Improving Web Vulnerability Scanning

Daniel Zulla

Introduction
Hey!

" Hjtherel
® |'m Dan. This is my first year at DEFCON.
® | do programming and security start-ups.

® | do some penetration testing as well

More Introduction

® Today I’'m going to talk about vulnerability scanning

® Primary on the web

" “The cloud” is involved as well

® Network security too

" |'ll show some things, so there is plenty of demo time

® Have fun, thanks for being here!

Some Facts

® There are a lot of web vulnerability scanners, fuzzers and penetration
testing tools out there already

B Some of them work, some of them do not

® But basically all of them have one thing in common:
They actually don’t attack web applications on the application layer

® They mostly fuzz HTTP and sometimes perform injection attacks

Some more facts

® The fundamental design of web scanners has not changed in over a
decade

® But: The web has changed.

® S0 there seems to be a problem.

Software Architecture

What web vulnerability scanners and fuzzers look like

Plugins

A HTTP Library

RXS BSQLI

The Core

PXS LFI

Multithreading /

Output Engine oG

RF

A pentesters point of view

B Javascript/Ajax rich applications are still not
supported

® Authenticated scanning is still incredibly
challenging / not reliable

B Exploitation techniques are mostly poor

B “ don’t know which scanner will work for
foo.com and which one for bar.com, so |
use toolchains”

A developers point of view

B HTTP Libraries don’t support JS -
Scanners are based on an HT TP

B Javascript/Ajax rich applications are still not , ,
Libraries

supported

® Web Logins are not standarized

® Authenticated scanning is still incredibly 3o h hould thev be detected
0 how shou ey be detecte

challenging / not reliable

B No time for exploits
(Already spent 100000 lines [and nights] of code
making the crawler immune to encoding issues,
malformed HTML, redirects and binary content!)

B Exploitation techniques are mostly poor

B “ don’t know which scanner will work for
foo.com and which one for bar.com, so |

use toolchains” B A false positive is better than a

false negative

How | see It

B Both of them are right.
® The web is a mess. Nobody cares about RFCs anymore. (Especially these SEO guys!)

® 10 years ago, you would have expected a Query String at the end of a URL like
Nttps://foo.com/xxx/\ywy foo=bar

B Nowadays, nitps.//foo.com/something.ext/foo/bar is good practice

® The result: It's incredibly hard for scanner developers to figure out the dynamic components
of an HTTP request. Because of that, we feel overhelmed and fuzz nearly everything.

B Header Keys, Header Values, VHost, Cookie, Method, Path, Version, ...

How | see It

® Fuzzing HTTP is incredibly important. You never know if you are talking to an apache?2, nginx
or some hidden application server upstream

® But it has nothing to-do with web vulnerability scanning

B So - developers are struggling with websites because they use HTTP to crawl and attack
them. Things like flash, images, javascript seems to be an unsolveable problem

® Redirects are hard to handle sometimes (wait there is more)
B Javascript redirects (after 10 seconds!) and of course: onmouseover, onclick, onfocus, ...

B Flash isn’t helpful either

But - WE DO SECURITY

s it really our job to make sure that our software executed all the JS and grabbed all the
links?

When we spend 100 hours on the crawler, and 5 hours on the actual payloads (that’s how it
looks right now) something, somewhere, went terribly wrong

So - Is there a (open source?) piece of software that we could use instead of the HTTP
library”? Something that has prooven its mastery in handling unpredictably broken web
content already? There is.

Webkit!

© O O / *Jcooge
€« C () www.google.de | S %ﬁ :‘EI© LN

+lch Suche Bilder Maps Play YouTube News Gmail Docs Kalender Mehr -

Anmelden

Deutschland

o0gIC

Google-Suche Auf gut Gliick!

Werben mit Google ~ Unterr D: & Nutzt
Google+ Uber Google ~ Google.com in English

Webkit knows

® Javascript =
® Javascript events =
® Redirects .
® Flash =
® Images =
" Websockets "
" WebGL "

CSS Rendering

Binary Downloads

Broken HTML

Broken CSS

Performance

Forking / Multiprocessing

[...]

€ | © wiwgooglede 4P BE O LA

,,,,,,,,,,

nnnnnnnnnnn

Werbon mit Googlo Untormohmensangoboto _ Datenschutzorklanung & Nutzungsbodingungen

Software Architecture
What it should look like

The Front-End

Rxss [BsaL
o The Core
— PXS LFI
Reporting Engine - RF|
\:

The Exploitation Engine

Changes”? Improvments?

B Replacing the HTTP library by a Webkit Engine
® | ess code (A lot less code)

" 100% support for JS/Ajax/Broken HTML/JS Events/Crazy Redirects
and all kinds of things

® The ability to simulate human user behaviour

B (CSS Renderings (Two text fields beside each other: 10px - one of
them is a input[type=password]) - May be a login!

Making it scale (heavily)

" \Webkit is slow (Website rendering, Executing JS, ... - compared to -
Speaking Plaintext HTTP)

® Downloading Images is slow
® \Waiting for delayed JS events is slow

B Flash is even slower

Making it scale (heavily)

Bad news: Qt / PyQt / PySide

B QtWebkit does not support multithreading

® |t tends to SEGFAULT from time to time :(

" Multiple QApplication instances are almost impossible to handle in
one Python namespace

Making it scale (heavily)

Good news: Building a preforking TCP Server

B Spawning a pool of processes works quite well (one QApplication
+one Browser instance per Process)

B Simultaneous downloads

® Better accessibility inside the scanner (multiprocessing insides loops
to increase performance)

Missing pieces

® Mastering Authentication
B Exploitation & Privilege Escalation
® Geographically distributed scanning: Using the cloud

" Reporting

Mastering Authentication

® There is no such thing as a standarized web login

B Basically, everybody develops access control on the web slightly
differently

® You can try to detect them by the name/id of the attributes, but that is
not reliable

® But in the end, Web logins generally have a few things in common
that makes them easily detectable. At least, for our browser engine

Mastering Authentication

Not more than 2 visible (!) text fields

4 Email

foo@bar.com

Password

has_login_texts()

Email or Phone Passwor d

facebook foo@bar.com [oo
orgot your password?

