an endeavour to achieve a scientific foundation
for the function and structure of information as a basic relationship between
physical reality and organization. Deeper reflections on the essence of informa
tion will lead to a way of thinking that rejects the Cartesian mind-body dualism
as well as a mechanistic mapping theory of na·ive realism.

8.5.2 Bridging the gap between the formal model
and informal reality

Like physics at the beginning, and molecular biology in the middle of this cen
tury, informatics is revolutionizing science in the last third of the twentieth
century. This revolution is characterized by the fact that it has become possible
to analyze highly complex social information processes and systems in terms
of their underlying elementary informational processes and structures (formal
operations and data structures), to subsequently re-synthesize these elements
step by step, and to master them by the rapid development and comprehensive
utilization of modern information and communication technologies.

Since the computer can only store and transform formalized images of re
duced complexity (or models5), and since computer programs are formal or
syntactic, humans can only be replaced in such mental activities as can be for
malized. But what are the limits of formalization? Human minds form mental
content - semantics. Thus, the computer does not replace human information
forming processes, but challenges them and accelerates their social reality and
effectiveness by providing reduced models as their basis.

In this context there is a danger of technological reductionism. A formalized
surrogate for reality, presented in terms of data, is taken for reality itself and
considered as the entire progress possible in obtaining views of the world. In
formatics as a science, however, must also develop a synthetic view, because it

5 See [Steinmiiller, 1979].

420 Klaus Fuchs-Kittowski

is faced with the necessity of bridging the gap, the field of tension, existing be
tween the formal model and informal reality, between information technologies
as functional systems and the social organizations (actional systems) in which
they are used. Using information technologies in social organizations means op
erating formal structures in an informal world6 . Thus, the main theoretical,
methodological and technological problem of this new science is the design of
the relationships between automata as information-transforming systems and
creative human beings in their developing social environment.

Proceeding from the various aspects of information, informatics - by means
of abstraction and modelling - is concerned with different levels of information
generation in social organizations, with basic methods for producing, process
ing, storing and retrieving formalized social information items, and with general
methods for using them in social organizations in order to master the informa
tional processes and systems of society more effectively. There is invariably a
human process of generating and using information with the stages: mapping,
interpreting and evaluating formal models, corresponding to the aspects syntax,
semantics and pragmatics of information. As J. Searle has stated: "Syntax by it
self is neither constitutive of nor sufficient for semantics. Conclusion 1. Programs
are neither constitutive of nor sufficient for minds." 7

8.5.3 Information as a specific effect

Phenomena like order, information, organization and communicative interaction
have not been studied by the classical natural sciences. Information as a problem
in its relation to physics and organization was first posed by Norbert Wiener in
his famous book "Cybernetics", where he wrote: "Information is information,
neither matter nor energy. No materialism which does not take this into account
can survive the present day."g Here, the idea becomes apparent that information
is an effect transcending what had previously been known in physics.

From Wiener's words, some authors inferred that information is a magnitude
independent of substance and energy. On the other hand, we know information to
be a measurable magnitude whose transformation can be described by a physical
formula. This gave rise to a probabilistic concept of information, establishing a
connection between information and physical entropy9.

The similarity expressed in this formula is, however, insufficient for clarifying
the relationship between information and the natural forces studied by physics.

Furthermore, viewing information as related to physics in no way replaces an
investigation into the connection between information and organization, which is
closely linked with the frequently discussed problem of the relationship between
physics and biologylO.

6 Cf. [Zemanek, 1989].
7 See [Searle, 1990].
8 See [Wiener, 1963, p. 192]'
9 This is discussed above all by [Shannon and Weaver, 1949], see also [Szilard, 1929]'

[Brillouin, 1962] and [Wiener, 1963].
10 Cf. [v. Weizsacker and v. Weizsacker, 1972, Peil, 1977, Fuchs-Kittowski, 1976].

8.5 Reflections on the Essence of Information 421

It is generally recognized today that, despite the success of classical informa
tion theory, its application in biology is facing certain limits because it is only
concerned with sources and channels of information. Not even technical-logical
networks can be given adequate consideration with this concept of information,
much less so neural networks. The classical information theory of Shannon can be
fruitfully applied to account for some aspects of molecular structures11 , but as it
is insufficient for treating the dynamic interactions of complex systems, attempts
are being repeatedly made to develop further-going measures of information12.

The relationship of cybernetics to physics, as well as to biology, is currently
a much discussed topic. The extreme positions taken are either that cybernetics
can be reduced to physics, or that cybernetics and physics have hardly any point
of contact.

Information is embedded in the interaction of the natural physical forces, and
it allows a new dimension for determining the way they act. In examining how
information is physically possible, the discussion of the essence of information
is closely related to physics. In looking at what information brings about, it is
related to biology and to all branches of science concerned with the investigation
of organization. According to our view, the essence of information can only
be grasped if we regard the structure and function of information as a basic
relationship between the physical effect of natural forces and organization. We
need to recognize that information is itself a physical structure and, at the same
time, a force dominating physical structure13 .

Taking such a view, we can avoid one-sided positions that reduce information
as an effect to the realm of physics or that hypostatize information as a com
pletely independent magnitude. Thus, we consider information to be a specific
effect, which we can describe as follows: On the basis of recognition, reception
and processing of environmental states as signals, it is not the physical structures
in themselves that cause a direct or indirect response, but rather their meanings
which become immediately effective. Hence, we shall only speak of information
where it is possible to attribute meaning to a structure, so as to bring about the
teleonomical behaviour of a system.

8.5.4 Information as a relation rather than a substance

In studying the essence of information in living systems it became apparent that
here information is not simply transmitted in one-sided, directed processes. In
stead, the exchange takes place in a meaningful context allowing an evaluation
and a creation anew. This evaluation as the central process stage of informa
tion has an effect. "The semantic of the semantic is the pragmatic", as E. von
Weizsacker has shown14.

11 Cf. [Koref, 1987].
12 Cf. [Volz, 1982, Volz, 1983].
13 Cf. [Fuchs-Kittowski and Wenzlaff, 1976].
14 See [v. Weizsacker, 1972].

422 Klaus Fuchs-Kittowski

In order to understand information, cybernetics has produced models such
as the computer metaphor, by which it is possible to grasp some characteristics
of information in a first step. In biology, however, we need to pay attention to a
basic difference between technical-cybernetic systems and living organisms. The
technical self-organizing systems (or machines) as originally considered15 cannot
become self-organizing by themselves. Their self-organization is not caused by
a qualitative change of internal states, but solely by the environment, by the
inputs actuating the system. Thus, such a machine is not self-organizing on the
basis of its inherent contradictions, but must be connected to another machine16.

Development, on the other hand, is based on the inherent contradictions in
matter, which give it the capability of self-motion and self-organization. Hence
the models, the metaphors, the concepts tailored to technical-cybernetic systems
must be extended and deepened in order to take account of the natural progres
sive differentiation and development and the generation of information. Thus,
when Manfred Eigen discussed the general question of self-organization of mat
ter, he proceeded beyond the limits of the original concept of self-organization
for technical systems17.

The decisive fact here is that information develops by a process of self
selection. Self-organization is not, or not merely, the result of receiving already
existing information from the environment, but the result of the emergence and
reproduction of biological and pre-biotic macromolecular systems, in the course
of which information is increased by the optimization of the selection value in
mutual competition.

In accordance with the view predominant today, the nervous system is held
to be an instrument used by the living organism to receive information from the
environment as a basis for building up a representation of the outside world,
allowing the organism to optimize its behaviour. H. R. Maturana and F. J.
Varela18 have shown, however, that it is the nervous system that uses the pattern
of stimuli, the incoming signals, to generate behaviour. This means that the
structure of the environment only stimulates changes in the structure of the
nervous system but does not determine them. In the interaction between a living
organism and its environment, the 'perturbations' of the environment do not
determine what happens to the living organism; it is the structure of the living
organism which determines the changes provoked by the perturbation.

At the one extreme, we have a mechanistic view: the nervous system works
with representations of the outside world; information is a substance, and the
mind like a vessel receiving and storing information. If we adopt this view, we
forfeit the possibility of understanding the nervous system as an operationally
closed system with ever new possible structures emerging from one moment to
the next.

15 For example in [Ashby, 1960, v. Foerster and Zopf, 1962]. Von Foerster later enriched
his concept of self-organization substantially ([v. Foerster, 1985, pp. 4-5]; see also
Chap.3.1).

16 Cf. [Fuchs-Kittowski and Rosenthal, 1972].
17 Cf. [Eigen, 1971].
18 Cf. [Maturana and Varela, 1987].

8.5 Reflections on the Essence of Information 423

Maturana and Varela show that it would be a great mistake to understand the
nervous system as an input-output system because of its operational closedness.
Their view, on the other hand, implies the danger of solipsism. We might be led
to the other extreme, eliminating the existence of an environment and holding
that the nervous system functions in a vacuum. Maturana tries to solve this
dilemma by introducing an observer with a different perspective. He argues that
the nervous system should not be seen from either of these two extreme positions,
since it works neither in a representationistic nor in a solipsistic manner. One
important conclusion is that the computer metaphor for the brain is not only
misleading, it is simply wrong19 •

8.5.5 Information and the human mind

Philosophy has long been concerned with the question: What is mind? Ever
since Plato declared that mind and body differ fundamentally, philosophers have
discussed the nature of mind and the mind-body problem.

It has become fashionable to relate the intellectual and cultural problems of
the present day with Cartesian thinking, which relies on a separation of mind
and matter, of res cogitans and res extensa. There is hope now that this gap can
finally be bridged. According to Descartes' dualistic theory, mind is a substance,
not of a physical nature, but something of which thoughts are made. In the
history of philosophy, great efforts have been made to overcome this substance
view of mind.

Various monist alternatives to the dualistic concept were developed. An ex
treme contrary position is adopted by mechanistic materialism, which ultimately
denies the existence of mind, regarding mental processes as nothing other than
physical processes. Another extreme is postulated by subjective idealism, ac
cording to which the physical world does not exist at all, everything being held
to be perception.

More recently, philosophy has been joined by psychology, neurobiology, evo
lution theory and artificial intelligence - to name some of the branches of science
striving towards an understanding of the nature of the human mind.

Also, the system of scientific categories developed for describing computers,
such as the distinction between hardware and software, has given rise to new
views of thought and consciousness, and has compelled various scientific disci
plines to think about the human mind more poignantly than before.

Modern research focusses on elucidating the mechanisms of thought and the
connection between the mind and the brain. As the brain, in the course of its evo
lution, became more and more complex, composed of an intricately interlinked
network of large numbers of nerve cells,it acquired the capacity to perform in
creasingly sophisticated functions, culminating ultimately in human intelligence
and in mental states such as feelings and beliefs.

The dualistic view suggests that mind is a distinct "non-physical substance"
forever beyond the scope of sciences like physics, neurobiology and computer

19 See [Maturana and Varela, 1987, p. 185].

424 Klaus Fuchs-Kittowski

science. This idea underlies the separation of hardware and software in function
alism, the basic paradigm in traditional AI research, but is opposed by cognitive
neurobiology as a basis for understanding the cognitive activities specifically
displayed by living organisms2o .

By contrast, the mechanistic-materialist view holds that mind 'is' the brain.
But even if we were able to give a scientific explanation of the evolutionary and
embryonic origins of the brain in general terms, we would still face the problem
of how to refer to mental states in terms of brain states - electrical activity
patterns in the networks of cerebral nerve cells.

The possibility of such a reductionist explanation of the human mind is re
jected by many philosophers, psychologists and neurobiologists because of the
intentional character of mental phenomena and the introspective nature of their
perception. Nevertheless, it gains new momentum in connection with the chang
ing AI paradigm - from functionalism to connectivism. We hold that reduction
as a method is necessary, but that it is too narrow to capture the whole. Mental
phenomena arise in the brain and must therefore, in principle, be explicable in
terms of neurobiological theories. But our view implies that a total reduction -
reductionism as a philosophical position - is not possible in practice.

The reason for this is the extreme complexity of the specific organization
of mental phenomena. This limits the extent to which theories developed to
explain them can be successfully reduced by theories developed to explain less
complex phenomena. This applies, in particular, to the process of generating,
using and preserving information. Higher complexity allows for interactions in a
greater variety of ways, so that new qualities arise as compared with less complex
phenomena.
There are now several competing theories for describing the connection between
the mind and the brain:

• Mind and matter are two (or several) levels of description of a single whole,
like the levels of hardware and software (Functionalism21).

• Learning is a process of behaviour transformation through continuous change
in the capacity of the nervous system for synthesizing it, rather than a process
of accumulating representations of the environment (Autopoiesis22).

• Mind is not separate from matter, but is a self-organizing quality of matter,
co- ordinating its spatial-temporal structure (Theory of Self-Organization23).

• Mind is not a part of the human being, but the human being as a whole
embodies mind (Principle of Complementarity24). It implies, in our view,
the consequence that abstract descriptions of mental processes, as obtained
by applying computer-oriented categories, must be enhanced as soon as they
are inserted into the general context of studying the human mind.

20 See [Churchland, 1986].
21 See [Fodor, 1981].
22 See [Maturana, 1980].
23 See [Jantsch, 1980].
24 See [Delbriick, 1986].

8.5 Reflections on the Essence of Information 425

In the remainder of this section, we will look at some of these theories in more
detail and relate them to our concept of information with its different levels and
process stages and to our understanding of the complementarity of part and
whole.

From the point of view of functionalism, the essential constituent of mind is
not the 'hardware' of which the brain is composed, but the 'software' consisting
of the mental processes. As in studying computer applications, we need to dis
tinguish these two different levels of causal description, without being obliged
to consider the manner in which the one affects the other. The old philosoph
ical question as to how the mind influences the body simply amounts to an
interpenetration of two levels of terms in which the brain level can normally
be disregarded, just as we do not usually care how a program brings about the
changes required in the circuits of a computer for solving an equation.

It is clear, then, for functionalism that machines can also think and feel, at
least in principle. But we need to be very cautious in dealing with the computer
metaphor. For one thing, as we see in Table 8.5-1, the levels taken from computer
science do not appropriately define the levels of organization in the brain. It is
evident here that there are many levels of organization between the uppermost
and the intercellular level of molecular dynamics, each level being associated
with syntactic, semantic and pragmatic aspects of information.

By contrast, a computer only manipulates the symbols of some formal sys
tem according to rules which must be explicit, at least in the program of the
virtual machine. Efforts in artificial intelligence research are directed towards
finding better heuristics and better algorithms for implementing them on the
machine. Since computer programs are formal, they can only take into account
the syntactic aspects of information.

The symbols manipulated by the computer may, however, have interpreta
tions that relate them to the outside world. This is the domain of semantics and
pragmatics. In general, semantic properties are not formal. The idea that an
automatic, formal system with an interpretation such that the semantic aspect
will take care of itself - a semantic engine - is possible, that, given the right
kind of formal interpretation, a machine could handle meanings, is the driving
force behind AI research and cognitive science25 . But compared to natural lan
guage and natural intelligence, mathematics and logic, the basis for formalizable
semantics, constitute only a limited and special area.

Thus, cybernetics and computer science introduce new aspects into the mind
body problem, which has been the subject of heated argument over the centuries,
and provide new suggestions for addressing it. But they do not really over
come either mechanistic or dualistic positions because of the substance view of
information26 and the separation of psychology from neurobiology27 implied by
the two levels of description.

25 Cf. [Raugeland, 1981].
26 Cf. [Fuchs-Kittowski, 1983].
27 Cf. [Churchland, 1986].

426 Klaus Fuchs-Kittowski

A recent development in cognitive science is the emphasis on mental states
and their relations with psychology and neurobiology28. But we feel that this is
not sufficient. The 'vessel theory' of mind itself, based as it is on the substance
concept of information underlying the information-processing paradigm, needs
to be overcome. This would require a change in the research paradigm of artificial
intelligence, probably going well beyond connectivism29.

We now turn to alternatives to dualism, of which mechanistic materialism -
that views everything, including mind, merely as matter in one form or another -
is not the main or only possible one. For example, it is well known that semiotics
has long called for the semantic or pragmatic aspects of information to be taken
into account as we1l3o. But since these aspects cannot be represented in terms
of bits - and the computer is merely a bit-processing machine - they are often
simply disregarded.

The theory of self-organization, on the other hand, views mind not as some
thing separate from matter, but as a self-organizing quality of the dynamic
processes which take place in a system and its relationships with the environ
ment. Whereas functionalism essentially identifies mind with information and
reduces the discussion of both to syntactic aspects and storable form, the theory
of self-organization or self-structuring, as advocated by E. Jantsch31 among oth
ers, understands mind as a dynamic principle organizing information in living
systems. Information should neither be identified nor separated from mind.

Returning to our view of information as shown in Table 8.5-1, we need to
consider in particular the relationship between information and mind, storage
and memory32, program and thinking, taking into account the specific features
of living and social organization, of the processes generating information and
creating values in contrast with technical, purely physical systems.

Let us therefore take another look at the aspects of information and their
related process stages: the structure or syntax connected with mapping, the
meaning or semantics associated with interpretation, and the effect or pragmatics
resulting from evaluation. These aspects in their interrelation on different levels
of organization of living systems describe the spatial and temporal mode of
existence of information as specific stages in a process of generating and using
information.

Philosophy has argued a great deal about whether mind should be explained
in terms of matter, or matter in terms ofmindj but, regrettably, there have been
few ideas developed about the mode of existence of mind. The mode of existence
of matter, as already recognized by Descartes, is space. The term res extensa
(the extended thing) is a pointed expression of it. Everything existing in space
is matter. But are there any phenomena at all which do not exist in space?

28 See [Berleur and Brunnstein, 1990].
29 See [Lischka and Diederich, 1987, pp. 21-31] and [Dreyfus, 1979].
30 See [Morris, 1938, Klaus, 1973].
31 Cf. [Jantsch, 1980].
32 Cf. [Elsasser, 1982].

