Demorpheus: Getting Rid Of Polymorphic Shellcodes In Your Network

Svetlana Gaivoronski, PhD Student, Moscow State University Dennis Gamayunov,

Senior Researcher, Moscow State University

Memory corruption, 0-days, shellcodes...

Why should anyone care about shellcodes in 2012?

CONS:

- Old exploitation technique, too old for Web-2.0-and-Clouds-Everywhere-World (some would say...)
- According to Microsoft's 2011 stats*, user unawareness is #1 reason for malware propagaion, and 0-days are less than 1%
- Endpoint security products deal with known malware quite well, why should we care about unkown?..

PROS:

- Memory corruption is still there ;-)
- Hey, Microsoft, we're all excited with MS12-020
- Tools like Metasploit are widely used by pentesters and blackhat community
- Targeted attacks of critical infrastructure what about early detection?
- Endpoint security is mostly signature-based, and does not help with 0-days
- It's fun!;)

 http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_Zeroing_in_on_Malware_ Propagation_Methods_English.pdf1

CTF Madness

- Teams write 0-days from scratch
- Game traffic is full of exploits all the time
- Detection of shellcode allows to get hints about your vulns and ways of exploitation...

Another POV: Privacy and Trust in Digital Era

We share almost all aspects of our lives with digital devices (laptops, cellphones and so on) and Internet:

- Bank accounts
- Health records
- Personal information

Recent privacy issues with social networks and cloud providers:

- LinkedIn passwords hashes leak
- Foursquare vulns
- What's next?..

Maybe the risk of 0-days will fade away?

- Modern software market for mobile and social applications is too competitive for developers to invest in security
- Programmers work under pressure of time limitation; managers who prefer quantity and no quality, etc.

Despite the fact of significant efforts to improve code quality, the number of vulnerabily disclosures continues to grow every year...

Shellcode detection: what do we have

• APE [5]

The problem: if we simply try to run all methods for each portion of data, it would be extremely slow

Virtues and shortcomings

	Static methods	Dynamic methods
+ +	Complete code coverage (theoretically) In most cases work faster than dynamic	 More resistant to obfuscation techniques
_	The problem of metamorphic shellcode detection is undecidable The problem of polymorphic shellcode detection is NP-complete	 Require some overheads Can consider only few control flow paths There are still anti-dynamic analysis techniques

And more:

- Methods with low computation complexity have high FP rate
- Methods with low FP have high computation complexity
- They are also have problems with detection of new types of 0-day exploits

None of them is applicable for real network channels in real-time

Why shellcode detection is feasible at all

2 3 4 5 6 7 8	96 f8 3c 48 88 d5 90 97 41 35 93 98 24 92	× X × C × C × C × C × C × C × C × C	cchg clc cmp nov nop cchg	%eox %eax,%esi \$0x48,%al %dl,%ch %eax,%edi %ecx %ecx	NOP - sled				
10 11	4b	» d	lec	%ebx		Activator	Decryptor	Pavload	RA
12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	d0 be 93 f2 c1 1e d9 74 24 f4 5a 2b c9 5a 2b c9 5a 5a 2b c9 5a 5a 3a ea fc 5a 31 72 13 6a a03 e1 2a 5a eb 9c 6c 6a ab - - - 4c - - - cc - - - 98 56 60 58 ef 98 60 62 62 dd 74 2a - - - 98 1d 48 dc f5 1f - - - - 42 5e 76 - - 53 - - - - 67 - - - - 67 - </td <td><pre>>> f t >> mm >> f pp >> pp >> pp >> mm >> pp >> mm >> x >> x >> a o >> i p >> s >> c mm >> pp >> mm >> pp >> x >> x >> x >> a o pp >> x s >> x >> x >> x s >> x s >> x s >> x s >> x s >> x s >> x s >> x s >> x s s >> x s s s >> x s s s >> x s s s >> x s s s >> x s s s s s s s s s s s s s s s s s s s</pre></td> <td>nop nov instenv pop sub sub sor add coope imp .nsb stos lec .nsb stos lec .nsb stos lec .nsb stos lec .nsb stos .wtl .ov .ov .ov .ov .ov .ov .ov .ov .ov .ov</td> <td><pre>\$0xlec1f293,%esi / -0xc(%esp) %edx %ecx,%ecx \$0xa,%cl \$0xffffffc,%edx %esi,0x13(%edx) %ecx,%esp 0x3d 0xfffffb8 (%dx),%es:(%edi) %eax,%es:(%edi) %eesp \$0xef58f06c,%edi %eax,%es:(%edi) %esp \$0xef58f06c,%edi %eax,%eci,%edi,1) 0x59 \$0xf5dcd81d,%ebx %ds (%eax,%eiz,4) %cl,0x76(%esi) %ebx \$0x93,%ch %eas</pre></td> <td>DECRYPTO ENCRY PAYLC</td> <td>R N I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z</td> <td>As opposed /iruses, shello imitations ir and structure</td> <td>to feature- code has cer</td> <td>rich tain size</td>	<pre>>> f t >> mm >> f pp >> pp >> pp >> mm >> pp >> mm >> x >> x >> a o >> i p >> s >> c mm >> pp >> mm >> pp >> x >> x >> x >> a o pp >> x s >> x >> x >> x s >> x s >> x s >> x s >> x s >> x s >> x s >> x s >> x s s >> x s s s >> x s s s >> x s s s >> x s s s >> x s s s s s s s s s s s s s s s s s s s</pre>	nop nov instenv pop sub sub sor add coope imp .nsb stos lec .nsb stos lec .nsb stos lec .nsb stos lec .nsb stos .wtl .ov .ov .ov .ov .ov .ov .ov .ov .ov .ov	<pre>\$0xlec1f293,%esi / -0xc(%esp) %edx %ecx,%ecx \$0xa,%cl \$0xffffffc,%edx %esi,0x13(%edx) %ecx,%esp 0x3d 0xfffffb8 (%dx),%es:(%edi) %eax,%es:(%edi) %eesp \$0xef58f06c,%edi %eax,%es:(%edi) %esp \$0xef58f06c,%edi %eax,%eci,%edi,1) 0x59 \$0xf5dcd81d,%ebx %ds (%eax,%eiz,4) %cl,0x76(%esi) %ebx \$0x93,%ch %eas</pre>	DECRYPTO ENCRY PAYLC	R N I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	As opposed /iruses, shello imitations ir and structure	to feature- code has cer	rich tain size

