
Demorpheus: Getting Rid Of
Polymorphic Shellcodes In Your

Network
Svetlana Gaivoronski,

PhD Student, Moscow State University

Dennis Gamayunov,
Senior Researcher, Moscow State University

Memory corruption, 0-days, shellcodes…

Why should anyone care about
shellcodes in 2012?

CONS:
• Old exploitation technique, too

old for Web-2.0-and-Clouds-
Everywhere-World (some would
say…)

• According to Microsoft’s 2011
stats*, user unawareness is #1
reason for malware propagaion,
and 0-days are less than 1%

• Endpoint security products deal
with known malware quite well,
why should we care about
unkown?..

PROS:
• Memory corruption is still there ;-)

• Hey, Microsoft, we’re all excited
with MS12-020

• Tools like Metasploit are widely
used by pentesters and blackhat
community

• Targeted attacks of critical
infrastructure - what about early
detection?

• Endpoint security is mostly
signature-based, and does not
help with 0-days

• It’s fun! ;)

* http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_Zeroing_in_on_Malware_
Propagation_Methods_English.pdf1

CTF Madness
• Teams write 0-days from

scratch

• Game traffic is full of exploits
all the time

• Detection of shellcode allows
to get hints about your vulns
and ways of exploitation…

Team
1

Team
2

Team
3

Team
4

Team
5

Another POV: Privacy and Trust in
Digital Era

We share almost all aspects of our lives
with digital devices (laptops, cellphones
and so on) and Internet:

• Bank accounts

• Health records

• Personal information

Recent privacy issues with social
networks and cloud providers:

• LinkedIn passwords hashes leak

• Foursquare vulns

• What’s next?..

Maybe the risk of 0-days will fade
away?

• Modern software market for mobile and social applications is
too competitive for developers to invest in security

• Programmers work under pressure of time limitation; managers
who prefer quantity and no quality, etc.

Despite the fact of significant efforts to improve code quality, the
number of vulnerabily disclosures continues to grow every year…

Shellcode detection: what do we have

Static analysis Dynamic analysis

Hybrid analysis
• Signature matching

• Content-dependent
• Behavioral
(Hamsa[1], Polygraph[2])

• CFG\IFG analysis (SigFree[3])

• NOP-sled detection
(RaceWalk[4])

• APE [5]

• Emulation ([6], [7])

• Automata analysis
(IGPSA[8])

The problem: if we simply try to run all methods for each portion of
data, it would be extremely slow

Classifier1

Classifier2

Classifier3

([9], PonyUnpack[10])

Virtues and shortcomings

Static methods Dynamic methods

⁺ Complete code coverage (theoretically)
⁺ In most cases work faster than dynamic

⁺ More resistant to obfuscation techniques

— The problem of metamorphic shellcode
detection is undecidable

— The problem of polymorphic shellcode
detection is NP-complete

— Require some overheads
— Can consider only few control flow paths
— There are still anti-dynamic analysis

techniques

And more:
• Methods with low computation complexity have high FP rate
• Methods with low FP have high computation complexity
• They are also have problems with detection of new types of 0-day

exploits

None of them is applicable for real network
channels in real-time

Why shellcode detection is feasible at
all

As opposed to feature-rich
viruses, shellcode has certain
limitations in terms of size
and structure

Activator Decryptor Payload RA

Proposed approach

• Given the set of shellcode detection
algorithms, why don’t we try to construct
optimal data flow graph, so that:

– the execution time and FP rate are optimized,

– and the FN rate is not more than some given
threshold

Shellcode features
Generic features Specific features

St
at

ic

Correct disassembly into chain at least K
instruction

Correct disassembly from each and every offset. (NOP)

Number of push-call patterns exceeds
threshold

Conditional jumps to the lower address offset.
(Encrypted shellcode)

Overall shellcode size does not exceed
threshold

Ret address lies within certain range of values. (non-
ASLR systems)

Operands of self-modifying and indirect jmp
are initialized

MEL exceeds threshold. (NOP)

Cleared IFG contains chain with more than
N instructions

Presence of GetPC. (Encrypted shellcode)

Last instruction in the chain ends with branch instruction
with immediate or absolute addressing targeting lib call
or valid interruption. (non-ASLR systems)

D
yn

am
ic

Number of near reads within payload
exceed threshold R

Control at least once transferred from executed payload
to previously written address. (non-self-contained
shellcode)

Number of unique writes to different
memory location exceeds threshold W

Execution of wx-instruction exceeds threshold X (non-
self-contained shellcode)

Shellcode classes

SH= {𝑚1, … , 𝑚𝑛𝑠
 }- set of shellcode features, 𝐵𝐸𝑁 = {𝑙1, … , 𝑙𝑛𝑏

} - set of

benign code features.

Shellcode space S is splitted for K classes with respect to identified
shellcode features.