8.5 Reflections on the Essence of Information 427

When endeavours were made to define information as necessarily existing in
space, astounding successes were initially achieved (as previously with the con
sistent mechanistic-materialist explanation of the world). Yet every explanation
of this kind is inadequate if it tries to dispense with the subjective, the mind,
the consciousness.

Instead, we need concrete ways for understanding the mode of existence and
performance of mental phenomena or - to put it more modestly - of information
in all its aspects and process stages. But not only are we reluctant to ascribe
thought and feelings to 'mere' matter, we also find it very hard to ascribe shape
and location to minds or ideas. This is because mind does not possess any spatial
existence. Only the syntax of an information item can be stored, which again is
worthless without its semantics. Therefore, time has to be considered the mode
of existence of mind.

According to Hegel33 , "mind appears" necessarily in time, not in the elapse
of time as a succession of time points, but in the duration of time, the period
available for comparing things with one another. This requires a memory34. The
main consequence of this approach is that meaning does not exist in space:
meaning is not storable, not reducible to its form; it needs a dynamic memory.
On the other hand, the meaning of information cannot exist independently of
its form35.

It is fairly clear that today a computer is an automatic, formal system, a
physical device capable of communicating and transforming signals and manip
ulating symbols. The distinction of levels and process stages shown in Table
8.5-1 clearly indicates that the areas in which the computer excels today, or can
in future be expected to excel, are all of a special kind. They comprise those
fields in which all aspects of information can be fixed, and thus reduced content
and effects of information can be formalized. These fields include formal games
and routine technical or microworld tasks.

Such a formal system, however, has no consciousness of the environment, of
society, or of values. Considering the consciousness of values leads us on to the
personal content of language, the communication of meaning as a main means
of personal interaction and the creation of new values.

We can also infer that the intelligence manifested in everyday life, especially
in art, invention, discovery and creative social interaction, is not merely of the
same formal kind, only of greater complexity. Here, we need to take into account
all three aspects of information - generating new content and pragmatic purposes
for information items, and new values for using information in a human context.

33 See [Hegel, 1964, p. 558, p. 38, p. 560].
34 Cf. [Bateson, 1980].
35 Postulating the free existence of meaning would be like postulating the free existence

of consciousness, the Weltgeist of Hegel.

428 Klaus Fuchs-Kittowski

8.5.6 The interrelation between form, content and effect
of information

As we have seen, the phenomenon of information is not reducible to its spatial
mode of existence. On all levels of organization of living systems, information is
not merely imported from the outside world, nor is learning a process of accu
mulation of representations; there are distinct stages in the process of generation
and use of information. In this section, we look at the interrelation between these
stages as it applies to the different levels.

Levell:

At the beginning of evolution, there was only uninformed interaction. Macro
molecules can already do more: they can recognize one another and thus select
and be selected. All present-day forms of life have a unified chemical organiza
tion, which is manifest in the albumin-nucleic acid interaction as the structure of
hereditary information and in the capability of proteins to interpret this struc
ture and to receive and respond to external signals.

Thus, even on this basic level of organization, living organisms receive signals
from the environment and form rudimentary meanings in the sense that they
have a structure allowing them to respond in a suitable manner. Through the
interpretation of the DNA structure by the proteins and their interaction with
other structures in the course of ontogenetic development, there arises an ex
plicit and an implicit semantic content of the genetic information which is only
produced in the context of the structures realized already.

Hence, even on the molecular organizational level of living organisms, it is
necessary to take into account the interrelation between mapping, interpreting
and evaluating information in the process of generating, using and preserving
information.

Level 2:

It is the task of programs laid down in the nervous system to process signals
arriving from the environment. They are attributed a meaning and evaluated so
as to produce meaningful behaviour patterns. Here, information is not simply
received from the outside world, but an enormous condensation of signals takes
place, which amounts to an abstraction bringing out the qualities of things, their
meaning.

Connected with this formation of meaning for states of excitement is the
emergence of the human mind on the basis of the nervous system. The investi
gation of the human cortex and of vision shows that the signals are transformed
into meanings in a process of selection of specific impulse patterns. Hence, what
we see are not primary signals or crude data, but qualities of an object that are
abstracted from sensory stimuli and that mean something to us. On this level
of living organization, signals are processed in a pre-conscious manner, which is
inaccessible to introspection, on the basis of the programs acquired in the course
of evolution.

8.5 Reflections on the Essence of Information 429

Level 3:

The way the brain works has to become relatively independent of the genome
because the relationships between an organism and the environment are only
formed in the course of individual life. The nervous system attains such a com
plexity that, on the organismic behaviour level, the corresponding external stim
ulus - the perceived sensation - constitutes only a minor part of the entire func
tional organization. The important thing is that we can attribute meanings to
the source of stimulation.

What this essentially implies is that, on this level of organization, we register
not only a stimulation on the retina or in the brain, but the actual object of
the outside world, e.g., a tree. This is not the result of an accumulation of
representations of the environment in the brain; humans can use the objects of
the environment to store representations in a continuous process36 . To the extent
that we use the invariant properties of the environment for mapping (encoding)
the meanings of information items, the objects of the environment also supply
meaningful signals, and it is only in this sense that the human brain 'receives
information' from the environment. As a result of a long ongoing process in
which objects of the outside world become meaningful, they are able to provoke
a cognition.

Level 4:

In the further course of development, a more and more powerful, complex central
organ emerged, capable of forming intricate and increasingly free connections,
leading to networks of connected internal relationships based on already avail
able information items. To do this, a special mechanism was needed, language
emerged, allowing us to represent and freely manipulate concrete facts with the
help of a spatial arrangement of signs relying on abstract symbols.

If we accept the principle that information is not simply received from the
outside world, we also have to break with the widely-accepted view that language
is a vehicle for carrying information. Instead, language stimulates understanding
arising in dialogues between people. Information is generated in mutual processes
of mapping, abstracting the quality of things, giving rise to their meaning and
the possibility of their evaluation.

The brain that has emerged during biological evolution (by pressure of selec
tion) does more than merely adapt the organism to the immediately perceived
environment. It enables us to obtain deep insights into the world of mathematics,
into the microcosm and macrocosm of matter, as well as into the organization
of life and the mind. Building on the results of biological evolution, there be
gan social evolution relying on social experience, making it no longer necessary
for individuals to experience everything themselves in order to obtain insights.
"Intelligence has to be motivated by purposes in the organism and other goals
picked up by the organism from an on-going culture.,,37

36 See also Keil-Slawik, Chap. 4.4
37 See [Dreyfus, 1979].

430 Klaus Fuchs-Kittowski

Human beings must lay down identifiable and mutually shared meanings in
order to transmit informational structures. On the level of social consciousness,
insights are needed into the intrinsic laws of natural and social development.

Level 5:

If we are concerned with the self-development of the human personality, then
we proceed from the assumption that human beings live in society and follow
the social values which have been formed in the process of social development.
Values serve to reduce the complexity of human behaviour, of human actions and
interests. At the same time, the development of society is also the development of
its system of values. Values belong to the pragmatic aspect, the process stage of
evaluation of information. They serve to select the meanings of the informational
structures in order to produce certain effects in terms of actions.

By means oflanguage and the values created and accepted (not merely trans
mitted) in social communication, it is possible to say "No" in answer to a request,
to say "I don't want to", or to ask "What for?". Reflection on the purpose of
individual life and on the goals for self-development of personality determines
behaviour in society and the efforts aimed at successful political action.

8.5.7 Information in the relation of mapping,
interpretation, and evolution

Mental content is communicated mainly by means of language. Today, we are
able to build machines endowed to some extent with this ability. For exam
ple,Terry Winograd developed a program capable of decoding the syntax and
semantics of sentences pertaining to a narrowly circumscribed world with a lim
ited history38. Since then, machine language-processing has made progress and
is likely to make further advances in the years to come39 • However, it has be
come repeatedly apparent that in natural language the relevant semantic context
has no limitations whatsoever, because human meaning is based on the entire
conscious and subconscious content of human memory.

Here, we come across a qualitatively new form of universal interconnection.
Just as quantum physics had to learn that the motion of an electron is only one
aspect of the whole, and just as biology had to learn that living organization does
not simply consist of parts which can be analyzed and subsequently recomposed,
we need to take into account the interconnection of mapping, interpretation and
evaluation as specific and interrelated process stages in the generation, use and
preservation of information.

In keeping with the ideas of Max Delbriick40 - the founder of molecular
biology - about the emergence of the human mind, as summarized by G. Stent41,
this means: Mind is not part of a human machine, but rather a quality of the

38 [Winograd, 1972]
39 See, for example, [v. Hahn, 1986].
40 [Delbriick, 1986]
41 [Stent, 1986]

8.5 Reflections on the Essence of Information 431

entire human being. It draws on the whole of natural and social evolution and
is brought forth by the body as a whole.

Thus, a computer endowed with artificial intelligence and the human mind
may be seen as in a dialectical relationship of common ground and differences.
Since the mind is enshrined in matter, certain forms of mental processes can
be generated by machines, insofar as mental operations are mapped in symbolic
form and symbol manipulations can be presented in a formal manner. However,
computers are not participants in a social process; they are not personalities
whose development is shaped by living a life that involves an interleavement of
biological, psychological and social processes.

In studying language, which is open to all experiences of humankind and
is shaped by human history, it becomes apparent that in order to understand
meanings or metameanings arising in the context of human communication,
and in order to form relevant social values, the computer would have to lead a
practical life, interacting with the world in concrete sensory terms and having
access to the whole realm of the conscious and the unconscious.

Furthermore, concepts such as consciousness and emotion do not only belong
to a popular or everyday psychology. The laws governing living matter and the
human mind are deeper, wider and at the same time more concrete than the
laws and principles of automation. However, by reducing the differentiated fea
tures and their interrelations, and by limiting ourselves to a sufficiently crude
structure, it is possible to describe specific biological behaviour patterns, as well
as selected intelligent human activities, in terms of the behaviour features of
technical cybernetic systems and to rely on automata as formal symbol manip
ulators.

The investigation of biological and human behaviour should, then, be con
ducted in close interaction with the study of the structure and function of such
systems. We should, however, bear in mind that the computer metaphor relies
on concepts which abstract from the universal interconnection and that all the
ories derived from the computer metaphor must be enhanced as soon as they
are inserted into the general human context.

If we accept that information items are more complex than their storable
material form, then it becomes evident that systems capable of creating and
evaluating information cannot be identified with machines.

8.5.8 Conclusion

Elucidating cognitive processes in learning and problem-solving and transform
ing them into machine-executable functions is an important contribution to the
rapid development of modern information and communication technologies. Em
bedding these technologies in all spheres of our social and even individual life
challenges us to focus on sufficiently rich concepts of information.

The phenomenon of information is not reducible to any of its process stages,
especially not to its spatial mode of existence as form, structure or syntax.
On all the different levels of organization of living systems, information is not

432 Klaus Fuchs-Kittowski

merely imported from the outside world, and learning is not merely a process of
accumulation of representations. Instead, we can distinguish interrelated stages
in a continuous process of generation and use of information.

The interrelation between these stages - mapping, interpreting and evalu
ating information - constitutes a new form of universal interconnection that
requires us to enhance abstract descriptions of mental processes derived from
the computational approach of AI as soon as they are inserted into the general
holistic context of studying the human mind.

Deeper reflections on the essence of information are required in order to
embed the computer with its limited performance into individual human work
processes and the overall process of social development in an effective and re
sponsible manner42 • Since we must formalize information and organization in
order to replace human actions by computer functions, informatics and system
design must be complemented by theoretical and practical methods allowing
us to take account of the creative nature of organization. Informatics must be
enriched by consideration of the non-formalizable content of information and
human actions which are related not only to realizing functions but also to de
veloping personality and to realizing interests. Thus, understanding information
is essential if we are to meaningfully integrate information and communication
technologies into society as a whole.

Acknowledgements
This work is only thinkable in the context of my close cooperation with Bodo Wenzlaff.
We were united in both scientific and human terms through our discussions on philo
sophical and methodological problems in quantum physics, cybernetics, biology and
computer science. The theoretical focus of our work was the concept of information,
the practical concern a humanistic orientation of system design.

The fact that this chapter could appear here is owed to my friendship with Christia
ne Floyd, built up and maintained for many years across the Berlin Wall. I would like to
thank her for many helpful discussions, and Phil Bacon for his substantial contribution
to the formulation in English.

42 [Weizenbaum, 1977, Floyd, 1985b, Winograd and Flores, 1986]

Epilogue

Epilogue 435

Back in the wheels of daily practice

Christiane
During the conference at SchloE Eringerfeld, there evolved a sense of commu
nity between people presenting their respective approaches and attempting
to arrive at a common understanding of them. We experienced what Gordon
Pask calls "the discrete embrace of conversation" . But we must try to carry
this spirit over into our everyday working life.

Reinhard K.-S.
Computer scientists, though, do not go about their everyday work in castles
like Eringerfeld. It remains to be seen whether the ideas and views presented
here will find acceptance within the scientific community.

Heinz
Back at work, we were faced again with incongruities, deficiencies and - as
the illustration suggests - even with deadlocks. A substantial part of our
energy was absorbed by coping with our daily tasks ...

Christiane
... and by meeting our responsibilities in our respective communities. It was
most demanding to keep up the spirit of the conference in our situation, and
to embark on work on this book.

Reinhard B.
We also encountered unforeseen difficulties while compiling material for the
book. Not everything that was said at the conference could be put into writ
ing. Some of the participants preferred not to write anything at all rather
than be misunderstood. Others focussed more strongly on their own partic
ular specialty when writing their contribution.

Reinhard K.-S.
Even so, what the conference and the work on this book meant for us was a
chance to learn and understand. We set out to address a variety of themes
and had to come to grips with our differing ideas on these.

Christiane
The book's taking shape was a slow process. We had to wrestle with our
material. And repeated discussions were necessary before a stable structure
began to emerge.

436 Epilogue

Reinhard B.
Most of the contributions were considerably enhanced by their treatment at
the conference and intensive subsequent discussions.

Heinz
An aspect of particular significance was the design of the illustrations for
the book. Our illustrator Claudia felt the endeavour to arrive at a common
understanding to be an essential feature of our collaboration.

Reinhard K.-S.
In some ways, it was like the preparations for the conference. From differing,
sometimes conflicting, views, there gradually emerged - through argument
and efforts to arrive at a mutual understanding - joint insights into the
questions raised.

Christiane
Eventually, we managed to collect a whole range of different approaches
illuminating the questions we have raised from various angles.

Reinhard B.
We hope, too, that the intertwinement of these approaches with each other
and with related ideas not touched on in this book has become evident.

Reinhard K.-S.
Behind these approaches are numerous different world-views. What emerges
is a network of interrelated, complementary ideas that can be coordinated
in order to promote human-oriented system design.

Heinz
But, though important, the book is only one result of the conference, which
has also inspired further conferences promoting discussion of these themes
in a similar spirit.

Christiane
I find myself meeting more and more people who share my conviction that
for us as computer scientists there is, in the long run, no getting around the
issues raised here.

Heinz
Conversation is of major importance in the process of understanding and
design - an insight that is winning increasing recognition in software engi
neering circles and in other fields concerned with modelling.

Christiane
But we should also give more attention, in our scientific work and in software
development, to the ways in which we pursued these issues and arrived at
insights into them.

Reinhard B.
We have learned to look not only at the "foreground" of an event - to view
a conference not simply as a series of papers given, of working groups and
panel discussions.

Heinz
At SchloB Eringerfeld, it was just as much the conversations in the "back
ground" - for example, during meals, around the numerous artistic perfor
mances or at the conference bar - that made the conference what it was.

Epilogue 437

Reinhard B.
And this "background" is essential for a conference to succeed. But we must
go a step further: we need to question our view of science in which this
distinction is rooted.

Reinhard K.-S.
Work on the book is now completed, but the approaches presented here are
meant to open further discussions rather than to provide final answers. We
must continue along these lines in our practice of science and design ...

Heinz
... and endeavour to incorporate our ideas in convincing technology devel
opment.

Christiane
But to evolve a human-oriented computer science cannot be our concern
alone. We would like to invite our readers to help in implementing the ideas
put forward here.
We are living in the age of design. We should learn to see design as concerned
with our dwelling together on earth and oriented towards maintaining and
increasing the choices open to us. Therein lies our chance. If we join in
common action in the spirit of relatedness, we may hope.

438 Epilogue

Alice in Cyberland

An evocation of the play staged at the conference "Software Develop
ment and Reality Construction". (Inspired by the immortal characters
of Lewis Carroll.)

by Heinz Ziillighoven

Cyberland. The gallery of ancestors and descendents of a hunting seat. On the
walls antlers with pointers of stacks. In a remote corner some PCs. On a book-shelf
several bulky unwritten manuals and an empty jar labelled "HOMUNCULUS".
Alice, pushed into a Rocking Chair, is popped by two Daemons, Peter Pun and
Linus Tron, on to the stage. They stop in front of a display case on tiny wheels.

On the display a lot of bottles, all labelled "DRINK ME".

Alice
This is a story of computer science, which builds its own reality. Cyberworlds
full of strange events and loops.

Linus
Top. (Alice stands up) My buffers are empty. I need some clean source.

Peter
You have said that before, but look, there is a rolling bar.

Linus
I was afraid you would say this. Anyhow, let's give it a try.

Each takes a bottle and drinks. The Daemons suddenly shrink like shutting up tele
scopes and turn into icons on the wall. Then a White Rabbit with 40 dots per inch

on its waistcoat comes running in.

White Rabbit
Oh dear! Oh dear! I'm lost! I'll never find my milestones.

