
BBQSQL
Ben Toews
Scott Behrens

Who are we?
● Ben Toews

○ Security Consultant / Researcher at
Neohapsis

● Scott Behrens
○ Security Consultant / Researcher at

Neohapsis

Why are we here?
● BBQSQL

○ New dog, old trick
■ Exploits Blind SQL Injection

○ New dog, new trick
■ Fast
■ Easy
■ Gets those hard to reach spots

SQL What?
● Structured Query Language (SQL)

○ Language for interacting with database
● SQL Injection

○ Inject syntax into an application's SQL
queries

Basic SQL Injection
Normal Case:
UNAME = "mastahyeti"
PASS = "s3cret"
QUERY = "select * from users where pass=md5
('"+PASS+"') and uname='"+UNAME+"'";
QUERY evaluates to:
select *
from users
where pass=md5('secret')
and uname='mastahyeti'

Basic SQL Injection
SQL Injection Case:
UNAME = "pwned' or '1'='1";
PASS = "pwned";
QUERY = "select * from users where pass=md5
('"+PASS+"') and uname='"+UNAME+"'";
QUERY evaluates to:
select *
from users
where pass=md5('pwned')
and uname='pwned' or '1'='1'

Blind SQL Injection
● Still trying to alter SQL syntax
● Dumping database
● More complex SQL syntax

Blind SQL Injection
Blind SQL Injection Case:
UNAME = "' or (ASCII(SUBSTR(SELECT user(),
1,1))>63) --";
PASS = "";
QUERY = "select * from users where pass=md5
('"+PASS+"') and uname='"+UNAME+"'";
QUERY evaluates to:
select *
from users where pass=md5('')
and uname='' or (ASCII(SUBSTR(SELECT user(),
1,1))>63) --'

Blind SQL Injection
select *
from users where pass=md5('') and
 uname=''
 or (
 ASCII(<< char -> int
 SUBSTR(<< slice string
 SELECT user() << current user
 ,1,1) << first char
)>63 << 63 = '?'
) --' << comment

Blind SQL Injection

● Binary (or other) search for each
character

● One character at a time
● Time consuming

Blind SQL Injection

● Lots of excellent tools out there
○ sqlmap, sqlninja, BSQL Hacker,

the Mole, Havij, ...

● Lots of great features
 ^^^^^^ good job guys...

● If these tools don't work
○ You end up writing a custom script,

test, debug, test, debug...

● What if there was a way to simplify
tricky Blind SQL Injection attacks...

BBQSQL:Use

doesn't care about your data!
doesn't care about your database!

+ =

Images from http://www.freedigitalphotos.net/

http://www.freedigitalphotos.net/images/agree-terms.php?id=10039666

BBQSQL

● Exploits Blind SQL Injection
● For those hard to reach spots
● Semi-automatic
● Database agnostic
● Versatile
● Fast
● Fast
● Did we mention it is fast?

BBQSQL:Use

● Must provide the usual information
○ URL
○ HTTP Method
○ Headers
○ Cookies
○ Encoding methods
○ Redirect behavior
○ Files
○ HTTP Auth
○ Proxies
○ ...

BBQSQL:Use

● Provide two additional pieces of
info
○ Specify where the injection goes
○ Specify what syntax we are injecting

BBQSQL:Use

● The injection can go ANYWHERE:
○ url => "http://google.com?vuln='${query}"

○ data => "user=foo&pass=${query}"

○ cookies => {'PHPSESSID':'123123','FOO':'BAR${query}'}

● doesn't understand data
doesn't care about your annoying:

■ serialization format

■ processes and rules

■ encodings

BBQSQL:Use

● The query specifies how to do binary
search:
○ query => "' and ASCII(SUBSTR((SELECT data FROM data

LIMIT 1 OFFSET ${row_index:1}), ${char_index:1},
1))${comparator:>}${char_val:0} #"

● Database agnostic

● Doesn't care about your annoying:
○ SQL syntax
○ Charset limitations
○ IDS/IPS

BBQSQL:Use

Demo?
Images from http://gossipsucker.com/

http://gossipsucker.com/

BBQSQL:Speed

● Concurrent HTTP requests
● Multiple search algorithms

○ Binary search
○ Frequency based search

BBQSQL:Speed

● Concurrent HTTP requests
● Multiple search algorithms

○ Binary search
○ Frequency based search

BBQSQL:grequests

grequests = gevent + requests

BBQSQL:grequests

grequests = gevent + requests

BBQSQL:gevent

"gevent is a coroutine-based Python
networking library that uses
greenlet to provide a high-level
synchronous API on top of the
libevent event loop"

-http://gevent.org

BBQSQL:gevent
● Coroutine ~ function
● You spawn many simultaneous coroutines
● Only one runs at a time
● When a coroutine encounters blocking

(network IO) it yields and allows the
next coroutine to run while it waits

● This forms an event-loop
● Functionally, it appears to act like

threading

BBQSQL:grequests

grequests = gevent + requests

BBQSQL:requests

"HTTP For Humans"
 -docs.python-requests.org

● Awesome HTTP API built on top of urllib3
in Python

● Written/maintained by Kenneth Reitz
○ API designing badass

BBQSQL:grequests

grequests = gevent + requests

BBQSQL:grequests

Good Evented HTTP for Python

BBQSQL:Speed

● Concurrent HTTP requests
● Multiple search algorithms

○ Binary search
○ Frequency based search

BBQSQL:Binary Search

1 2 3 4 5 6 7 8 9 10 11 12

7 8 9 10 11 12

7 8 9 10

7 8 9 10

8

Average Case: O(log(n))

BBQSQL:Speed

● Concurrent HTTP requests
● Multiple search algorithms

○ Binary search
○ Frequency based search

BBQSQL:Linear Search

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Average Case: O(n/2)

...

BBQSQL:Frequency

● Analysed lots of books, source
code, CCs, SSNs :P

● Most common characters are [' ',
'e', 't', 'o', 'a']

● Most likely characters to follow
'e' are [' ', 'r', 'n']

BBQSQL:Frequency

● Very fast against non-entropic data:
○ English

■ ~10 requests/character
○ Python

■ ~8 requests/character
○ Credit card numbers

■ ~5.5 requests/character

● VS. binary search
○ English

■ ~12 requests/character

BBQSQL:UI

● UI is built using source from Social
Engineering Toolkit(SET)
○ Thanks Dave (ReL1K) Kennedy!

● Input validation is performed on each
configuration option in real time to
prevent snafu
○ You don't have to wait till you type up a huge

request on the CLI and find out your 600 char POST
data is malformed!

BBQSQL:UI

● Configuration files can be imported and
exported through UI or CLI
○ Uses ConfigParser so easy to work with

● Can export attack results as CSV file

Credits
● Wikipedia (math is hard)
● Neohapsis Labs
● Image links are embedded in

presentation
● ReL1K - SET https://www.trustedsec.com/downloads/social-

engineer-toolkit/

https://www.trustedsec.com/downloads/social-engineer-toolkit/
https://www.trustedsec.com/downloads/social-engineer-toolkit/
https://www.trustedsec.com/downloads/social-engineer-toolkit/

Thanks
Ben Toews - @mastahyeti
Scott Behrens - @helloarbit

Neohapsis(.com) << Hiring
 << bonus4us

BBQSQL
 github.com/neohapsis/bbqsql

