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Introduction
Hey!

■ Hi there!

■ I’m Dan. This is my first year at DEFCON.

■ I do programming and security start-ups.

■ I do some penetration testing as well 
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More Introduction

■ Today I’m going to talk about vulnerability scanning

■ Primary on the web

■ “The cloud” is involved as well

■ Network security too

■ I’ll show some things, so there is plenty of demo time

■ Have fun, thanks for being here!
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Some Facts

■ There are a lot of web vulnerability scanners, fuzzers and penetration 
testing tools out there already

■ Some of them work, some of them do not

■ But basically all of them have one thing in common:
They actually don’t attack web applications on the application layer

■ They mostly fuzz HTTP and sometimes perform injection attacks
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Some more facts

■ The fundamental design of web scanners has not changed in over a 
decade

■ But: The web has changed.

■ So there seems to be a problem.
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Software Architecture
What web vulnerability scanners and fuzzers look like 6

The Core

Output Engine

RXSS

PXSS

SQL

BSQLI

LFI

RFI

EVAL

OSC

[...]

A HTTP Library

Multithreading / 
Forking

Plugins



A pentesters point of view 7

■ Javascript/Ajax rich applications are still not 
supported

■ Authenticated scanning is still incredibly 
challenging / not reliable

■ Exploitation techniques are mostly poor

■ “I don’t know which scanner will work for 
foo.com and which one for bar.com, so I 
use toolchains”



A developers point of view

■ HTTP Libraries don’t support JS - 
Scanners are based on an HTTP 
Libraries

■ Web Logins are not standarized - 
So how should they be detected

■ No time for exploits
(Already spent 100000 lines [and nights] of code 
making the crawler immune to encoding issues, 
malformed HTML, redirects and binary content!)

■ A false positive is better than a 
false negative
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How I see it 9

■ Both of them are right.

■ The web is a mess. Nobody cares about RFCs anymore. (Especially these SEO guys!)

■ 10 years ago, you would have expected a Query String at the end of a URL like
https://foo.com/xxx/yyy?foo=bar

■ Nowadays, https://foo.com/something.ext/foo/bar is good practice

■ The result: It’s incredibly hard for scanner developers to figure out the dynamic components 
of an HTTP request. Because of that, we feel overhelmed and fuzz nearly everything.

■ Header Keys, Header Values, VHost, Cookie, Method, Path, Version, ...



How I see it 10

■ Fuzzing HTTP is incredibly important. You never know if you are talking to an apache2, nginx 
or some hidden application server upstream

■ But it has nothing to-do with web vulnerability scanning

■ So - developers are struggling with websites because they use HTTP to crawl and attack 
them. Things like flash, images, javascript seems to be an unsolveable problem

■ Redirects are hard to handle sometimes (wait there is more)

■ Javascript redirects (after 10 seconds!) and of course: onmouseover, onclick, onfocus, ...

■ Flash isn’t helpful either



Web 2.0 11

■ But - WE DO SECURITY

■ Is it really our job to make sure that our software executed all the JS and grabbed all the 
links?

■ When we spend 100 hours on the crawler, and 5 hours on the actual payloads (that’s how it 
looks right now) something, somewhere, went terribly wrong

■ So - Is there a (open source?) piece of software that we could use instead of the HTTP 
library? Something that has prooven its mastery in handling unpredictably broken web 
content already? There is.
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Webkit knows 13

■ Javascript

■ Javascript events

■ Redirects

■ Flash

■ Images

■ Websockets

■ WebGL

■ CSS Rendering

■ Binary Downloads

■ Broken HTML

■ Broken CSS

■ Performance

■ Forking / Multiprocessing

■ [...]



Software Architecture
What it should look like 14

The Core

Reporting Engine

A HTTP 
Library

RXSS

PXSS

SQL

BSQLI

LFI

RFI

EVAL

OSC

[...]

The Exploitation Engine

The Front-End



Changes? Improvments?

■ Replacing the HTTP library by a Webkit Engine

■ Less code (A lot less code)

■ 100% support for JS/Ajax/Broken HTML/JS Events/Crazy Redirects 
and all kinds of things

■ The ability to simulate human user behaviour

■ CSS Renderings (Two text fields beside each other: 10px - one of 
them is a input[type=password]) - May be a login!
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Making it scale (heavily)

■ Webkit is slow (Website rendering, Executing JS, ... - compared to - 
Speaking Plaintext HTTP)

■ Downloading Images is slow

■ Waiting for delayed JS events is slow

■ Flash is even slower
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Making it scale (heavily)
Bad news: Qt / PyQt / PySide

■ QtWebkit does not support multithreading

■ It tends to SEGFAULT from time to time :(

■ Multiple QApplication instances are almost impossible to handle in 
one Python namespace
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Making it scale (heavily)
Good news: Building a preforking TCP Server