The Rabbit takes a PERT chart out of its waistcoat-pocket, looks at it and then
hurries on.

Alice
This seems to be the very place where I can learn everything about software
development and reality construction. Once I know this, I'll know which
direction to take in computer science.

Enter Humpty Dumpty, dragging a huge mouse that is dragging a drawer.

Alice
(Aside). It's him - the great master of systems. He is very clever at explaining
everything present-at-hand and using everything ready-to-hand. (Turns to
him). Sir, would you kindly tell me the meaning of software development
and reality construction?

Epilogue 439

Humpty Dumpty double-clicking the mouse on its nose. The mouse takes out of the
drawer a large index-card with circles, boxes and arcs on it.

Humpty Dumpty
First, you have to understand the world as such. The world is an instance
of an abstract data type. There is one sort "world", one function "change"
and one equation "world = change(world)". Become what you are.

Alice
I don't know what you mean by that.

Humpty Dumpty
When I use a formalism, it means just what I choose it to mean - neither
more nor less.

Alice
The question is, what purpose does a formalism serve.

Humpty Dumpty
The question is, which is to be the master - that's all. (Exit).

Enter the White Knight wearing health-sandals and coarse hand-woven clothes.

Alice
(Aside). I guess the problem is very complex. I'll decompose it into subprob
lems. Here comes a friendly-looking man. He has such a nice smile. Maybe
he can solve the first part of my problem. (Turns to him). Sir, would you
kindly explain to me the essence of software development?

White Knight
The great art of software development is to see it as a cooperative human
activity. The technical aspects of reality construction are only marginal tri
fles.

Alice
Indeed?

White Knight
Let me show you. I have invented a plan for developing ecological software.

He walks over to a PC and hacks in a sequence of keystrokes. The PC beeps and
dissolves.

Alice
I'm afraid you've not had much practice in programming.

White Knight
What makes you say that? I've had plenty of practice. The great art of
software development, as I was saying, is - to be first of all friendly and
well-disposed towards each other. Reality construction is a trifle like this,
you know-

He walks over to another PC and hacks in a new sequence of keystrokes. The PC
beeps twice and dissolves.

440 Epilogue

Alice
It's too ridiculous! You ought to start practising with computer games, that
you ought!

White Knight
Does that kind operate smoothly? (Aside). I'll get one. One or two - several.
(Exit).

Enter Tweedledee and Tweedledum each with an arm round the other's neck in a
strange loop.

Alice
(Aside). Perhaps it was not such a good idea to start with Software De
velopment before understanding Reality Construction. (Aloud). Sirs, I'm so
confused about the things I've heard. Would you kindly tell me if software
development is reality construction?

Tweedledee
Nohow, if it was so, it might be; and if it were so, it would be; but as it isn't,
it ain't. That's logic.

Tweedledum
Contrariwise, you are confused, because you've begun wrong! The first thing
to ask is, 'Is reality constructed?'

Alice
Nobody can guess that.

Tweedledee
Do you know what you are?

Alice
I'm real.

Tweedledum
Nohow. You are only a perturbation of our structurally coupled autopoietic
system. If we uncoupled you, where do you suppose you'd be?

Alice
Where I am now, of course.

Tweedledee
Not you! You'd be nowhere. Why, you're only a sort of construction in our
reality.

Alice
I'm not. Besides, if I'm only a construct in your reality, what are you in my
reality, I should like to know?

Tweedledum
(Laughing). Ditto.

Tweedledee
(Laughing). Ditto, ditto. (Exeunt).

Alice
I know, they are talking nonsense. At any rate, I'd better find someone who
can at least tell me what direction to take in computer science.

Epilogue 441

A curious appearance in the air. First the notorious grin, then the whole head of
the Cheshire-Cat appears.

Alice
(Aside). It's the Cheshire-Cat: Now I have somebody really sensible to talk
to. (Aloud). Cheshire-Cat, would you tell me, please, which way I ought to
take from here in computer science?

Cheshire-Cat
That depends a good deal on what you want to achieve.

Alice
I don't much care what -

Cheshire-Cat
Then it doesn't matter which way you go.

Alice
- as long as I arrive at a computer science for human beings.

Cheshire-Cat
Oh, you're sure to do that, if you only run long enough. (Vanishes).

Alice begins to run. As she runs, the scene does not change. Alice, quite breathless,
stops exhausted. Then she notices the Wizard of as who has been sitting quietly in

front of a big terminal all the time.

Alice
Why, I do believe I have been at this very spot the whole time. Everything's
just as it was.

Wizard of OS
Of course it is. What would you have it?

Alice
Well, in my understanding of computer science, you'd generally get to some
where else - if you ran very fast for a long time as I've been doing.

Wizard of OS
What a strange notion of computer science. Now, here, you see, it takes all
the running you can do, to keep in touch with the leading edge and stay
where you are. If you want to get beyond, you must run at least twice as
fast!

Alice
I will never succeed. So I'm doomed to stay in this place forever. (She starts
to cry).

Wizard of OS
I know what your problem is. I'll give you my memorandum book which will
be a good help.

He takes an enormous book out of his pocket, hands it to Alice and, with a benign
smile, turns back to his keyboard. Alices starts to turn over the leaves.

442 Epilogue

Alice
What a strange book this is. It's all written in a language I hardly under
stand. Ah, this seems to be a poem. (She reads it aloud)

The road to wisdom?
Well, it's plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

It is very pretty. Somehow it seems to fill my head with ideas - only I don't
exactly know what they are.

Alices puzzles over the poem for some time. Suddenly, the two Daemons deiconify.

When they clap their hands, the floor changes into a matrix of black and white
fields like a chess-board. A nd again the White Rabbit comes skipping in. Whenever

it hops from one field to another, the dots on its waistcoat invert.

Alice
Now I understand - I'm in a cyberspace world, of course. Maybe, if I change
my perspective and hop to another field, the words in this book will all go a
different way as well. Let's try it. The list on this page reads:

Turbo
Overhead Projectors
Operating Manuals
AI

She hops to

a white field

Hyper
Video Projectors

Philosophical Encyclopaedias
Ai-Ki-Do

There is another one on the next page:

Abstract Data Types
Program Verification
Software Life Cycle
Nassi-Shneiderman

She hops to

a black field

Present-at-hand
Commitments

Self-Organisation
Winograd-Flores

This seems to be the way to do it. I'll try the pretty poem again. (She hops).

It has changed as well:

Epilogue

The road to wisdom?
Well, it's plain
and simple to explore:

Love
and love
and love again
but more
and more
and more.

443

At this, all sorts of things happen. The two Daemons appear again leading all the
rest of the characters in two lines. The two lines advance, set to partners and begin
solemnly dancing round and round Alice. A living cybernetic fossil waves its hands

like dangling pointers to mark the time.

Alice
Oh, what fun it is. It's a huge game that's being played - all over this
cyberworld - if this is a world at all. How I wish I was one of them! I
wouldn't mind being a Hacker, if only I might join - though of course I
should like to be a Cyber Queen, best.

At this, the whole castle and all the characters except Alice rise up into the air, are
transformed into fractals and disappear in a whirl. The memorandum book changes

into the manuscript of this book. Alices sits down on the empty stage.

Alice
Oh, I've had such a curious dream! Or was it real? I don't know. And what
is this? (Looks at the manuscript). It's nothing but a pack of punched cards!

The curtain falls.

445

Bibliography

Ackermann, D. and Ulich, E. (1987). The chances of individualization in human-{;om
puter interaction and its consequences. In [Frese at al., 1987]' pages 131-145.

Agresti, W. W., editor (1986). New paradigms for software development. IEEE Com
puter Society Press, Washington, DC.

Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press, Cam
bridge, MA.

Amann, K. and Knorr-Cetina, K. (1988). The fixation of (visual) evidence. Human
Studies, 11:133-169.

Amann, K. and Knorr-Cetina, K. (1989). Thinking through talk: An ethnographic
study of a molecular biology laboratory. Knowledge and Society: Studies in the
Sociology of Past and Present, 8:3-26.

Amann, K. and Knorr-Cetina, K. (1991). Qualitative Wissenschaftssoziologie. In Flick,
U., v. Kardorff, E., Keupp, H., v. Rosenstiel, L., and Wolff, S., editors, Handbuch
QualitativeI'. Sozialforschung. Psychologie Verlags Union, Miinchen.

Andersen, N. E., Kensing, F., Lundin, J., Mathiassen, L., Munk-Madsen, A., Rasbech,
M., and Sl2Irgaard, P. (1990). Professional Systems Development. Prentice Hall, En
glewood Cliffs, N J.

Apple (1987). Macintosh Programmers Workshop Reference. Apple Computer Inc.,
Cupertino, CA.

Arnheim, R. (1969). Visual Thinking. University of California Press, Berkeley, CA.
Ashby, W. R. (1960). Design for a Brain. The Origin of Adaptive Behaviour. Chapman

and Hall, London. (2 nd edition).
Auramaki, E., Lehtinen, E., and Lyytinen, K. (1988). A speech-act-based modeling

approach. ACM Transactions on Office Information Systems, 6(2):126-152.
Austin, J. L. (1962). How to Do Things with Words. Clarendon Press, Oxford, UK.
Bacon, F. (1968). The Wisdom of the Ancients. Da Capo Press, Amsterdam. (Facsimile

of 1619 translation by Arthur George, printed by John Bill, London.)
Bahr, H.-D. (1983). Uber den Umgang mit Maschinen. Konkursbuchverlag, Tiibingen.
Baier, V. E., March, J. G., and Saetren, H. (1986). Implementation and ambiguity.

Scandinavian Journal of Management Studies, pages 197-212.
Bakhtin, M. M. (1981). The dialogical imagination. In Holquist, M., editor, Four Es

says. University of Texas Press, Austin, TX.
Bannon, L. J. (1986). Computer-mediated communication. In [Norman and Draper,

1986], pages 433-452.
Bannon, L. J. and Bl2ldker, S. (1991). Beyond the interface. Encountering artifacts in

use. In [Carroll, 1991].
Bansler, J. (1989). System development research in Scandinavia: Three theoretical

schools. Scandinavian Journal of Information Systems, 1:3-20.
Barwise, J. (1989). Mathematical proofs of computer system correctness. Technical

Report CSLI-89-136, Center for the Study of Language and Information, Stanford
University, Palo Alto, CA.

Barwise, J. and Perry, J. (1983). Situations and Attitudes. MIT Press, Cambridge, MA.
Basalla, G. (1988). The Evolution of Technology. Cambridge University Press, Cam

bridge, UK.

446 Bibliography

Basili, V. R. and Perricone, B. T. (1984). Software errors and complexity: An empirical
investigation. Communications of the ACM, 27(1):42-52.

Basili, V. R. and Rombach, H. D. (1987). Tailoring the software process to project goals
and environments. In Proc. 9th International Conference on Software Engineering.
Monterey, CA, pages 345-357.

Bateson, G. (1972). Steps to an Ecology of Mind. Ballantine Books, New York.
Bateson, G. (1980). Mind and Nature. A Necessary Unity. Bantam Books, New York.
Batra, D. and Davis, J. (1989). A study of conceptual data modeling in data base de-

sign: Similarities and differences between expert and novice designers. In DeGross,
J., Henderson, J. C., and Konsynski, B., editors, Proc.lOth ICIS, number 7 in ACM
Transactions on Office Information Systems. Baltimore, MA.

Batra, D., Hoffer, J., and Bostrom, R. (1988). A comparison of user performance be
tween the relational and the extended entity relationship model in the discovery
phase of database design. In Proc. 9th ICIS. Minneapolis, MN.

Becker, E. (1973). The Denial of Death. Free Press, New York.
Beeton, B. (1983).1EX and METAFONT: Errata and changes. Distributed with TUG

boat 4.
Bench-Capon, T. J. M. and McEnery, A. M. (1989a). Modelling devices and modelling

speakers. Interacting with Computers, 1(2):220-224.
Bench-Capon, T. J. M. and McEnery, A. M. (1989b). People interact through comput

ers not with them. Interacting with Computers, 1(1):31-38.
Bentley, J. (1986). Programming pearls. Communications of the ACM, 29(5,6):364-

369,471-483.
Berger, P. and Luckmann, T. (1967). The Social Construction of Reality. Penguin

Books, Harmondsworth.
Berleur, J. and Brunnstein, K. (1990). Recent technical developments: Attitudes and

paradigms. In Berleur, J., Clement, A., Sizer, R., and Whitehouse, D., editors,
The Information Society: Evolving Landscapes. IFIP, New York, pages 384-423.
(Distributed by Springer, Berlin).

Bice, K. and Lewis, C. H., editors (1989). Proc. CH1'89: Conference on Human Factors
in Computing Systems. ACM, New York.

Bijker, W. et al., editors (1987). The Social Construction of Technological Systems.
MIT Press, Cambridge, MA.

Bischof, N. (1990). Phase transitions in psychoemotional development. In [Haken and
Stadler, 1990], pages 361-378.

Bjerknes, G. and Bratteteig, T. (1988). Computers - utensils or epaulets? The appli
cation perspective revisited. AI and Society, 2(3):258-266.

Bjerknes, G., Ehn, P., and Kyng, M., editors (1987). Computers and Democracy. A
Scandinavian Challenge. Avebury, Aldershot, UK.

Bjerknes, G. et al., editors (1990). Organizational Competence in System Development.
A Scandinavian Contribution. Studentlitteratur, Lund.

Bjlllrn-Andersen, N. (1988). Are 'human factors' human? The Computer Journal, 31(5):
386-390.

Blair, D. C. (1990). Language and Representation in Information Retrieval. North
Holland, Amsterdam.

Blauberg, I. V., Sadowski, V. N., and Judin, E. G. (1977). Systems Theory. Philosoph
ical and Methodological Problems. Progress, Moscow.

B!ZIdker, S. (1987). Through the Interface. A Human Activity Approach to User Interface
Design. Aarhus University, Aarhus.

Bibliography 447

B¢dker, S., Ehn, P., Kammersgaard, J., Kyng, M., and Sundblad, Y. (1987). A UTO
PIAN experience: On design of powerful computer-based tools for skilled graphic
workers. In [Bjerknes et al., 1987]' pages 251-278.

Boehm, B. W. (1976). Software engineering. IEEE Transactions on Computers, 25(12):
1226-124l.

Boehm, B. W. (1977). Seven basic principles of software engineering. In Infotech, edi
tor, Software Engineering Techniques, Infotech State of the Art Report, volume 2:
Invited papers. Infotech, Maidenhead, UK, pages 77-113.

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall, Englewood
Cliffs, NJ.

Boehm, B. W. (1988). A spiral model for software development and enhancement.
IEEE Computer, 21(5):61-72.

Bohle, F. and Milkau, B. (1988). Vom Handrad zum Bildschirm. Eine Untersuchung
zur sinnlichen Erfahrung im Arbeitsprozep. Campus, Frankfurt a.M.

Bohm, D. (1983). Wholeness and the Implicate Order. ARK Paperbacks, London.
Boland, R. (1979). Control, causality, and information system requirements. Account

ing, Organizations and Society, 4(4):259-272.

Boland, R. R. and Hirschheim, R. A., editors (1987). Critical Issues in Information
Systems Research. Wiley, Chichester, UK.

Bonar, J. and Cunningham, R. (1988). Bridge: Tutoring the programming process. In
Massey, D. and Mutter, S., editors, Intelligent Tutoring Systems: Lessons Learned.
Lawrence Erlbaum, Hillsdale, NJ.

Bonsiepen, L. and Coy, W. (1990a). Is there really a challenge of expert systems to
industrial labour? In [v.d.Besselaar et al., 1991], pages 53-62.

Bonsiepen, L. and Coy, W. (1990b). Szenen einer Krise - 1st Knowledge Engineering
eine Antwort auf die Dauerkrise des Software Engineering? KI, 90(2):5-1l.

Borzeszkowski, H. H. and Wahsner, R. (1980). Newton and Voltaire. Akademie-Verlag,
Berlin, GDR.

Boss, M. (1975). Grundrip der Medizin und der Psychologie. Huber, Bern.
Bostrom, R. and Heinen, S. (1977). Management information system problems and fail

ures: A socio-technical perspective - Part I: the causes. Management Information
System Quarterly, 1(3):17-32.

Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge University Press,
Cambridge, UK.

Braten, S. (1973). Model monopoly and communication: Systems theoretical notes on
democratization. Acta Sociologica, 16(2):98-107.

Braten, S. (1978). System research and social science. In Klir, G., editor, Applied Gen
eral Systems Research: Recent Developments and Trends. Plenum Press, New York,
pages 655-685.

Braten, S. (1988). Between dialogical mind and monological reason: Postulating the vir
tual other. In Campanella, M., editor, Between Rationality and Cognition - Policy
Making under Conditions of Uncertainty, Complexity and Turbulence. Turin.

Briefs, U., Ciborra, C., and Schneider, L., editors (1983). Systems Design For, With,
and By the User. North-Holland, Amsterdam.

Brillouin, L. (1962). Science and Information Theory. Academic Press, San Diego, CA.
Broder, B. (1979). The Sacred Hoop. Sierra Club Books, San Francisco, CA.
Bromme, R. (1988). Der Lehrer als Experte. Moglichkeiten und Grenzen des Experten

ansatzes in der Lehrerkognitionsforschung. Institut fUr Didaktik der Mathematik,
Bielefeld.

448 Bibliography

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10-19.

Brooks, F. P. (1987). Report of the defense science board task force on military soft
ware. Technical Report AD-A188 561, Office of the Under Secretary of Defense for
Acquisition, Department of Defense, Washington DC 10301.

Brooks, R. A. (1986). Achieving artificial intelligence through building robots. A.1.
Memo 899, MIT, Cambridge, MA.