Shellcode class 𝐾1 Shellcode class 𝐾2 Shellcode class 𝐾𝑁

𝑚1 𝑚2 𝑚𝑛𝑠

𝑙1 𝑙2 𝑙𝑛𝑏

…

…

Shellcode classes. Example

𝑲𝑵𝑶𝑷𝟑

(contains multi-byte NOP-
equivalent sled)

𝑲𝑺𝑪
(self-ciphered)

• Correct disassembly from each and every
byte offset

• Multi-byte instructions

Specific
features

• Correct disassembly into chain of at least
K instructions

• Overall size does not exceed certain
threshold

• …

Common
features

• Conditional jmps to the lower address
offsets

• …

Specific
features

NOTE: none of existing shellcode detection metods provides complete
coverage of identified classes

• Totally we identified 19 classes

Demorpheus: shellcode detection
library and tool

disassembling

Reconstruction of CFG

Reconstruction of IFG

whatever else

Disassembled flow

CFG structure

IFG structure

…

Detector of feature #1

Detector of feature #N

…

Common basic steps Elementary classifiers

Hybrid shellcode detector

Topology example
Example of flow reducing

Building hybrid classifier

G G G

DMM

G G
Resulting graph:

Round 1 Round 2 … Round N

Evaluation: base line

One of the important goals - minimization of false positives rate

Hybrid topology

𝜇1 𝐾1, 𝐾2 𝜇2 𝐾4 𝜇3 𝐾4 𝜇4 𝐾2

𝜇5 𝐾4, 𝐾5 𝜇6 𝐾3, 𝐾5 𝜇7 𝐾3 𝜇8 𝐾5

Decision-making module

Data flow

Linear topology

• Minimum false positives rate
• No flow reducing

Experimental results: numbers

Data set Linear Hybrid

FN, *100% FP, *100% Throughput,
Mb\sec

FN, *100% FP, *100% Throughput,
Mb\sec

Exploits 0.2 n/a 0.069 0.2 n/a 0.11

Benign
binaries

n/a 0.0064 0.15 n/a 0.019 2.36

Random
data

n/a 0 0.11 n/a 0 3.7

Multimedia n/a 0.005 0.08 n/a 0.04 3.62

Experimental results: plots

A couple of use-cases for hybrid
classifier

• 0-days exploits detection and filtering at network level

• CTF participation experience:

– could help to increase defense level of team

– could help to gather ideas from other teams

Demonstration here

Conclusion

• Good news everyone!

• Shellcodes may be now detected up to 45
times faster than before

• You could download the Demorpheus source
code from
git@gitorious.org:demorpheus/demorpheus.git and
integrate it with your own tool

mailto:git@gitorious.org:demorpheus/demorpheus.git

Authors

• Svetlana Gaivoronski
– E-mail: s.gaivoronski@gmail.com

– Skype: svetik.sh

– GPG key: 0x38428E3B
16A2 2F9D 5930 7885 F9E5 9DA5 09ED D515 3842 8E3B

• Dennis Gamayunov
– E-mail: gamajun@cs.msu.su

– Skype: jama.dharma

– GPG key: 0xA642FA98
 14E1 C637 4AEC BF0D 0572 D041 0622 7663 A642 FA98

References

1. Zhichun Li, Manan Sanghi, Yan Chen, Ming yang Kao, and Brian Chavez. Hamsa: fast signature generation for zero-day
polymorphic worms with provable attack resilience. In S&P06: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, pages 32-47. IEEE Computer Society, 2006.

2. James Newsome. Polygraph: Automatically generating signatures for polymorphic worms. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 226-241, 2005.

3. Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu. Sigfree: A signature-free buffer overflow attack blocker. IEEE
Transactions On Dependable And Secure Computing, 7(1):65-79, 2010.

4. Dennis Gamayunov, Nguyen Thoi Minh Quan, Fedor Sakharov, and Edward Toroshchin. Racewalk: Fast instruction
frequency analysis and classiffication for shellcode detection in network flow. In Proceedings of the 2009 European
Conference on Computer Network Defense, EC2ND '09, pages 4-12, Washington, DC, USA, 2009. IEEE Computer Society.

5. Thomas Toth and Christopher Kruegel. Accurate buffer overflow detection via abstract payload execution. In In RAID,
pages 274-291, 2002.

6. Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Network-level polymorphic shellcode
detection using emulation. In In Proceedings of the GI/IEEE SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), pages 54-73, 2006.

7. Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Emulation-based detection of non-self-
contained polymorphic shellcode.

8. Lanjia Wang, Hai-Xin Duan, and Xing Li. Dynamic emulation based modeling and detection of polymorphic shellcode at the
network level. Science in China Series F: Information Sciences, 51(11):1883-1897, 2008.

9. Qinghua Zhang, Douglas S. Reeves, Peng Ning, and S. Purushothaman. Analyzing network traffic to detect self-decrypting
exploit code. In In Proceedings of the ACM Symposium on Information, Computer and Communications Security
(ASIACCS), 2007.

10. Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In Proceedings of the 22nd Annual Computer Security Applications Conference,
pages 289-300, Washington, DC, USA, 2006. IEEE Computer Society.