■ Spawning a pool of processes works quite well (one QApplication
+one Browser instance per Process)

■ Simultaneous downloads

■ Better accessibility inside the scanner (multiprocessing insides loops 
to increase performance)
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Missing pieces

■ Mastering Authentication

■ Exploitation & Privilege Escalation

■ Geographically distributed scanning: Using the cloud

■ Reporting
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Mastering Authentication

■ There is no such thing as a standarized web login

■ Basically, everybody develops access control on the web slightly 
differently

■ You can try to detect them by the name/id of the attributes, but that is 
not reliable

■ But in the end, Web logins generally have a few things in common 
that makes them easily detectable. At least, for our browser engine
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Mastering Authentication
Not more than 2 visible (!) text fields 21

has_login_texts()



Mastering Authentication
Man-Behind-You Protection 22

is_input_hidden()



Mastering Authentication
Geometry! Usually, the two visible text fields are under(), next_to() or at least 
near(radius=10px) each other 23

!
X1 = X2 X1 = X2

Y1 = Y2



Mastering Authentication

■ That was easy!

■ The common way to solve that problem, is to iterate through a 
wordlist (login, auth, signin, [...]) while checking the input[id], 
input[name] attributes

■ That’s not necessarily wrong or bad practice

■ After putting the pieces together:

■ .login(“username”, “password”)
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Mastering Authentication
Demo Time

■ Proof Of Concept 1: Twitter (Some Javascript)

■ Proof Of Concept 2: Facebook (More Javascript)

■ Proof Of Concept 3: Google Plus (Most Javascript + Browser Hacks)
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Mastering Authentication
When we are signed in

■ New problems occur: How can we let the scanner check if we are 
indeed signed in?

■ Common practive: Looking for a /logout/i String

■ The problem: Inefficient. Likely to cause false positives

■ There has to be a better way:

■ Introduction “Strategies”
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Strategy.Authentication
Step 1: Identification

■ Identifying a login form (3-way approach, input[type=password], 
geometry, [...])
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Strategy.Authentication
Step 2: Error messages (Why a browser engines rocks)

■ Verifying wrong credentials - Random strings - Failed login
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Strategy.Authentication
Step 3: Going in: .login(“..”, “..”)

■ Verifying valid credentials - Behaviour should not be similiar to the 
behaviour of a invalid login
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Strategy.Authentication
Step 4: Going out. .logout()

■ Doing similiar work again for .logout() function seems obsolote

■ But it really isn’t.

■ It is the basis to a .is_still_loggedin() function

■ Which is really important to stay logged in during crawling

■ And if the scanner logged itself out, it can simply .login() again

■ That’s cool. :-)
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Exploitation and Privilege Escalation 31

■ There is a whole universe besides injection vulnerabilities

■ Usually, scanners don’t detect them

■ But they should

■ And now they can: .login(“user1”, “...”); .logout(); .login(“user2”, “...”)

■ => Demo Time: Privilege Escalation, Multi-User Systems



Geographically distributed scanning: 
Using the cloud

■ When (injection) vulnerabilities are getting complicated:

■ Scenario 1: The backend of a website creates a log entry for every 
new IP address. It logs the USERAGENT. The log entries are kept in a 
SQL database. The function that creates the log entries, is vulnerable. 
The User-Agent is injectable. The problem is:

■ It only works once. As soon as the IP is in the database, the function 
won’t be executed anymore :-(

■ ==> SQLMap (and every other tool) will fail.
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Geographically distributed scanning: 
Using the cloud

■ But they shouldn’t!

■ The limitation is totally detectable

■ And a new IP is just as far away as a single EC2 API call
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Geographically distributed scanning: 
Using the cloud 34

■ Indeed! The cloud is a good thing for security :)

■ Demo Time: Introducing: 
sqlmap and w3af (on steroids)



Combining “Strategies” and the 
distributed scanning

■ Introducing next generation vulnerability scanning

■ Exploiting a really amazingly hard SQL Injection

■ Demo Time
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Further Research & Additional Ideas

■ Country specific restrictions can be by-passed in a fully automatic 
manner

■ (Error) messages can be parsed and interpreted: Wolfram Alpha

■ Bloomfilters should be integrated

■ Other “Strategies” should be implemented (the limitations are gone)
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More Live Demos

■ Demonstrating a logical layer beyond Authentication:
.pay(“0000111122223333”, CVV=121, type=VISA)
.search(“search query”)
.sort(“DESC UNION SELECT [...]”)

■ Interpreting error messages

■ Pivoting on penetrated hosts - Spawning another scanner instance

■ And finally: Reporting!
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Thanks! 38