Brown, G. S. (1969). Laws of Form. George Allen and Unwin, London.
Brown, J. S. and Newman, S. E. (1985). Issues in cognitive and social ergonomics:

From our house to Bauhaus. Human-Computer Interaction, 1:359-391.

Bruner, J. S. (1984). Narrative and paradigmatic modes of thought. In Learning and
Teaching: The Ways of Knowing. 1985 Yearbook of the National Society for the
Study of Education, pages 95-115. (Invited Address for the Annual Meeting of the
American Psychological Association, Toronto, August 1984).

Bubenko, J. J. (1983). Information and data modeling: State of the art and research
directions. In Kangassalo, H., editor, Second Scandinavian Research Seminar, Acta
Universitatis Tamperensis, Ser. B 19. Tampere, SF, pages 9-28.

Buber, M. (1961). Das Problem des Menschen. Lambert Schneider, Heidelberg.
Buber, M. (1984). Das Dialogische Prinzip. Lambert Schneider, Heidelberg.
Buckingham, R. A., Hirschheim, R. A., Land, E. F., and Tully, C. J., editors (1987).

Information Systems Education - Recommendations and Implementations. Cam
bridge University Press, Cambridge, UK.

Budde, R. and Ziillighoven, H. (1990). Software- Werkzeuge in einer Programmierwerk
statt. Berichte der Gesellschaft fiir Mathematik und Datenverarbeitung, Nr. 182.
Oldenbourg, Miinchen.

Biihler, K. (1934). Sprachtheorie. Die Darstellungsfunktion der Sprache. Fischer, Stutt
gart.

Byrne, R. and Whiten, A., editors (1988). Machiavellian Intelligence. Clarendon Press,
Oxford, UK.

Capurro, R. (1981). Heidegger iiber Sprache und Information. Philosophisches lahrbuch,
2:333-343.

Capurro, R. (1985). Epistemology and information science. Report TRITA-LIB-6023,
Royal Institute of Technology Library, Stockholm.

Capurro, R. (1986). Hermeneutik der Fachinformation. Alber, Freiburg.
Capurro, R. (1987). Die Informatik und das hermeneutische Forschungsprogramm. In

formatik Spektrum, 10(6):329-333.

Capurro, R. (1988). M. Heidegger (Works). In Volpi, F. and Nida-Riimelin, J., editors,
Lexikon der philosophischen Werke. Kroner, Stuttgart.

Capurro, R. (1991). M. Heidegger. In Nida-Riimelin, J., editor, Philosophie der Gegen
wart in Einzeldarstellungen. Kroner, Stuttgart.

Card, S. K. and Henderson, A. J. (1987). A multiple, virtual-workspace interface to
support user task switching. In [Carroll and Tanner, 1987], pages 53-59.

Card, S. K., Moran, T. P., and Newell, A. (1983). The psychology of Human-Computer
Interaction. Lawrence Erlbaum, Hillsdale, N J.

Carnap, R. (1978). The overcoming of metaphysics through logical analysis oflanguage.
In [Murray, 1978]. (Translated by A. Pap, original in Erkenntnis 2, 1931.)

Carroll, J. M., editor (1987). Interfacing Thought: Cognitive Aspects of the Human
Computer Interaction. Bradford Books/MIT Press, Cambridge, MA.

Bibliography 449

Carroll, J. M. (1989). Evaluation, description and invention: Paradigms for human
computer interaction. In Yovits, M. C., editor, Advances in Computers, volume 29.
Academic Press, San Diego, CA, pages 47-77.

Carroll, J. M. (1990). The Nurnberg Funnel: Designing Minimalist Instruction for Prac
tical Computer Skill. MIT Press, Cambridge, MA.

Carroll, J. M., editor (1991). Designing Interaction. Psychology at the Human-Computer
Interface. Cambridge University Press, Cambridge, UK.

Carroll, J. M. and Aaronson, A. P. (1988). Learning by doing with simulated intelligent
help. Communications of the ACM, 31(9):1064-1079.

Carroll, J. M. and Campbell, R. L. (1989). Artifacts as psychological theories: The case
of human-computer interaction. Behaviour and Information Technology, 8:247-256.

Carroll, J. M. and Carrithers, C. (1984). Blocking learner errors in a training wheels
system. Human Factors, 26(4):377-389.

Carroll, J. M., Herder, R. E., and Sawtelle, D. S. (1987). Task mapper. In Bullinger,
H. J. and Shackel, B., editors, Human-Computer Interaction - Interact '87. North
Holland, Amsterdam, pages 973-978.

Carroll, J. M. and Kellogg, W. A. (1989). Artifact as theory-nexus: Hermeneutics meets
theory-based design. In [Bice and Lewis, 1989], pages 7-14.

Carroll, J. M., Mack, R. 1., and Kellogg, W. A. (1988). Interface metaphors and user
interface design. In Helander, M., editor, Handbook of Human-Computer Interac
tion. North-Holland, Amsterdam, pages 67-85.

Carroll, J. M., Mack, R. 1., Lewis, C. H., Grischkowsky, N. 1., and Robertson, S. R.
(1985). Exploring a word processor. Human-Computer Interaction, 1:283-307.

Carroll, J. M. and Mazur, S. A. (1986). Lisa learning. IEEE Computer, 91(11):35-49.
Carroll, J. M. and Rosson, M. B. (1985). Usability specification as a tool in iterative

development. In Hartson, H. R., editor, Advances in Human-Computer Interaction,
volume 1. Ablex, Norwood, N J, pages 1-28.

Carroll, J. M. and Rosson, M. B. (1987). The paradox of the active user. In [Carroll,
1987], pages 80-111.

Carroll, J. M. and Rosson, M. B. (1990). Human computer interaction scenarios as de
sign representation. In Proc. HICSS-29: Hawaii International Conference on System
Sciences. IEEE Computer Society Press, Los Alamitos, CA, pages 555-561.

Carroll, J. M., Singer, J. A., Bellamy, R. K. E., and Alpert, S. R. (1990). A view
matcher for learning smalltalk. In Chew, J. C. and Whiteside, J., editors, Proc.
CHI'90: Conference on Human Factors in Computing Systems. ACM, New York,
pages 431-437.

Carroll, J. M. and Tanner, P. P., editors (1987). Proc. CHI + GI '87: Human Factors
in Computing Systems and Graphics Interface. ACM, New York.

Cashmore, E. E. and Mullan, B. (1983). Approaching Social Theory. Heinemann Edu
cational Books, London.

Celko, J., Davis, J. S., and Mitchell, J. (1983). A demonstration of three requirements
language systems. SIGPLAN Notices, 18(1):9-14.

Checkland, P. (1981). Systems Thinking, Systems Practice. Wiley, Chichester, UK.
Chen, P. P. S. (1976). The entity-relationship model- Towards a unified view of data.

ACM Transactions on Database Systems, 1(1):9-36.
Chen, P. P. S. (1977). The entity-relationship model: A basis for the enterprise view of

data. In Proc. National Computer Conference, volume 46, Dallas, TX. pages 77-84.
Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.
Churchland, P. S. (1986). Neurophilosophy. Towards a Unified Science of the Mind

Brain. MIT Press, Cambridge, MA.

450 Bibliography

Churchman, W. (1971). The Design of Inquiring Systems. Basic Books, New York.
Ciborra, C. U. (1987). Research agenda for a transaction cost approach to information

systems. In [Boland and Hirschheim, 1987], pages 253-274.
Clancey, W. J. (1987). Review of Winograd, Flores (1986). Artificial Intelligence, 31:232-

250.
Codd, E. F. (1971). Normalized data base structure: A brief tutorial. In Codd, E. F.

and Dean, A. L., editors, A CM SIG-FIDET Workshop on Data Description, Access,
and Control. San Diego, CA.

Codd, E. F. (1979). Extending the data base relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4):379-434.

Cole, M. (1988). Cross-cultural research in the socio-historical tradition. In [Hildebrand
Nilshon and Riickriem, 1988].

Cole, M. (1990). Cultural psychology. A once and future discipline? In Berman, J.,
editor, Nebraska Symposium on Motivation: Cross-Cultural Perspectives. University
of Nebraska Press, Lincoln, NE.

Coulthard, M. (1987). An Introduction to Discourse Analysis. Longman, London.
Coy, W. (1985). Industrieroboter. Rotbuch, Berlin.
Coy, W. (1988). Aufbau und Arbeitsweise von Rechenanlagen. Vieweg, Wiesbaden.
Coy, W. (1989). Apres Gutenberg - iiber Texte und Hypertexte. In Rammert, W.

and Bechman, G., editors, Jahrbuch Technik & Gesellschajt, volume 5. Campus,
Frankfurt a.M., pages 53-65.

Coy, W. and Bonsiepen, L. (1989). Expert systems: Before the flood? In [Ritter, 1989].
CSCW'88 (1988). Proc. CSCW'88: 2nd Conference on Computer-Supported Coopera

tive Work. ACM, New York.
Dagwell, R. and Weber, R. (1983). System designers' user models: A comparative study

and methodological critique. Communications of the ACM, 26(11):987-995.
Dahlbom, B. (1987). Artificial intelligence and systems development. From design to

cultivation. In [Jarvinen, 1987].
Dahlbom, B. (1990). Using technology to understand organizations. In [Bjerknes et al.,

1990]' pages 127-147.
Damerow, P. (1988). Individual development and cultural evolution of arithmetical

thinking. In Strauss, S., editor, Ontogeny, Phylogeny, and Historical Development.
Ablex, Norwood, NJ, pages 125-152.

Davis, G. (1982).] Strategies for information requirements determination. IBM Systems
Journal,21(1):4-30.

Davis, R. (1980). Meta-rules: Reasoning about control. Artificial Intelligence, 15:179-
222.

Davydov, V. V. (1982). The psychological structure and content of the learning activity
in school children. In Glaser, R. and Lopscher, J., editors, Cognitive and Motiva
tional Aspects of Instruction. Deutscher Verlag der Wissenschaften, Berlin, GDR,
pages 37-44.

Delbriick, M. (1986). Wahrheit und Wirklichkeit. Uber die Evolution des Erkennens.
Rasch and Rohring, Hamburg.

DeMilio, R. A., Lipton, R. J., and Perlis, A. J. (1979). Social processes and proofs of
theorems and programs. Communications of the ACM, 22(5):271-280.

Dennett, D. C. (1987). The Intentional Stance. MIT Press, Cambridge, MA.
Denning, P. et al. (1989). Computing as a discipline. Communications of the ACM,

32{1):9-23.
Derrida, J. (1988). Geschlecht. Difference sexuelle, difference ontologique. In Cahiers

de I'Herne IX. L'Herne, Paris, pages 571-595.

Bibliography 451

di Primo, F. and Wittur, K. H. (1987). BABYLON: A meta interpretation model for
handling mixed knowledge representations. In Proc. 7th Int. Workshop on Expert
Systems and their Applications. pages 821-833.

Dijkstra, E. W. (1968). The structure of the "THE"-multiprogramming system. Com
mtmications of the ACM, 11(5):341-346.

Dijkstra, E. W. (1969). Complexity controlled by hierarchical ordering of function and
variability. In [Naur and Randell, 1969], pages 181-185.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453-457.

Dijkstra, E. W. (1982). Selected Writings on Computing. A Personal Perspective. Sprin
ger, Berlin.

Dillard, A. (1974). Pilgrim at Tinker Creek. Harper and Row, New York.
DIN66234 (1988). DIN 66 234, Part 8: VDU work stations. Principles of ergonomic

dialogue design. German Industrial Norm, Beuth, Berlin.
Docherty, P., Fuchs-Kittowski, K., Kolm, P., and Mathiassen, L., editors (1987). Sys

tem Design for Human Development and Productivity: Participation and Beyond.
North-Holland, Amsterdam.

Dreyfus, H. L. (1979). What Computers Can't Do. The Limits of Artificial Reason.
Harper and Row, New York. (Revised edition).

Dreyfus, H. L. (1989). Being-in-the- World: A Commentary on Heidegger's Being and
Time, Division 1. Manuscript. To be published by MIT Press, Cambridge, MA.

Dreyfus, H. L. and Dreyfus, S. E. (1986). Mind over Machine: The Power of Human
Intuition and Expertise in the Era of the Computer. Free Press, New York.

Dunckel, H., Volpert, W., Kreutner, U., Pleiss, C., and Zolch, M. (1991). Leitfaden zur
kontrastiven A ufgabenanalyse und -gestaltung bei Buro- und Verwaltungstiitigkeiten.
Das KABA- Verfahren. (In preparation).

Durham, T. (1988). Organisational dinosaurs take on a human face. Computing, (Nov.
3):40-4l.

Dzida, W. (1982). Dialogfiihige Werkzeuge und arbeitsgerechte Dialogformen. In Schau
er, H. and Tauber, M. J., editors, Informatik und Psychologie. Oldenbourg, Miinchen,
pages 54-86.

Dzida, W. (1987). On tools and interfaces. In [Frese and Sabini, 1985], pages 339-355.
Dzida, W. and Valder, W. (1985). Application domain modelling by knowledge engi

neering techniques. In Shackel, B., editor, Human-Computer Interaction - INTER
ACT '84. Elsevier, Amsterdam, pages 481-488.

Eco, U. (1977). Das ofJene Kunstwerk. Suhrkamp, Frankfurt a.M.
Ehn, P. (1988). Work-oriented Design of Computer Artifacts. Almquist and Wiksell

International, Stockholm.
Ehn, P. and Kyng, M. (1985). A tool perspective on design of interactive computer

support for skilled workers. DAIMI PB-190, Computer Science Department, Aarhus
University, DK.

Ehn, P. and Kyng, M. (1987). The collective resource approach to systems design. In
[Bjerknes et al., 1987]' pages 17-56.

Ehrig, H., Floyd, C., Nivat, M., and Thatcher, J., editors (1985). Formal Methods and
Software Development, volume 2 of TAPSOFT Proceedings: Colloquium on Software
Engineering (CSE). Lecture Notes in Computer Science, volume 186. Springer,
Berlin.

Eigen, M. (1971). Selforganization of matter and evolution of biological macromolecules.
Naturwissenschaften, 58(10):465-522.

452 Bibliography

Eigen, M. (1987). Stufen zum Leben. Die fruhe Evolution im Visier der Molekularbiolo
gie. Piper, Miinchen.

Eigen, M., Gardiner, W., Schuster, P., and Winkler-Oswatitsch, R. (1981). The origin
of genetic information. Scientific American, 248(4):37-56.

Eigen, M. and Schuster, P. (1979). The Hypercycle - A Principle of Natural Selforga
nization. Springer, Berlin.

Elias, N. (1956). Problems of involvement and detachement. British Journal of Sociol
ogy, 7(3).

Elias, N. (1987). The retreat of sociologists into the present. Theory, Culture and So
ciety, 4:223-247.

Elias, N. and Martins, H., editors (1982). Scientific Establishments and Hierarchies.
Reidel, Dordrecht, NL.

EIMasri, R. and Wiederhold, G. (1985). The entity category relationship model. Data
and Knowledge Engineering, 1(1).

Elsasser, W. M. (1982). Biological Theory on a Holistic Basis. Baltimore.
Elzer, P. (1989). Management von Softwareprojekten. Informatik Spektrum, 12(4):181-

197.
Emery, F. E. and Thorsrud, E. (1969). Form and Content in Industrial Democracy.

Tavistock, London.
Engelbart, D. C. (1988). Toward high-performance knowledge workers. In [Greif, 1988],

pages 67-78. (Reprint).
Engestrom, Y. (1987). Learning by Expanding. Orienta-Konsultit, Helsinki.
Engestrom, Y. (1990). Activity theory and individual and social transformation. In

2nd International Congress for Research on Activity Theory. Lahti, SF. (Opening
address).

Fairchild, K., Meredith, G., and Wexelblat, A. (1989).] The tourist artificial reality. In
[Bice and Lewis, 1989], pages 299-304.

Featherstone, M. (1987). Norbert Elias and figurational sociology. Some prefatory re
marks. Theory, Culture and Society, 4:197-211.

Feigenbaum, E. A. (1977). The art of artificial intelligence: I. Themas and case studies
of knowledge engineering. In IJCAI-77: 5th International Joint Conference on Ar
tificial Intelligence. Carnegie-Mellon University, Pittsburgh, PA, pages 1024-1029.

Feigenbaum, E. A. and McCorduck, P. (1984). The Fifth Generation. Artificial Intelli
gence and Japan's Computer Challenge to the World. New American Library, New
York.

Feyerabend, P. (1975). Against Method: Outline of an Anarchistic Theory of Knowledge.
New Left Books, London.

Feyerabend, P. (1981). Erkenntnis fur freie Menschen. Suhrkamp, Frankfurt a.M.
Feyerabend, P. (1984). Wissenschaft als Kunst. Suhrkamp, Frankfurt a.M.
Fischer, G. (1983). Entwurfsrichtlinien fUr die Software-Ergonomie aus der Sicht der

Mensch-Maschine Kommunikation (MMK). In Balzert, H., editor, Software-Ergo
nomie. Teubner, Stuttgart, pages 30-48.

Fischer, G. and Lemke, A. C. (1988). Construction kits and design environments:
Steps toward human problem-domain communication. Human-Computer Interac
tion, 3(3):179-222.

Florence Report (1985). Gjensiding laering. Department of Informatics, University of
Oslo, Report No.1 from the Florence Project edition. (Mutual Learning, in Nor
wegian).

Bibliography 453

Floyd, C. (1981). A process-oriented approach to software development. In Systems
Architecture. Proc. 6th European ACM Regional Conference, London. Westbury
House, Guildford, UK, pages 285-294.

Floyd, C. (1984). A systematic look at prototyping. In Budde, R., Kuhlenkamp, K.,
Mathiassen, L., and Ziillighoven, H., editors, Approaches to Prototyping. Springer,
Berlin, pages 1-18.