@ Keep me logged in

Mastering Authentication

Man-Behind-You Protection

Signin Google

Email iS_iﬂpUt_hiddenO

foo@bar.com

ORI SR usiae

Email or Phor- Password

O N C—)

.}\p\ Forgot your passv

facebook

Mastering Authentication

Geometry! Usually, the two visible text fields are under(), next_to() or at least
near(radius=10px) each other

Signin Google
Email
foo@bar.com
X1 — X2 Password foo
E | X1 =X2 §..
' | Rer sword?

Sign in v/ Stay signed in

Can't access your account?

Email or Phone Password

facebook e

@ Keep me logged in Forgot your password?

Y1 =Y2

Mastering Authentication

® That was easy!

® The common way to solve that problem, is to iterate through a
wordlist (login, auth, signin, [...]) while checking the input[id],
input[name] attributes

® That’s not necessarily wrong or bad practice
B After putting the pieces together:

] 1]

" Jogin(“username”, “password”)

Mastering Authentication

Demo Time

" Proof Of Concept 1: Twitter (Some Javascript)
" Proof Of Concept 2: Facebook (More Javascript)

® Proof Of Concept 3: Google Plus (Most Javascript + Browser Hacks)

Mastering Authentication

When we are signed in

® New problems occur: How can we let the scanner check if we are
indeed signed in?

® Common practive: Looking for a /logout/i String
® The problem: Inefficient. Likely to cause false positives
® There has to be a better way:

® |ntroduction “Strategies”

Strategy.Authentication

Step 1: Identification

® |dentifying a login form (3-way approach, input[type=password],
geometry, [...])

Signin Google

Email

Password

Sign in v/ Stay signed in

Can't access your account?

Strategy.Authentication

Step 2: Error messages (Why a browser engines rocks)

= Verifying wrong credentials - Random strings - Failed login

Signiin Google
Email

OG8anOaCA

Password

The usemname or password you entered is /

w9 #BA.... -> #E4...
v/ Stay signed in

Can't access your account?

Strategy.Authentication

(13 7 11 ”)

Step 3: Going in: .login(“..”, “..

" Verifying valid credentials - Behaviour should not be similiar to the
behaviour of a invalid login

Signin Google
Email |
dan@zulla.or
@z - dan@zulla.org ~
Password g

Strategy.Authentication

Step 4: Going out. .logout()

® Doing similiar work again for .logout() function seems obsolote
= But it really isn't.

® |t is the basis to a .is_still_loggedin() function

® Which is really important to stay logged in during crawling

® And if the scanner logged itself out, it can simply .login() again

® That’s cool. :-)

Exploitation and Privilege Escalation

® There is a whole universe besides injection vulnerabilities

® Usually, scanners don’t detect them

" But they should

B And now they can: .login(“user1”, “...”); .logout(); .login(“user2”, “...”)

B => Demo Time: Privilege Escalation, Multi-User Systems

Geographically distributed scanning:

Using the cloud

® When (injection) vulnerabilities are getting complicated:

B Scenario 1: The backend of a website creates a log entry for every
new |IP address. It logs the USERAGENT. The log entries are kept in a
SQL database. The function that creates the log entries, is vulnerable.
The User-Agent is injectable. The problem is:

® |t only works once. As soon as the IP is in the database, the function
won’t be executed anymore :-(

" —=> SQLMap (and every other tool) will fail.

Geographically distributed scanning:

Using the cloud

® But they shouldn’t!
® The limitation is totally detectable

® And anew IP is just as far away as a single EC2 API call

Geographically distributed scanning:

Using the cloud

® |ndeed! The cloud is a good thing for security :)

® Demo Time: Introducing:
sglmap and w3af (on steroids)

issue report.

North America South America Europe Asia Pacific Reportan Issue

Current Status Details RSS
O Amazon CloudFront Service is operating normally. (3]
0 Amazon CloudSearch (N. Virginia) Service is operating normally. (3]
Q Amazon CloudWatch (N. California) Service is operating normally. (5]
& Amazon CloudWatch (N. Virginia) Service is operating normally. (3]
O Amazon CloudWatch (Oregon) Service is operating normally. (3]
@ Amazon DynamoDB (N. California) Service is operating normally. (3]
@ Amazon DynamoDB (N. Virginia) Service is operating normally. (5]

Combining “Strategies” and the

distributed scanning

B |ntroducing next generation vulnerability scanning

" Exploiting a really amazingly hard SQL Injection

B Demo Time

Further Research & Additional [deas

" Country specific restrictions can be by-passed in a fully automatic
manner

" (Error) messages can be parsed and interpreted: Wolfram Alpha
" Bloomfilters should be integrated

B Other “Strategies” should be implemented (the limitations are gone)

More Live Demos

® Demonstrating a logical layer beyond Authentication:
pay(“0000111122223333”, CVW=121, type=VISA)
.search(“search query”)
Sort(“DESC UNION SELECT [...]7)

" |nterpreting error messages

® Pivoting on penetrated hosts - Spawning another scanner instance

" And finally: Reporting!

Thanks!