Floyd, C. (1985). On the relevance oHormal methods to software developent. In [Ehrig
et al., 1985], pages 1-11.

Floyd, C. (1985). The responsible use of computers: Where do we draw the line? Work
ing paper for the tapsoft conference, Technical University of Berlin. (Also published
in CPSR Newsletter, Spring 1986 and as CPSR Working Paper, Computer Profes
sionals for Social Responsibility (CPSR), Palo Alto, CAl.

Floyd, C. (1986). A comparative evaluation of system development. In Olle, T. W.,
Sol, H. G., and Verrijn-Stuart, A. A., editors, Information Systems Design Method
ologies: Improving the Practice. North-Holland, Amsterdam, pages 19-54.

Floyd, C. (1987). Outline of a paradigm change in software engineering. In [Bjerknes
et al., 1987], pages 191-210.

Floyd, C. and Keil, R. (1983). Adapting software development for systems design with
the user. In [Briefs et al., 1983], pages 163-172.

Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., and Wolf, G. (1989a). Out of
Scandinavia: Alternative approaches to software design and system development.
Human-Computer Interaction, 4(4):253-349.

Floyd, C., Mehl, W.-M., Reisin, F.-M., and Wolf, G. (1990). PEtS: Partizipative Ent
wicklung transparenzschaffender Systeme fiir EDV-gestiitzte Arbeitsplatze. Final
Project Report, Technical University of Berlin.

Floyd, C., Reisin, F.-M., and Schmidt, G. (1989b). STEPS to software development
with users. In Ghezzi, C. and McDermid, J. A., editors, ESEC '89: 2nd European
Software Engineering Conference, Lecture Notes in Computer Science, volume 387.
Springer, Berlin, pages 48-64.

Fluck, H.-R. (1976). Fachsprachen. Francke, Miinchen.
Fodor, J. A. (1968). Psychological Explanation. Random House, New York.
Fodor, J. A. (1981). Representations: Philosophical Essays on the Foundations of Cog

nitive Science. MIT Press, Cambridge, MA.
Freeman, P. (1979). A perspective on requirements analysis and specification. In [In

fotech, 1979], pages 41-55.
Frege, G. (1892). Sinn und Bedeutung. Zeitschrift fur Philosophie und philosophische

Kritik, Neue Folge, 100:25-50.
Frege, G. (1950). The Foundation of Arithmetic. Philosophical Library, New York.

(Translated by J. 1. Austin).
Frese, M. (1987). A theory of control and complexity: Implications for software design

and integration of computer systems into the work place. In [Frese et al., 1987],
pages 313-337.

Frese, M. and Sabini, J., editors (1985). Goal Directed Behavior. The Concept of Action
in Psychology. Lawrence Erlbaum, Hillsdale, N J.

Frese, M., Ulich, E., and Dzida, W., editors (1987). Psychological Issues of Human
Computer Interaction in the Work Place. North-Holland, Amsterdam.

Friedman, Y. (1976). Utopies Realisables. Union General d'Editions, Paris.
Fuchs-Kittowski, K. (1976). Probleme des Determinismus und der Kybernetik in der

molekularen Biologie. Tatsachen und Hypothesen uber das Verhiiltnis des techni
schen Automaten zum lebenden Organismus. Gustav Fischer, Jena, GDR.

454 Bibliography

Fuchs-Kittowski, K. (1983). Information Organisation und Evolution. In Proc. IV. Wis
senschaftliches Kolloquium zur Organisation der Informationsverarbeitung. Berlin,
GDR, pages 67-127.

Fuchs-Kittowski, K. (1991). System design, design of work and of organization. the
paradox of safety orgware concepts, the necessity of a new culture in information
systems and software development. In [v.d. Besselaar et al., 1991], pages 83-98.

Fuchs-Kittowski, K. and Rosenthal, H. A. (1972). Selbstorganisation und Evolution.
Wissenschaft und Fortschritt, 22(7):308-313.

Fuchs-Kittowski, K. and Wenzlaff, B. (1976). Zur Differenzierung der Information
auf verschiedenen Ebenen der Organisation lebender Systeme. In Geissler, E. and
Scheler, W., editors, Information, philosophische und ethische Probleme der Bio
Wissenschaften. Akademie Verlag, Berlin, GDR, pages 317-361.

Furnas, G. W., Landauer, T. K., Gomez, 1. M., and Dumais, S. T. (1983). Statistical
semantics: Analysis of the potential performance of key-word information systems.
The Bell Systems Technical Journal, 62(6):1753-1806.

Gadamer, H.-G. (1976). Philosophical Hermeneutics. University of California Press,
Berkeley, CA. (Translated and edited by D. Linge).

Gadamer, H.-G. (1980). Vernunft im Zeitalter der Wissenschaft. Suhrkamp, Frankfurt
a.M.

Gagne, R. M. and Briggs, L. J. (1979). Principles of Instructional Design. Holt, Rine
hart and Winston, New York. (2 nd edition).

Gagne, R. M., Briggs, 1. J., and Wagner, W. (1988). Principles of Instructional Design.
Holt, Rinehart and Winston, New York. (3 rd edition).

Garson, B. (1988). The Electronic Sweatshop. How Computers Are Transforming the
Office of the Future Into the Factory of the Past. Simon and Schuster, New York.

Gates, B. (1987). Beyond macro processing. Byte, 7(12):11-18.

Gerson, E. M. and Star, 1. S. (1986). Analyzing due process in organizations. ACM
Transactions on Office Information Systems, 4(3):257-270.

Gibbon, D. (1985). Context and variation in two-way radio discourse. Discourse Pro
cesses Special Issue: Special Language Registers, 8(4):395-420.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton-Mifflin,
Boston.

Goguen, J. A. (1968-1969). The logic of inexact concepts. Synthese, 19:325-373.

Goguen, J. A. (1986). Reusing and interconnecting software components. Computer,
19(2):16-28. (Reprinted in P. Freeman, editor (1982) Tutorial: Software Reusability,
IEEE Computer Society Press, pages 251-263).

Goguen, J. A. (1990). Hyperprogramming: A formal approach to software environ
ments. In Proc. Symposium on Formal Approaches to Software Environment Tech
nology. Joint System Development Corporation, Tokyo.

Goguen, J. A. and Meseguer, J. (1987). Unifying functional, object-oriented and rela
tional programming, with logical semantics. In Shriver, B. and Wegner, P., editors,
Research Directions in Object-Oriented Programming. MIT Press, Cambridge, MA,
pages 417-477. (Preliminary version in SIGPLAN Notices, 21(10):153-162, October
1986).

Goguen, J. A. and Varela, F. (1979). Systems and distinctions; duality and comple
mentarity. International Journal of General Systems, 5:31-43.

Goguen, J. A., Weiner, J. 1., and Linde, C. (1983). Reasoning and natural explanation.
International Journal of Man-Machine Studies, 19:521-559.

Bibliography 455

Goldkuhl, G., Iivari, J., Kali, C.-O., Koskela, E., and Tyllila, P. (1981). Paradigm fac
tors of systemeering research. In Kerola, P. and Koskela, E., editors, Report 4th

Scandinavian Research Seminar on Systemeering. Institute of Information Process
ing Science, University of Oulu, pages 244-246.

Goldkuhl, G. and Lyytinen, K. (1984). Information system specification as rule recon
struction. In Bemelmans, T. M., editor, Beyond Productivity: Information systems
Development for Organizational Effectiveness. North-Holland, Amsterdam, pages
30-55.

Goodman, N. (1976). Languages of Art. Hacket, Indianapolis, IN.
Goodman, N. (1978). Ways of Worldmaking. Hacket, Indianapolis, IN.
Goodman, N. (1979). Fact, Fiction, and Forecast. Hacket, Indianapolis, IN.
Goodman, N. (1984). Of Mind and Other Matters. Harvard University Press, Cam-

bridge, MA.
Goody, J. (1977). The Domestication of the Savage Mind. Cambridge University Press,

Cambridge, UK.
Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Composing letters with a simulated

listening typewriter. Communications of the ACM, 26(4):295-308.
Gould, 1. and Finzer, W. (1984). Programming by rehearsal. Report SCL 84-1, Xerox

P ARC, Palo Alto, CA.
Grassi, E. (1980). Rhetoric as Philosophy. Pennsylvania State University Press, PA.
Greif, L, editor (1988). Computer-Supported Cooperative Work CSCW. A Book of

Readings. Morgan Kaufman, San Mateo, CA.
Greif, S. (1989). Exploratorisches Lernen durch Fehler und qualifikationsorientiertes

Software-Design. In [MaaB and Oberquelle, 1989], pages 204-212.
Greif, S. and Gediga, G. (1987). A critique and empirical investigation of the 'one

best-way-models' in human-computer interaction. In [Frese et al., 1987], pages
357-377.

Greiner, B. and Leitner, K. (1989). Assessment of job stress: The rhia instrument. In
Landau, K. and Rohmert, W., editors, Recent Developments in Job Analysis. Taylor
and Francis, London, pages 53-66.

Grice, P. (1975). Logic and conversation. In Cole, P. and Morgan, J., editors, Speech
Acts, volume 3 of Syntax and Semantics. Academic Press, San Diego, pages 41-58.

Gumperz, J. J. (1982). Discourse Strategies. Cambridge University Press, Cambridge,
UK.

Gunzenhauser, R. (1982). Mensch-Maschine-Kommunikation als Zielsetzung der In
formatik. In Endres, A. and Reetz, J., editors, Textverarbeitung und Burosysteme.
Oldenbourg, Miinchen, pages 75-91.

Habermas, J. (1971). Knowledge and Human Interests. Beacon Press, Boston, MA.
Habermas, J. (1973). Truth theories. In Fahrenbach, H. and Rock, W., editors, Wirk

lichkeit und Reftexion. Weinsberg, pages 211-265.
Habermas, J. (1984). The Theory of Communicative Action, volume 1. Heinemann,

London.
Hacker, W. (1987a). Computerization versus computer-aided mental work. In [Frese

et al., 1987], pages 115-130.
Hacker, W. (1987b). Software-Ergonomie: Gestalten geistiger Arbeit?! In Schonpfiug,

W. and Wittstock, M., editors, Sojtware-Ergonomie '87. Teubner, Stuttgart, pages
31-54.

Haken, H. and Stadler, M., editors (1990). Synergetics of Cognition. Springer, Berlin.
Halasz, F. G., Moran, T. P., and Trigg, R. H. (1987). Notecards in a nutshell. In [Carroll

and Tanner, 1987], pages 45-52.

456 Bibliography

Hamming, R. W. (1969). On man's view on computer science. Journal of the ACM,
16(1).

Harre, R., Clarke, D., and DeCarlo, N. (1985). Motives and Mechanism. An Introduc
tion to the Psychology of Action. Methuen, London.

Hart, H. 1. A. (1961). The Concept of Law. Oxford University Press, Oxford, UK.
Hartson, H. R. and Hix, D. (1989). Human-computer interface development: Concepts

and systems for its management. ACM Computing Surveys, 21(1):5-92.
Haugeland, J. (1981). Mind Design, Philosophy, Artificial Intelligence. MIT Press,

Cambridge, MA.
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Bradford Books/MIT

Press, Cambridge, MA.
Hayek, F. A. (1967). The theory of complex phenomena. In Hayek, F. A., editor, Studies

in Philosophy, Politics, and Economics. University of Chicago Press, Chicago, pages
22-42.

Hayward, J. (1984). Perceiving ordinary magic. In New Science Library. Shambhala,
Boulder, page 268.

Hayward, J. (1987). Shifting Worlds, Changing Minds. Shambhala, Boulder.
Hedberg, B. and Mumford, E. (1975). The design of computer systems: Man's vision of

man as an integral part of the system design process. In Mumford, E. and Sackman,
H., editors, Human Choice and Computers. North-Holland, Amsterdam, pages 31-
59.

Hegel, G. W. F. (1964). Phanomenologie des Geistes. Leipzig, GDR. (Edited by J.
Hoffmeister, original from 1807).

Heidegger, M. (1959). An Introduction to Metaphysics. Yale University Press. (Trans
lated by R. Manheim, original Einfuhrung in die Metaphysik from 1935).

Heidegger, M. (1962). Being and Time. Blackwell, Oxford. (Translated by J. Mac
quarrie and E. Robinson, original from 1927, German: Sein und Zeit. Niemeyer,
Tiibingen 1976).

Heidegger, M. (1966). Discourse on Thinking. Harper and Row, New York. (Translated
by J. Anderson and H. Freud, German: Gelassenheit, Neske, Pfullingen 1959).

Heidegger, M. (1971). Poetry, Language, Thought. Harper and Row, New York. (Trans
lated by A. Hofstadter).

Heidegger, M. (1972). Die Zeit des Weltbildes. In Holzwege. Klostermann, Frankfurt
a.M.

Heidegger, M. (1975). Die Frage nach dem Ding. Niemeyer, Tiibingen.
Heidegger, M. (1977a). On the essence of truth. In Basic Writings. Harper and Row,

New York, pages 119-141. (Translated by D. Krell, original from 1929).
Heidegger, M. (1977b). The origin of the work of art. In Basic Writings. Harper and

Row, New York, pages 149-187. (Translated by D. Krell, original from 1929).
Heidegger, M. (1977c). The Question Concerning Technology and other Essays. Harper

and Row, New York. (Original from 1953, German: Die Frage nach der Technik.
In: Vortrage und Aufsatze. Neske, Pfullingen 1967).

Heidegger, M. (1977d). What is metaphysics? In Basic Writings. Harper and Row,
New York, pages 91-116. (Translated by D. Krell, original from 1929).

Heidegger, M. (1978). Metaphysische Anfangsgrunde der Logik. Klostermann, Frankfurt
a.M. (Gesamtausgabe, Band 26).

Heidegger, M. (1987). Being and Time. Blackwell, Oxford. (Translated by J. Mac
quarrie and E. Robinson, original from 1927, German: Sein und Zeit. Niemeyer,
Tiibingen 1976).

Bibliography 457

Hellman, R. (1989). Emancipation of and by computer-supported cooperative work.
Scandinavian Journal of Information Systems, 1:143-161.

Hewitt, C. (1986). Offices are open systems. ACM Transactions on Office Information
Systems, 4(3):271-287.

Hildebrand-Nilshon, M. (1989). Intersubjektivitiit und die Semantisierung des Mo
tivsystems. Psychologische Uberlegungen zur Sprachevolution. In Gessinger, J. and
v. Rahden, W., editors, Theorien vom Ursprung der Sprache, volume 2. De Gruyter,
Berlin, pages 249-319.

Hildebrand-Nilshon, M. and Riickriem, G., editors (1988). Activity Theory. A Look into
a Multidisciplinary Research Area, volume 1 of Proc. 1·t International Congress of
Activity Theory. Hochschule der Kiinste, Berlin.

Hilgard, E. R. and Bower, G. H. (1966). Theories of Learning. Meredith, New York.
Hill, W. C. (1989). The mind at AI: Horseless carriage to clock. AI Magazine, 10(2):28-

41.
Hindle, B. (1981). Emulation and Invention. New York University Press, New York.
Hintikka, M. B. and Hintikka, J. (1986). Investigating Wittgenstein. Blackwell, Oxford.
Hirschheim, R. A. (1986). The effect of a priori views on the social implications of

computing: the case of office automation. Computing Surveys, 18(2):165-195.
Hirschheim, R. A. and Klein, H. K. (1989). Four paradigms of information systems

development. Communications of the ACM, 32(10):1199-1216.
Hoare, C. A. R. (1981). The emperor's old clothes. Communications of the ACM,

24(2):75-83. (1980 Turing Award Lecture).
Holmquist, B. and Andersen, P. B. (1987). Work language and information technology.

Journal of Pragmatics, 11:327-357.
Holt, A. W. (1988). Diplans: A new language for the study and implementation of

coordination. ACM Transactions on Office Information Systems, 6(2):109-125.
Holzkamp, K. (1978). Sinnliche Erkenntnis. Historischer Ursprung und gesellschaftliche

Funktion der Wahrnehmung. Atheniium, Konigstein/Ts.
Holzkamp, K. (1983). Grundlegung der Psychologie. Campus, Frankfurt a.M.
Hopfner, H.-D. and Skell, W. (1983). Zur Systematisierung von Formen der Ubung

kognitiver Prozesse - Klassifikationsgesichtspunkte und Darstellung entscheidender
Variablen. Forschung der sozialistischen Berufsbildung, 17:161-166.

Hopper, P. (1987). Emergent grammar. In Aske, J., Beery, N., Michaelis, L., and Filip,
H., editors, Proc. 13th Annual Meeting of the Berkeley Linguistics Society. Berkeley
Linguistics Society, Berkeley, CA.

Huber, G. P. (1984). The nature and design of post-industrial organizations. Manage
ment Science, 30(8):928-95l.

Hutchins, E. L., Hollan, J. D., and Norman, D. A. (1986). Direct manipulation inter
faces. In [Norman and Draper, 1986], pages 87-124.

IDC (1989). Standard-Software gewinnt immer mehr an Bedeutung. Computerwoche,
16(52):12. (IDC study is cited in this article.)

Ifrah, G. (1987). From One to Zero: A Universal History of Numbers. Penguin Books,
Harmondsworth, UK.

Iivari, J. (1983). Contributions to the theoretical foundations of systemeering research
and the pioco model. Technical report, University of Oulu, SF.

Iivari, J. (1989). Contemporary schools of information systems development: A paradig
matic analysis. Working Paper, University of Oulu, SF.

Iivari, J. and Koskela, E. (1987). The PIOCO model for information systems design.
Management Information System Quarterly, 11(9):401-419.

Illich, I. (1975). Selbstbegrenzung. Eine politische Kritik der Technik. Rowohlt, Reinbek.

458 Bibliography

Ilyenkov, E. V. (1977). Dialectical Logic. Essays on its History and Theory. Progress,
Moscow.

Infotech, editor (1979). Structured Software Development. Infotech State of the Art
Report, volume 2: Invited papers. Infotech, Maidenhead, UK.

Jackson, M. C. (1982a). The nature of soft systems thinking: Comments on the three
replies. Journal of Applied Systems Analysis, 10:109-113.

Jackson, M. C. (1982b). The nature of soft systems thinking: The work of Churchman,
Ackoff and Checkland. Journal of Applied Systems Analysis, 9:17-28.

Jakobson, R. (1962). Linguistics and poetics. In Sebeok, T. A., editor, Style and Lan
guage. MIT Press, Cambridge, MA.

Janik, A. and Toulmin, S. (1973). Wittgenstein's Vienna. Simon and Schuster, New
York.

Jantsch, E. (1980). The Self-Organizing Universe. Pergamon, New York.
Jarvinen, P., editor (1987). Report 10th IRIS: Information systems Research seminar

In Scandinavia. University of Tampere, SF.
Jones, J. C. (1970). Design Methods: Seeds of Human Futures. Wiley, Chichester, UK.
Jones, J. C. (1979). Designing as a creative activity. In [Infotech, 1979], pages 117-133.
Jones, J. C. (1986). Design Methods. Wiley, Chichester, UK.
Kamenka, E., editor (1983). The Portable Karl Marx. Penguin Books, Harmondsworth,

UK.
Kammersgaard, J. (1988). Four different perspectives on human-computer interaction.

International Journal on Man-Machine Studies, 28:343-362.

Katzeff, C. (1986). Logical reasoning, models and database query writing. The effect
of different conceptual models upon reasoning in a database query writing task.
Hufacit Paper No. 10, Dept. of Psychology, University of Stockholm.

Kay, A. (1984). Software. Scientific American, 251(3):41-47.

Keen, P. G. (1981). Information systems and organizational change. Communications
of the ACM, 24(1):24-33.

Keil-Slawik, R. (1987a). An ecological approach to responsible systems development.
In Jacky, J. P. and Schuler, D., editors, Directions and Implications of Advanced
Computing (DIAC-B7), volume 1. Ablex, Norwood, NJ, pages 82-96.

Keil-Slawik, R. (1987b). Supporting participative systems development by task-oriented
requirements analysis. In Fuchs-Kittowski, K. and Gertenbach, D., editors, Sys
tem Design for Human Development and Productivity: Participation and Beyond.
Akademie der Wissenschaften, Berlin, GDR, pages 113-124. (Supplement volume
to [Dochertyet al., 1987]).

Keil-Slawik, R. (1989). Systemgestaltung mit Aufgabennetzen. In [MaaB and Oberquelle,
1989], pages 123-133.

Keil-Slawik, R. (1990). Konstruktives Design. Ein okologischer Ansatz zur Gestaltung
interaktiver Systeme. Habilitation, Forschungsberichte des Fachbereichs Informatik,
Nr. 90-14, Technical University of Berlin.

Kensing, F. (1987). Generation of visions in system development: A supplement to the
toolbox. In [Dochertyet al., 1987], pages 285-301.

Kent, W. (1978). Data and Reality. North-Holland, Amsterdam.
Kerola, P. (1987). Search for national synergy in doctoral education programs of infor

mation technology. In Nissen, H. E. and Sandstrom, G., editors, Report 9th Scandi
navian Research Seminar on Systemeering. Department of Information and Com
puter Sciences, University of Lund, SE. (In Finnish, abstract in English).

Bibliography 459

Kerola, P. (1988a). Integration of perspectives and views in the conception of office
and its systems development. In Proc. IFIP TCB Open Conference. University of
Singapore.

Kerola, P. (1988b). Reflections of a human cognition and learning theory in information
systems use and development. In Proc. IFAC/IFIP Conference on Man-Machine
Systems - A nalysis, Design and Evaluation. Oulu, SF, volume 2, pages 463-466.

Kerola, P. and Taggart, W. (1982). Human information processing styles in the infor
mation systems development process. In Hawgood, J., editor, Evolutionary Infor
mation Systems. North-Holland, Amsterdam, pages 63-86.

Kerola, P., Weckroth, J., Keinanen, J., Komulainen, S., Nuutinen, R., Pankkonen, K.,
Simila., J., and Tahvanainen, A. (1985). Research on the human-centred methodol
ogy ofIS development - Summary Report. Technical report, Institute ofInformation
Processing Science, University of Oulu. (In Finnish, abstract in English).

Kesselring, T. (1988). Jean Piaget. C. H. Beck, Miinchen.
Klaus, G. (1973). Semiotik und Erkenntnistheorie. Berlin, GDR.
Klein, H. K. and Hirschheim, R. A. (1987). A comparative framework of data modelling

paradigms and approaches. The Computer Journal, 30(1):8-73.
Klein, H. K. and Hirschheim, R. A. (1989). Rationality concepts in information sys

tem development methodologies. In Coltersman, W. and Senn, J., editors, Proc.
Symposium on System Analysis and Design: A Research Strategy. Atlanta.

Klein, H. K. and Kumar, K., editors (1988). Information Systems Development for
Human Progress in Organizations. North-Holland, Amsterdam.

Kling, R. (1980). Social analysis of computing. ACM Computing Surveys, 12(1):61-110.
Knuth, D. E. (1968). Fundamental Algorithms. Addison-Wesley, Reading, MA.
Knuth, D. E. (1974). Structured programming with go to statements. Computing Sur-

veys, 6(4):261-301. (Reprinted with revisions in Current Trends in Programming
Methodology, Raymond T. Yeh, ed., 1 Prentice Hall, Englewood Cliffs, NJ, 1977,
pages 140-194; also in Classics in Software Engineering, Edward Nash Yourdon, ed.
Yourdon Press, New York, 1979, pages 259-321).

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2):97-111.
Knuth, D. E. (1986). TFiX: The Program. Addison-Wesley, Reading, MA.
Knuth, D. E. (1989). The Errors of'JEX. Software Practice and Experience, 19(7):607-

685.
Knuth, D. E., Larabee, T., and Roberts, P. M. (1989). Mathematical writing. Mathe

matical Association of America Notes, 14.
Kockelmans, J. (1984). On the Truth of Being. Indiana University, Bloomington, IN.
Kockelmans, J. (1985). Heidegger and Science. Washington University Press, Washing

ton.
Kohler, W. (1935). Gestalt Psychology. Liveright, New York.
Kohn, T. and Schooler, C. (1983). Work and Personality. An Inquiry into the Impact

of Social Stratification. Ablex, Norwood, NJ.
Koref, M. S. (1987). Statistische Untersuchungen an DNS-Sequenzen - ein Verfahren

zum mehrfachen Sequenzvergleich. Dissertation, Humboldt-Universitat, Berlin, GDR.
Kotter, W. and Gohde, H.-E. (1989). Ermittlung von Qualifizierungsvoraussetzungen,

-zielen und -konzepten auf der Grundlage der Verfahren VERA und RHIA. In Dy
bowski, H., Herzer, H., and Sonntag, K., editors, Strategien qualitativer Personal
und Bildungsplanung bei technisch-organisatorischen Innovationen. Kommentator,
Neuwied.

Kowalski, R. (1979). Algorithm = Logic + Control. Communications of the ACM,
22(7):424-436.

460 Bibliography

Kra.mer, S. (1988). Symbolische Maschinen. Die Idee der Formalisierung in geschicht.
lichem Abrift. Wissenschaftliche Buchgesellschaft, Darmstadt.

Krogoll, T., Pohl, W., and Wanner, C. (1988). CNC-Grundlagenausbildung mit dem
Konzept CLA US. Didaktik und Methoden. Campus, Frankfurt a.M.

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. University of Chicago
Press, Chicago. (2nd edition).

Kiippers, B.-O. (1983). Molecular Theory of Evolution: Outline of a Physico-Chemical
Theory of the Origin of Life. Springer, Berlin.

Lakatos, I. (1976). Proofs and Refutations - The Logic of Mathematical Discovery.
Cambridge University Press, Cambridge, UK.

Lakoff, G. and Johnson, M. (1980). Metaphors We Live By. University of Chicago
Press, Chicago.

Langefors, B. (1966). Theoretical Analysis of Information Systems. Studentlitteratur,
Lund.

Langefors, B. (1977). Hermeneutics, infology, and information systems. Technical Re
port TRITA·IBADB No. 1052, University of Stockholm.

Langton, C. G., editor (1989). Artificial Life. Addison-Wesley, Reading, MA.
Lanzara, G. (1983). The design process: Frames, metaphors and games. In [Briefs et al.,

1983], pages 29-40.
Lanzara, G.-F. and Mathiassen, 1. (1984). Mapping situations within a system devel

opment project. An intervention perspective on organizational change. Technical
Report, Computer Science Department, Aarhus University.

Latour, B. (1987). Science in Action. Harvard University Press, Cambridge, MA.
Latour, B. and Strum, S. (1986). Human social origins. Oh please, tell us another story.

Journal of Social and Biological Structures, (9):169-187.
Latour, B. and Woolgar, S. (1986). Laboratory Life. The Construction of Scientific

Facts. Princeton University Press, Princeton, NJ.
Laudan, R., editor (1984). The Nature of Technological Knowledge: Are Models of

Scientific Change Relevant? Reidel, Dordrecht, N1.
Lave, J. (1985). Arithmetic Practice and Cognitive Theory: An Ethnographic Inquiry.

University of California Press, Berkeley, CA.
Lave, J. (1988). Cognition in Practice. Mind, Mathematics and Culture in Everyday

Life. Cambridge University Press, Cambridge, UK.
Lehman, M. (1980). Programs, life cycles, and laws of software evolution. Proceedings

of the IEEE, 86(9):1060-1076.
Lehtinen, E. and Lyytinen, K. (1986). The action based model of information system.

Information Systems, 11(4):299-317.
Leontyev, A. (1978). Activity, Consciousness, and Personality. Prentice-Hall, Engle

wood Cliffs, N J.
Leontyev, A. (1981). Problems of the Development of Mind. Progress, Moscow.
Leroi-Gourhan, A. (1988). Hand und Wort. Die Evolution von Technik, Sprache und

Kunst. Suhrkamp, Frankfurt a.M.
Levi, I. (1967). Gambling With Truth: An Essay on Induction and the Aims of Science.

A.A. Knopf and Routledge and Kegan Paul, New York.
Levinson, S. (1983). Pragmatics. Cambridge University Press, Cambridge, UK.
Lischka, C. and Diederich, J. (1987). Gegenstand und Methode der Kognitionswis

senschaft. Symbol oder Neuron - Die kiinstliche Intelligenz an der Schwelle eines
Paradigmenwechsels. Der GMD.Spiegel, 17(2/3):21-32.

Loscerbo, J. (1981). Being and Technology. A Study in the Philosophy of Martin Hei.
degger. Nijhoff, The Hague.

Bibliography 461

Luhmann, N. (1987). Soziale Systeme. Grundrifl einer allgemeinen Theorie. Suhrkamp,
Frankfurt a.M.

Lyytinen, K. (1986). Information systems development as social action: Framework
and critical implications. Studies in Computer Science, Economics and Statistics 8,
University of Jyvaskylii, SF.

Lyytinen, K. (1987). Two views of information modeling. Information and Manage
ment, 12(1):9-19.

Lyytinen, K. and Lehtinen, E. (1987). Seven sins of systems work. In [Dochertyet al.,
1987], pages 63-79.

MaaB, S. (1984). Mensch-Rechner-Kommunikation. Herkunft und Chancen eines neuen
Paradigmas. Bericht Nr. 104, Fachbereich Informatik, Universitat Hamburg.

Maafi, S. and Oberquelle, H., editors (1989). Software-Ergonomie '89. Teubner, Stutt
gart.

Mack, R. L., Lewis, C. H., and Carroll, J. M. (1983). Learning to use office systems:
Problems and prospects. ACM Transactions on Office Information Systems, 22(1):
254-271.

MacKay, D. (1969). Information, Mechanism and Meaning. MIT Press, Cambridge,
MA.

Macksey, R. and Donato, E., editors (1972). The Structuralist Controversy: The Lan
guage of Criticism and the Sciences of Man. Johns Hopkins Press, Baltimore, MD.

Madsen, C. M. (1989). Approaching group communication by means of an office build
ing metaphor. In Bowers, J. and Wilson, P., editors, Proc. EC-CSCW'89: l·t Eu
ropean Conference on Computer-Supported Cooperative Work. London, pages 449-
460.

Madsen, K. H. (1988). Breakthrough by breakdown: Metaphors and structured do
mains. In [Klein and Kumar, 1988].

Madsen, K. H. and BlIlgh-Andersen, P. (1987). Design and Professional Languages.
Technical report, Information Science Department, Aarhus University, DK,.

Malinowski, B. (1924). Meaning in primitive languages. In Odgen, C. and Richards, I.,
editors, The Meaning of Meaning. Routledge and Kegan Paul, London.

Manes, E. and Arbib, M. (1986). Algebraic Approaches to Program Semantics. Springer,
Berlin.

Markus, M. L. and Bjlllrn-Andersen, N. (1987). Power over users: Its exercise by system
professionals. Communications of the ACM, 30(6):498-504.

Mason, R. E. A. and Carey, T. T. (1983). Prototyping interactive information systems.
Communications of the ACM, 26:347-354.

Mathiassen, L. (1984). Systemudvikling og Systemudviklingsmetode. DAIMI-PB-136,
Department of Computer Science, Aarhus University, DK.

Maturana, H. (1978). Biology of language: The epistemology of reality. In Psychol
ogy and Biology of Thought and Language: Essays in Honor of Eric Lenneberg.
Academic Press, San Diego, CA, pages 27-64.

Maturana, H. (1980). Biology of cognition. In [Maturana and Varela, 1980], pages 5-58.
Maturana, H. and Varela, F. (1980). Autopoiesis and Cognition: The Realization of the

Living. Reidel, Dordrecht, NL.
Maturana, H. and Varela, F. (1987). The Tree of Knowledge. Shambhala, Boulder, CO.
Maturana, H., Varela, F., and Uribe, R. (1974). Autopoiesis, the organization of living

systems: Its characterization and a model. Biosystems, 187(5).
McGregor (1960). The Human Side of Enterprise. McGraw-Hill, New York.
Mead, G. (1934). Mind, Self, and Society. University of Chicago Press, Chicago.

462 Bibliography

Miller, G. A. (1956). The magical number seven plus minus two: Some limits on our
capacity for processing information. Psychological Review, 63:81-97.

Mitcham, C. and Mackey, R. (1983). Technology as a philosophical problem. In Mitcham,
C. and Mackey, R., editors, Philosophy and Technology. Readings in the Philosoph
ical Problems of Technology. Free Press, New York, pages 1-30.

Mitroff, I. I., Mason, R. 0., and Barabba, V. P. (1982). Policy as argument - a logic
for ill-structured decision problems. Management Science, (12):1391.

Monod, J. (1972). Chance and Necessity. Random House, New York.
Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague. Yale

University Press, New Haven, CT. (Edited and with an introduction by R. Thoma
son).

Morris, C. W. (1938). Foundations of a theory of signs. International Encyclopedia of
Unified Science, 1(2).

Morris, C. W. (1946). Signs, Language and Behaviour. Braziller, New York.
Morrison, E. (1974). From Know-How to Nowhere. Blackwell, Oxford.
Mumford, E., Hirschheim, R., Fitzgerald, G., and Wood-Harper, A. T., editors (1985).

Methods in Information Systems. North-Holland, Amsterdam.
Munzert, J. (1989). Flexibilitat des Handelns. Theoretische Uberlegungen und experi

mentelle Untersuchungen zum Konzept des Motorikschemas. bps, Koln.
Murray, M., editor (1978). Heidegger and Modern Philosophy. Yale University Press,

New Haven, CT.
Mylopoulos, J. (1981). A perspective on conceptual modeling. In Brodie, M. L. and

Zilles, S., editors, Proc. Workshop on data Abstraction, Databases and Conceptual
Modelling. Published in SIGPLAN Notices, 16(1), pages 5-12.

Nake, F. (1986). Die Verdoppelung des Werkzeugs. In Rolf, A., editor, Neue Techniken
alternativ. VSA, Hamburg, pages 43-52.

Naur, P. (1974). Concise Survey of Computer Methods. Studentlitteratur, Lund.
Naur, P. (1982). Formalization in program development. BIT, 22:437-453.
Naur, P. (1985a). Intuition in software development. In [Ehrig et al., 1985], pages 60-79.
Naur, P. (1985b). Programming as theory building. Microprocessing and Micropro-

gramming, 15:253-261. EUROMICRO 84.
Naur, P. (1991). Computing: A Human Activity. ACM Press. Addison-Wesley, Reading,

MA. (In press).
Naur, P. and Randell, B., editors (1969). Software Engineering. Scientific Affairs Divi

sion NATO, Brussels.
Neubert, J. and Tomczyk, R. (1986). Gruppenverfahren der Arbeitsanlayse und Ar

beitsgestaltung. Springer, Berlin.
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4:135-183.
Newell, A. and Card, S. K. (1985). The prospects for psychological science in human

computer interaction. Human-Computer Interaction, 1:209-242.
Newell, A. and Simon, H. A. (1972). Human Problem Solving. Prentice-Hall, Englewood

Cliffs, NJ.
Newell, A. and Simon, H. A. (1976). Computer science as empirical inquiry: Symbols

and search. Communications of the ACM, 19(3):113-126.
Nievergelt, J. (1983). Die Gestaltung der Mensch-Maschine-Schnittstelle. In Kupka, I.,

editor, GI - 19. lahrestagung, Informatik-Fachberichte, Band 73. Springer, Berlin,
pages 41-50.

Niiniluoto, I. (1980). Introduction to the Philosophy of Science. Otava, Helsinki. (In
Finnish).

Niiniluoto, I. (1983). Scientific Reasoning and Explanation. Otava, Helsinki. (In Finnish).

Bibliography 463

Niiniluoto, I. (1987). Truthlikeness. Reidel, Dordrecht, NL.
Nishitani, K. (1982). Religion and Nothingness. University of California Press, Berkeley,

CA.
Nissen, H.-E. (1988). Information systems development for responsible human action.

In [Klein and Kumar, 1988], pages 99-113.
Norman, D. A. (1981). The trouble with Unix. Datamation, 27:556-563.
Norman, D. A. (1991). Cognitive artifacts. In [Carroll, 1991], pages 17-38.
Norman, D. A. and Draper, S. W., editors (1986). User Centered Systems Design. New

Perspectives on Human-Computer Interaction. Lawrence Erlbaum, Hillsdale, NJ.
Nurminen, M. I. (1987). Different Perspectives: What are they and how can they be

used? In [Dochertyet al., 1987], pages 163-175.
Nurminen, M. I. (1988). People or Computers: Three Ways of Looking at Information

Systems. Studentlitteratur, Lund.
Nurminen, M. I., Kalmi, R., Karhu, P., and Niemela, J. (1987). Use or development of

information systems: Which is more fundamental? In [Dochertyet al., 1987], pages
187-196.

Nuutinen, R., Koskela, E., livari, J., and Kerola, P. (1987). Design and implementation
experiences of a curriculum for the information systems architect reflected on the
IFIP /BCS curriculum. In [Buckingham et al., 1987].

Nygaard, K. (1986). Program development as social activity. In Kugler, H. G., edi
tor, Information Processing 86 - Proceedings of the IFIP 10th World Computer
Congress. North-Holland, Amsterdam, pages 189-198.

Nygaard, K. and Handlykken, P. (1981). The system development process -Its setting,
some problems and needs for methods. In Hiinke, H., editor, Software Engineering
Environments. North-Holland, Amsterdam, pages 157-174.

Nygaard, K. and SliSrgaard, P. (1987). The perspective concept in informatics. In [Bjerk
nes et al., 1987]' pages 371-394.

Oberquelle, H. (1987). Sprachkonzepte fur benutzergerechte Systeme. Informatik-Fach
berichte, Band 144. Springer, Berlin.

Oberquelle, H. (1988). Role/function/action-nets as a visual language for cooperative
modelling. In Finkelstein, A., editor, Proc. IFIP International Workshop on Human
Factors of Information System Analysis and Design (WHISAD 88). London.

Oberquelle, H., Kupka, I., and Maafi, S. (1983). A view of human-machine communica
tion and co-operation. International Journal on Man-Machine Studies, 19(4):309-
333.

Oesterreich, R. and Volpert, W. (1986). Task analysis for work design on the basis of
action regulation theory. Economic and Industrial Democracy, 7:503-527.

Oliga, J. C. (1988). Methodological foundations of systems methodologies. Systems
Practice, (3):87-112.

Olle, T. W. and Sibley, E., editors (1986). Information Systems Design Methodologies
- Improving the Practice. North-Holland, Amsterdam.

Olle, T. W., Sol, H. G., and Tully, C., editors (1983). Information Systems Design
Methodologies - A Feature Analysis. North-Holland, Amsterdam.

Olle, T. W., Sol, H. G., and Verrijn-Stuart, A. A., editors (1982). Information Systems
Design Methodologies - A Comparative Review. North-Holland, Amsterdam.

Ortega y Gasset, J. (1961). History as a System. New York. (Translated by Weyl, Clark
and Atkinson).

Orwell, G. (1989). Nineteen Eighty-Four. Penguin Books, Harmondsworth, UK. (First
edition published by M. Secker and Warbug, 1949).

Palmer, R. (1969). Hermeneutics. Northwestern University Press, Evanston, IL.

464 Bibliography

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053-1058.

Parnas, D. L. (1985).] Software aspects of strategic defense systems. American Scien
tist, (September-October) :432-440.

Parnas, D. L. and Clements, P. C. (1985). A rational design process: How and why to
fake it. In [Ehrig et al., 1985], pages 80-100.

Pasch, J. (1989). Mehr Selbstorganisation in Softwareentwicklungsprojekten. Software
technik- Trends, 9(2):42-55.

Pasch, J. (1991). Dialogical software design. In Bullinger, H. J., editor, Human-Com
puter Interaction - Interact '91. Elsevier, Amsterdam.

Pask, G. (1960). The natural history of networks. In [Yovits and Cameron, 1960], pages
232-261.

Pask, G. (1962a). Interaction between a group of subjects and an adaptive automa
ton to produce a self-organizing system for decision making. In Yovits, M. C., Ja
coby, G. T., and Goldstein, G. D., editors, Self-Organizing Systems. Spartan Books,
Washington, DC, pages 283-312.

Pask, G. (1962b). A proposed evolutionary model. In v. Foerster, H. and Zopf, G. W.,
editors, Principles of Self-Organization. Pergamon, New York, pages 229-254.

Pask, G. (1976). Conversation Theory - Applications in Education and Epistemology.
Elsevier, Amsterdam.

Pask, G. (1980). The limits of togetherness. In Lavington, S. H., editor, Information
Processing 80 - Proceedings of the IFIP 8th World Computer Congress. North
Holland, Amsterdam, pages 999-1012.

Pask, G. and v. Foerster, H. (1961). A predictive model for self-organizing systems.
Cybernetica. Part I in No.3, 258-300; Part II in No.4, 20-55.

Pedrycz, W. (1989). Fuzzy Control and Fuzzy Systems. Wiley, Chichester, UK.
Peil, J. (1977). Eine Diskussion des begrifflichen Inhalts von "Information" in Ky

bernetik, Physik und Biologie. In Geissler, E., Scharf, J. H., and Scheler, W., edi
tors, Diskretitiit und Stetigkeit von Lebensprozessen. Akademie Verlag, Berlin, GDR,
pages 76-105.

Peirce, C. S. (1968). Uber die Klarheit unserer Gedanken. How to make our ideas clear.
Klostermann, Frankfurt a.M. (Bilingual edition).

Petri, C. A. (1980). Introduction to general net theory. In Brauer, W., editor, Net
Theory and Applications. LNCS volume 84. Springer, Berlin, pages 1-19.

Petri, C. A. (1983). Zur "Vermenschlichung" des Computers. Der GMD-Spiegel, 13(4):
42-44.

Pirsig, R. (1975). Zen and the Art of Motorcycle Maintenance. Bantam Books, New
York.

Polanyi, M. (1967). The Tacit Dimension. Doubleday, Garden City, NY.
Popper, K. R. (1965). Conjectures and Refutations. Harper and Row, New York.
Putnam, H. (1988). Representation and Reality. MIT Press, Cambridge, MA.
Raeithel, A. (1983). Tiitigkeit, Arbeit und Praxis. Grundbegriffe fur eine praktische

Psycholgie. Campus, Frankfurt a.M.
Raeithel, A. (1989). Kommunikation als gegenstandliche Tatigkeit. Zu einigen philo

sophischen Problemen der kulturhistorischen Psychologie. In Knobloch, C., editor,
Kommunikation und Kognition, Studien zur Psychologie der Zeichenverwendung.
Nodus Publikationen, Munster, pages 29-70.

Raeithel, A. and Volpert, W. (1985). Aneignung der Computer oder Telematik-Mono
kultur? Zeilschrift fur Sozialisationsforschung und Erziehungssoziologie, (5):7-26.

Bibliography 465

Reisin, F.-M. (1989). Gestaltbarkeit und Gestaltung von Methoden - Zwei notwendige
Bedingungen kooperativer Softwareentwicklung. Softwaretechnik-Trends, 9(2):14-
26.

Reisin, F.-M. (1990). Kooperative Gestaltung in partizipativen Software-Projekten. Dis
sertation, Technical University of Berlin.

Reisin, F.-M. and Wegge, D. (1989). On experimental prototyping in user-oriented
system development. In B(6dker, S., editor, Proc. 12th IRIS: Information systems
Research seminar In Scandinavia. Aarhus University, pages 517-532.

Rich, E. (1983). Artificial Intelligence. McGraw-Hill, New York.
Richardson, W. J. (1967). Heidegger. Through Phenomenology to Thought. Nijhoff, The

Hague.
Ricoeur, P. (1986). Die lebendige Metapher. Fink, Miinchen. (Original La metaphore

vive, Paris 1975).
Ritter, G. X., editor (1989). Information Processing 89 - Proceedings of the IFIP 11 th

World Computer Congress. North-Holland, Amsterdam.
Rock, I. (1984). Perception. Scientific American Books, New York.
Rogoff, B. and Lave, J., editors (1984). Everyday Cognition: Its Development in Social

Context. Harvard University Press, Cambridge, MA.
Rolskov, B. (1990). Organizational Competence in System Development. A Scandina

vian Contribution. In [Bjerknes et al., 1990].
Root, R. W. (1988). Design of a multi-media vehicle for social browsing. In [CSCW'88,

1988], pages 25-38.
Rorty, R. (1961). Pragmatism, categories, and language. Philosophical Review, 70:197-

223.
Rorty, R. (1984). Habermas and Lyotard on post-modernity. Praxis International, 4(1).
Rosson, M. B. and Alpert, S. (1990). The cognitive consequences of object-oriented

design. Human-Computer Interaction, 5(4):345-379.
Ryle, G. (1983). The Concept of Mind. Penguin Books, Harmondsworth, UK.
Sacks, O. (1986). The Man Who Mistook his Wife for a Hat. Pan Books, London.
Sacks, H., Schlegloff, E. A., and Jefferson, G. (1974). A simplest systematics for organ-

isation of turn-taking for conversation. Language, 50:696-735.
Sahlins, M. (1983). Culture and Practical Reason. University of Chicago Press, Chicago.
Savage, L. J. (1965). The Foundations of Statistics. Wiley, Chichester, UK.
Schirmacher, W. (1983). Technik und Gelassenheit. Zeitkritik nach Heidegger. Alber,

Freiburg.
Schmandt-Besserat, D. (1978). The earliest precursors of writing. Scientific American,

238(6):38-47.
Schmidt, S. J., editor (1987). Der Diskurs des radikalen Konstruktivismus. Suhrkamp,

Frankfurt a.M.
Schneider, J. W. (1985). Social problems theory: The constructionist view. Annual

Review of Sociology, 11:209-229.
Schonpfiug, W. (1986). The trade-off between internal and external information stor

age. Journal of Memory and Language, 25:657-675.
Schonpfiug, W. (1989). Neue Technik und alter Mensch - Kulturhistorische Wurzeln

einiger Schwierigkeiten mit dem Computer. In [Maa6 and Oberquelle, 1989], pages
17-35.

Schriffrin, D. (1987). Discourse Markers. Cambridge University Press, Cambridge, UK.
Scott, D. and Strachey, C. (1971). Towards a mathematical semantics for computer

languages. In Proc. 21$t Symposium on Computers and Automata. (Also Technical
Monograph PRG 6, Oxford University, Programming Research Group).

466 Bibliography

Scribner, S. (1985). Vygotski's uses of history. In Wertsch, J. V., editor, Culture, Com
munication and Cognition. Vygotskian Perspectives. Cambridge University Press,
Cambridge, UK, pages 119-145.

Searle, J. R. (1969). Speech Acts. Cambridge University Press, Cambridge, UK.
Searle, J. R. (1979). Expression and Meaning. Cambridge University Press, Cambridge,

UK.
Searle, J. R. (1980). Minds, brains, and programs. The Behavioral and Brain Sciences,

3:417-457.
Searle, J. R. (1990). Is the brain's mind a computer program? Scientific American,

262(1):20-25.
Sellars, W. (1963). Science, Perception and Reality. Routledge and Kegan Paul, Lon

don.
Seubold, G. (1986). Heideggers Analyse der neuzeitlichen Technik. Alber, Freiburg.
Shannon, C. E. and Weaver, W. (1949). A Mathematical Theory of Communication.

University of Illinois Press, Urbana, IL.
Shapiro, G. and Sica, A. (1984). Hermeneutics. Questions and Prospects. University of

Massachusetts Press, Amherst, MA.
Shneiderman, B. (1980). Software Psychology: Human Factors in Computer and Infor

mation Systems. Winthrop, Cambridge, MA.
Shneiderman, B. (1982). The future of interactive systems and the emergence of direct

manipulation. Behaviour and Information Technology, 1:237-256.
Shneiderman, B. (1987). Designing the User Interface - Strategies for Effective Human

Computer Interaction. Addison-Wesley, Reading, MA.
Siefkes, D. (1990). Formalisieren und Beweisen - Logikfilr Informatiker. Vieweg, Wies

baden.
Siefkes, D. (1991). Kleine Systeme - Lemen und Arbeiten in formalen Umgebungen.

Vieweg, Wiesbaden. (In preparation).
Sieker, J. and Jensen, C. S. (1988). Modsigelser i Designprocesser. Master Thesis, Insti

tute of Electronic Systems, Aalborg University. (Contradictions in Design Processes,
in Danish).

Simila, J. (1988). Modelling and analyzing empirically the success of ADP systems use.
Dissertation, Acta Universitatis o uluensis , Series A, No. 196, Institute of Informa
tion Processing Science, University of Oulu, SF.

Simila, J. and Nuutinen, R. (1983). On the image of man and its implications for
systemeering research. In Nurminen, M. I. and Gaupholm, H. T., editors, Report
6th Scandinavian Research Seminar on Systemeering. University of Bergen.

Smith, R. B. (1987). Experience with the alternate reality kit. An example of the
tension between literalism and magic. In [Carroll and Tanner, 1987], pages 61-67.

Soloway, E. and Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-I0(5):595-609.

S(1lrgaard, P. (1987). A cooperative work perspective on the use and development of
computer artifacts. In [Jarvinen, 1987]' pages 719-734.

Sperber, D. and Wilson, D. (1986). Relevance: Communication and Cognition. Black
well, Oxford.

Spinas, P. (1987). VDU-work and user-friendly human-computer interaction: Analysis
of dialogue structures. In [Frese et al., 1987]' pages 147-162.

Stamper, R. (1983). Information analysis in LEGOL. In Bubenko, J., editor, Informa
tion Modeling. Studentlitteratur, Lund, pages 565-596.

Stamper, R. (1987). Semantics. In [Boland and Hirschheim, 1987]' pages 43-78.

Bibliography 467

Stefik, M. J. and Bobrow, D. G. (1987). Review of Winograd, Flores (1986). Artificial
Intelligence, 31 :220-226.

Steiner, G. (1978). Heidegger. Collins, Glasgow, UK.
Steinmiiller, W. (1979). Juristische Informationswissenschaft. Rechtstheorie, pages 327-

345. (Supplement to volume 1979).
Stent, G. S. (1986). Einleitung und Ubersicht. In [Delbriick, 1986]' pages 11-34.
Stoy, J. (1977). Denotational Semantics of Programming Languages: The Scott-Strachey

Approach to Programming Language Theory. MIT Press, Cambridge, MA.
Strandh, S. (1979). A history of the machine. New York.
Suchman, L. A. (1987). Plans and Situated Actions - The Problem of Human-Machine

Communication. Cambridge University Press, Cambridge, UK.
Sutter, A. (1988). Gottliche Maschinen. Athenaum, Frankfurt a.M.
Swartout, W. and Balzer, R. (1982). On the inevitable intertwining of specification and

implementation. Communications of the ACM, 25(7):438-440.
Szilard, L. (1929). Uber Entropieverminderung in einem thermodynamischen System

bei Eingriffen intelligenter Wesen. Zeitschrijt fur Physik, 53:840-852.

Tagg, J. (1989). Post modernism and the born-again avant-garde. In Tagg, J., editor,
The Cultural Politics of Post-Modernism. SUNY Binghamton MRTS, Binghamton,
NY.

Tarski, A. (1944). The semantic conception of truth. Philosophy and Phenomenological
Research, 4:13-47.

Taylor, F. W. (1911). The Principles of Scientific Management. Harper and Row, New
York.

Teichroew, D., Macasovic, P., Hershey, E., and Yamamoto, Y. (1980). Application of
the entity-relationship approach to information processing systems modeling. In
Chen, P. P., editor, Entity-Relationship Approach to Systems Analysis and Design.
North-Holland, Amsterdam, pages 15-38.

Teitelman, W. (1977). A display oriented programmer's assistant. Technical Report 3,
Xerox, Palo Alto, CA.

Tenenbaum, E. and Wildavsky, A. (1984). Why policies control data and data cannot
determine policies. Scandinavian Journal of Management Studies, pages 83-100.

Terry, A. J. and Englemore, R. S. (1981). A knowledge-based approach to the interpre
tation of protein electron density maps. In Bond, A., editor, Machine Intelligence,
number 3 in Infotech State of the Art Report, series 9. Infotech, Maidenhead, UK,
pages 307-321.

Thompson, W. 1., editor (1987). Gaia - A Way of Knowing. Political Implications of
the New Biology. Lindisfarne Press, Great Barrington, MA.

Toulmin, S. (1958). The Uses of Argument. Cambridge University Press, Cambridge,
UK.

Trigg, R. H. (1988). Guided tours and tabletops: Tools for communicating in a hyper
text environment. In [CSCW'88, 1988], pages 216-226.

Trungpa, C. (1976). The Myth of Freedom. Shambhala, Boulder, CO.
Trungpa, C. (1984). Shambhala: The Sacred Path of the Warrior. Shambhala, Boulder,

CO.
Tsetung, M. (1967). On Contradiction, volume 1 of Selected Works. Foreign Language

Press, Peking.
Tsichritzis, D. and Lochovsky, F. (1982). Data Models. Prentice-Hall, Englewood Cliffs,

NJ.
Turner, R., editor (1974). Ethnomethodology. Penguin Books, Harmondsworth, UK.

468 Bibliography

Turkle, S. (1984). The Second Self - Computers and the Human Spirit. Granada, Lon
don.

Turvey, M. T., Carello, C., and Kim, N. G. (1990). Links between active perception
and the control of action. In [Baken and Stadler, 1990], pages 269-295.

Ulich, E. (1987). Individual differences in human-computer interaction: Concepts and
research findings. In Salvendy, G., editor, Cognitive Engineering in the Design of
Human-Computer Interaction and Expert Systems. Elsevier, Amsterdam.

v. Foerster, B. (1960). On self-organizing systems and their environments. In [Yovits
and Cameron, 1960], pages 31-50.

v. Foerster, B. (1981a). Das Konstruieren einer Wirklichkeit. In Watzlawick, P., editor,
Die erfundene Wirklichkeit. Wie wissen wir, was wir zu wissen glauben? Piper,
Miinchen, pages 39-60.

v. Foerster, B. (1981b). Objects: Tokens for (eigen-)behaviors. In [v. Foerster, 1981a].
v. Foerster, B. (1984). Observing Systems. Intersystems Publications, Seaside, CA.
v. Foerster, B. (1985). Sicht und Einsicht. Versuche zu einer operativen Erkenntnis

theorie. Vieweg, Wiesbaden.
v. Foerster, B., Mead, M., and Teuber, B. 1., editors (1949). Cybernetics: Transactions

of the Sixth, Seventh, Eighth, Ninth, and Tenth Josiah Macy Jr. Conferences. The
Josiah Macy Jr. Foundation, New York. (Further editions: 1950, 1951, 1953, 1955).

v. Foerster, B. and Zopf, G. W., editors (1962). Principles of Self-Organization. Perg
amon, New York.

v. Glasersfeld, E. (1987). The Construction of Knowledge - Contributions to Conceptual
Semantics. Intersystems Publications, Seaside, CA.

v. Griethuysen, J. J., editor (1982). Concepts and Terminology for the Conceptual
Schema and Information Base. Information System, New York.

v. Bahn, W. (1986). Pragmatic considerations in man-machine discourse. In Coling
86: Proc. 11 th International Conference on Computational Linguistics. University
of Bonn.

v. Uexkiill, J. (1957). A stroll through the worlds of animals and men. In Schiller, C. B.,
editor, Instinctive Behavior. International University Press, New York, pages 5-80.

v. Weizsacker, C. F. and v. Weizsacker, E. U. (1972). Wiederaufnahme der begriffiichen
Frage: Was ist Information. In Scharf, J. B., editor, Informatik. Johann Ambrosius
Barth, Leipzig, GDR, pages 535-555.

v. Weizsacker, E. U. (1972). Unterschied zwischen genetischer und Shannon'scher Infor
mation. In Geissler, E. and Ley, B., editors, Philosophische und Ethische Probleme
der modernen Genetik. Akademie Verlag, Berlin, GDR, pages 160-172.

v.d. Besselaar, P., Clement, A., and Jii.rvinen, P., editors (1991). Information System
Work and Organization Design. North-Bolland, Amsterdam.

Valder, W. and Weller, U. (1984). Schwierigkeiten mit der klassischen Systemanalyse.
Angewandte Informatik, 26(8):323-328.

Varela, F. J. (1975).] A calculus for self-reference. International Journal of General
Systems, 2:5-24.

Varela, F. J. (1987). Autonomie und Autopoiese. In [Schmidt, 1987], pages 119-132.
Varela, F. J. and Goguen, J. A. (1978). The arithmetics of closure. Journal of Cybernet

ics, 8:125. (Also in Trappl, R., Klir, G., and Ricciardi, L., editors (1978), Progress
in Cybernetics and Systems Research, Volume 3, Bemisphere Publishing).

Vellino, A. (1987). Review of Winograd, Flores (1986). Artificial Intelligence, 31:213-
220.

Volpert, W. (1987). Contrastive analysis of the relationship of man and computer as a
basis of system design. In [Docherty et al., 1987], pages 119-127.

Bibliography 469

Volpert, W. (1989). Work and personality development from the viewpoint ofthe action
regulation theory. In Leymann, H. and Kornbluh, H., editors, Socialization and
Learning at Work. Avebury, Aldershot, UK.

Volz, H. (1982). Information I. Studien zur Vielfalt und Einheit der Informationstheorie
und Anwendung vor allem in der Technik. Akademie-Verlag, Berlin, GDR.

Volz, H. (1983). Information II. Theorie und Anwendung vor allem in der Biologie,
Medizin und Semiotik. Akademie-Verlag, Berlin, GDR.

Vygotsky, 1. S. (1978). Mind in Society. Harvard University Press, Cambridge, MA.
Weick, K. E. (1979). The Social Psychology of Organizing. Addison-Wesley, Reading,

MA.
Weingarten, R. and Fiehler, R. (1986). Technisierte Kommunikation. Westdeutscher

Verlag, Opladen.
Weizenbaum, J. (1977). Computer Power and Human Reason: From Judgement to

Calculation. Freeman, San Francisco.
Weltz, F. and Lullies, V. (1983). Menschenbilder der Betriebsorganisatoren. In Ram

mert, W., Bechmann, G., Nowotny, H., and Vahrenkamp, R., editors, Jahrbuch
Technik & Gesellscha/t. Campus, Frankfurt a.M., pages 109-128.

Wenzlaff, B. (1983). Information und Gedli.chtnis - Ein Modell zur Veranschaulichung
der Niveaustufen der Information. In Proc. IV. Wissenscha/tliches Kolloquium zur
Organisation der Informationsverarbeitung. Berlin, GDR, pages 3-66.

Wertsch, J. V., editor (1981). The Concept of Activity in Soviet Psychology. Sharpe,
Armonk, NY.

Wertsch, J. V. (1985). Vygotski and the Social Formation of Mind. Harvard University
Press, Cambridge, MA.

Whiteside, J. and Wixon, D. (1987). Improving human--computer interaction - A quest
for cognitive science. In [Carroll, 1987], pages 337-352.

Wiener, N. (1963). Kybernetik, Regelung und Nachrichtenubertragung im Lebewesen
und in der Maschine. Econ, Diisseldorf.

Wilber, K. (1983). A Sociable God: Toward a New Understanding of Religion. Shamb
hala, Boulder, CO.

Wingert, B. and Riehm, U. (1985). Computer als Werkzeug. In Rammert, W., Bech
mann, G., and Nowotny, H., editors, Jahrbuch Technik & Gesellscha/t, volume 3.
Campus, Frankfurt a.M., pages 107-131.

Winograd, T. (1972). Understanding natural language. Cognitive Psychology, 1972(3):1-
191.

Winograd, T. (1988). A language/action perspective on the design of cooperative work.
In [Greif, 1988], pages 623-653. Reprint.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition - A New
Foundation for Design. Ablex, Norwood, N J.

Winograd, T. and Flores, F. (1987). A response to the reviews. Artificial Intelligence,
31:250-261.

Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. Routledge and Kegan Paul,
London. (Translated by D. F. Pears and B. F. Mc Guiness, with an introduction
by Bertrand Russell, original from 1921).

Wittgenstein, 1. (1968). Philosophical Investigations. Blackwell, Oxford. (English trans
lation of the 3rd edition by G. E. M. Anscombe).

Wittgenstein, 1. (1978). On Heidegger on being and dread. In Murray, M., editor, Hei
degger and Modern Philosophy. Yale University Press, New Haven, CT. (Translation
and commentary by M. Murray. The complete German text first appeared as "Zu

470 Bibliography

Heidegger" in Ludwig Wittgenstein und der Wiener Kreis: Gespriiche, auJgezeichnet
von Friedrich Waismann, 1967.)

Wixon, D., Whiteside, J., Good, M., and Jones, S. (1983). Building a user-defined in
terface. In Janda, A., editor, Proc. CHI'83: Human Factors in Computing Systems.
ACM, New York, pages 24-27.

Wolfram, S. (1988). Mathematica. A System Jor Doing Mathematics by Computer.
Addison-Wesley, Reading, MA.

Yovits, M. C. and Cameron, S., editors (1960). Self-Organizing Systems. Pergamon,
New York.

Zemanek, H. (1989). Formal structures in an informal world. In [Ritter, 1989], pages
1101-1105.

List of Authors

Klaus Amann
(Born 1958 in Germany)
Dr. soc. from the University of Bielefeld. Research and Teaching
Assistant in the Faculty of Sociology at the University of Biele
feld.
Research interests: Sociology of knowledge, theory of science,
sociology of culture

Gro Bjerkness
(Born 1956 in Norway)
Dr. scient. in Informatics from the University of Oslo. Associate
Professor in the Department of Informatics at the University of
Oslo.
Research interests: System development

Reinhard Budde
(Born 1951 in Germany)
Dr.-Ing. in Informatics from the Technical University of Berlin.
Senior Scientist at the German National Research Center for
Computer Science (GMD), Sankt Augustin.
Research interests: Software engineering, object-oriented design
and programming methods, programming environments

Rodney M. Burstall
(Born 1934 in Britain)
PhD in Computing and Operational Research from the U ni
versity of Birrningham. Professor of Computer Science at the
University of Edinburgh.
Research interests: Programming languages, logic and category
theory

472

Rafael Capurro
(Born 1945 in Uruguay)

List of Authors

Dr.phil.habiL in Practical Philosophy from the University of
Stuttgart. Professor of Information Science at the College for
Librarianship in Stuttgart. Associate of the Philosophical and
Technical Studies Center, Polytechnic University, N.Y.C.
Research interests: Information science, philosophy of technol
ogy, hermeneutics, ethics

John M. Carroll
(Born 1950 in U.S.A.)
PhD in Experimental Psychology from Columbia University.
Manager of User Interface Theory and Design at the IBM Wat
son Research Center Yorktown Heights.
Research interests: Analysis of learning, problem-solving, lan
guage capacities, human-computer interaction

Wolfgang Coy
(Born 1947 in Germany)
Dr.rer.nat. in Informatics from the Technical University Darm
stadt. Professor of Informatics in the Department of Computer
Science at the University of Bremen.
Research interests: Computers and society, theoretical founda.
tions of informatics, image processing, computers as technical
media

Bo Dahlbom
(Born 1949 in Sweden)
PhD (Docent) in Theoretical Philosophy from the University of
Goteborg. Associate Professor in the Department of Technology
and Social Change at the University of Linkoping.
Research interests: Artifical intelligence and the philosophy of
mind, computer technology and social change, conditions for
benign computerization of society

Wolfgang Dzida
(Born 1941 in Germany)
Dr. phil. in Social Psychology from the Technical University of
Berlin. Senior scientist at the German National Research Center
for Computer Science (GMD), Sankt Augustin.
Research interests: User interface design and evaluation, er
gonomic office system conception, system developers' workplaces

List of Authors

Christiane Floyd
(Born 1943 in Austria)

473

Dr.phil. in Mathematics from the University of Vienna. Profes
sor of Software Engineering at the Technical University of Berlin.
Research interests: Software development methods, human
centred system design, epistemological foundations of informat
lCS

Heinz von Foerster
(Born 1911 in Austria)
Dr.phil. in Physics from the University of Vienna. Professor
Emeritus in the Departments of Biophysics and Physiology, and
of Electrical and Computer Engineering at the University of Illi
nois, Urbana.
Research interests: The study of physiology, theory, technology
and epistemology of cognitive processes.

Klaus Fuchs-Kittowski
(Born 1934 in Germany)
Dr.phil.habil. in Philosophy from the Humboldt University at
Berlin. Professor in the Department of Theory and Organiza.
tion of Science at the Humboldt University, Berlin.
Research interests: User-oriented analysis and design of informa.
tion systems, human-computer interaction, epistomological and
methodological problems of information processing

Dafydd Gibbon
(Born 1944 in England)
Dr.phil. in English and Linguistics from the University of
Gottingen. Professor for English and Linguistics at the Univer
sity of Bielefeld.
Research interests: Computational modelling of speech, theoret
ical lexicology, epistomological foundations of linguistics

Joseph A. Goguen
(Born 1941 in U.S.A.)
PhD in Mathematics from the University of California of Berke
ley. Professor of Computing Science at Oxford University, Stu
dent of Tibetan Buddhism.
Research interests: Requirements, software engineering, theorem
proving, philosophy of computation, massively parallel computer
architectures, discourse analysis, the semantics of natural and
artificial languages, and computer security

474

Thomas F. Gordon
(Born 1955 in U.S.A.)

List of Authors

J.D. from the University of California at Davis. Senior scientist
at the National Research Center for Computer Science (GMD),
Sankt Augustin.
Research interests: Artificial intelligence, legal reasoning, argu
mentation, abduction, planning

Reinhard Keil-Slawik
(Born 1953 in Germany)
Dr.-Ing.habil. in Informatics from the Technical University of
Berlin. Assistant Professor in the Computer Science Department
at the Teehnical University of Berlin.
Research interests: Software engineering, software ergonomics,
computer and society, history of computing

Pentti Kerola
(Born 1935 in Finland)
Dr. of Economics and Business Administration h.c. Phil.Lic ..
Professor of Information Processing Science at the University of
Oulu.
Research interests: Philosophical aspects of information pra
cessing, macromodelling of information system development,
human-computer interaction

Heinz K. Klein
(Born 1939 in Germany)
Dr.oee.publ.. Associate Professor of Information Systems at the
School of Managment of the State University of New York at
Binghampton.
Research interests: Socia-theoretic foundations of information
systems, application of social action and systems theory, infor
mation engineering

Donald E. Knuth
(Born 1938 in U.S.A.)
PhD in Mathematics from the California Institute of Technol
ogy. Professor of The Art of Computer Programming at Stanford
University.
Research interests: Analysis of algorithms, combinatorial math
ematics, programming languages, digital typography, history of
computer science

List of Authors

Klaus-Peter Lohr
(Born 1941 in Germany)

475

Dr.-Ing.habil. in Informatics from the Technical University of
Berlin. Professor of Computer Science at the Free University of
Berlin.
Research interests: Operating systems, distributed systems, soft
ware development

Kalle Lyytinen
(Born 1953 in Finland)
PhD in Computer Science from the University of Jyvliskyla.. Pro
fessor for Information Systems at the University of Jyvliskyla..
Research interests: Data modelling, requirements specification,
information system failures, speech-act based models and tools

Susanne Maafi
(Born 1952 in Germany)
Dr.rer.nat. in Informatics from the University of Hamburg. As
sistant Professor in the Research group on Applied and Socially
Oriented Informatics at the University of Hamburg.
Research interests: Software ergonomics, computer support for
group work, social impact of computing, women and computers

Markku I. Nurminen
(Born 1943 in Finland)
PhD in Computer Science at the University of Turku. Professor
of Computer Science at the University of Turku.
Research interests: Use of information systems as an inherent
part of work situation of its users, system architecture, user
learning, user interface

Kristen Nygaard
(Born 1926 in Norway)
Cando real. in Mathematics. Dr.h.c. in Informatics from the Uni
versities of Lund and Aalborg. Professor of Computer Science
at the University of Oslo.
Research interests: User-tailorable software that is modifiable
and extendable by the users

476

..... _a.. -.u.

Horst Oberquelle
(Born 1947 in Germany)

List of Authors

Dr.rer.nat.habil. in Informatics from the University of Hamburg.
Professor for Informatics in the Research group on Applied and
Socially Oriented Informatics at the University of Hamburg.
Research interests: Human-machine interaction, user-oriented
description languages, tools and methods for interface design
and development

Arne Raeithel
(Born 1943 in Germany)
Dr.phil.habil. in Psychology from the University of Hamburg.
Assistant Professor in the Department of Psychology at the Uni
versity of Hamburg.
Research interests: Assessment methods for cognitive psychol
ogy, design of computer-aided collaborative workplaces for sci
entific data analysis

Fanny-Michaela Reisin
(Born 1946 in Israel)
Dr.-Ing. in Informatics from the Technical University of Berlin.
Assistant Professor in the Computer Science Department at the
Technical University of Berlin.
Research interests: Methods and management concepts for
participative software projects, empirical study on software
projects, theory of of software and software development

Douglas T. Ross
(Born 1929 in China)
Master's in Pure Mathematics and Electrical Engineering from
MIT. Chairman Emeritus, SofTech, Inc., Waltham, Mass., Lec
turer in the Department of EE and Computer Science, MIT
Research interests: Rigorous foundations for PLEX, and its ap
plication, as in SADT (Structured Analysis and Design Tech
nique)

Dirk Siefkes
(Born 1938 in Germany)
Dr.rer.nat. in Mathematical Logic from the University of Heidel
berg. Professor for Theoretical Computer Science at the Tech
nical University of Berlin.
Research interests: Logic, term rewriting systems, complexity
theory, philosophical, historical and pedagogical problems of in
formatics, "small systems"

List of Authors 477

Jouni SimiHi
(Born 1951 in Finland)
PhD in Information Processing Science from the University of
Oulu. Technical Director at CCC Software Professionals, OuIun
salo, Finland; Area Manager of CCC Greece Ltd.
Research interests: Information systems implementation and
use, methods and tools for risk-oriented software project man
agement

Walter Volpert
(Born 1942 in Germany)
Dr.phil. in Psychology from the Technical University of Berlin.
Professor for Industrial Psychology and Pedagogics at the Tech
nical University of Berlin. Head of the Institute for Human Sci
ence in Work and Education.
Research interests: Psychology of work and action, work design,
social impact of information technology

Heinz Zullighoven
(Born 1949 in Germany)
Dr.-Ing. in Informatics from the Technical University of Berlin.
Senior Scientist at the German National Research Center for
Computer Science (GMD), Sankt Augustin.
Research interests: Software development, object-oriented de
sign, programming environments, prototyping