Proposed approach

- Given the set of shellcode detection algorithms, why don't we try to construct
 optimal data flow graph, so that:
 - the execution time and FP rate are optimized,
 - and the FN rate is not more than some given threshold

Shellcode features

	Generic features	Specific features		
Static	Correct disassembly into chain at least K instruction	Correct disassembly from each and every offset. (NOP)		
	Number of push-call patterns exceeds threshold	Conditional jumps to the lower address offset. (Encrypted shellcode)		
	Overall shellcode size does not exceed threshold	Ret address lies within certain range of values. (non-ASLR systems)		
	Operands of self-modifying and indirect jmp are initialized	MEL exceeds threshold. (NOP)		
	Cleared IFG contains chain with more than N instructions	Presence of GetPC. (Encrypted shellcode)		
		Last instruction in the chain ends with branch instruction with immediate or absolute addressing targeting lib call or valid interruption. (non-ASLR systems)		
Jynamic	Number of near reads within payload exceed threshold R	Control at least once transferred from executed payload to previously written address. (non-self-contained shellcode)		
	Number of unique writes to different memory location exceeds threshold W	Execution of wx-instruction exceeds threshold X (non-self-contained shellcode)		

Shellcode classes

 $SH = \{m_1, ..., m_{n_s}\}$ - set of shellcode features, $BEN = \{l_1, ..., l_{n_b}\}$ - set of benign code features.

Shellcode space *S* is splitted for *K* classes with respect to identified shellcode features.

Shellcode classes. Example

<i>K_{NOP3}</i> (contains multi-byte NOP-	 Correct disassembly from each and every byte offset Multi-byte instructions 	Specific features
equivalent sled) <i>K_{SC}</i>	 Correct disassembly into chain of at least K instructions Overall size does not exceed certain threshold 	Common features
(seit-ciphered)	 Conditional jmps to the lower address offsets 	Specific features

• Totally we identified 19 classes

NOTE: none of existing shellcode detection metods provides complete coverage of identified classes

Demorpheus: shellcode detection library and tool

Hybrid shellcode detector

Building hybrid classifier

Evaluation: base line

One of the important goals - minimization of false positives rate

- Minimum false positives rate
- No flow reducing

Experimental results: numbers

Data set		Linear		Hybrid			
	FN, *100%	FP, *100%	Throughput, Mb\sec	FN, *100%	FP, *100%	Throughput, Mb\sec	
Exploits	0.2	n/a	0.069	0.2	n/a	0.11	
Benign binaries	n/a	0.0064	0.15	n/a	0.019	2.36	
Random data	n/a	0	0.11	n/a	0	3.7	
Multimedia	n/a	0.005	0.08	n/a	0.04	3.62	

Experimental results: plots

A couple of use-cases for hybrid classifier

- 0-days exploits detection and filtering at network level
- CTF participation experience:
 - could help to increase defense level of team
 - could help to gather ideas from other teams

Demonstration here

Conclusion

- Good news everyone!
- Shellcodes may be now detected up to 45 times faster than before
- You could download the Demorpheus source code from

git@gitorious.org:demorpheus/demorpheus.git and integrate it with your own tool

Authors

- Svetlana Gaivoronski
 - E-mail: s.gaivoronski@gmail.com
 - Skype: svetik.sh
 - GPG key: 0x38428E3B
 16A2 2F9D 5930 7885 F9E5 9DA5 09ED D515 3842 8E3B
- Dennis Gamayunov
 - E-mail: gamajun@cs.msu.su
 - Skype: jama.dharma
 - GPG key: 0xA642FA98
 14E1 C637 4AEC BF0D 0572 D041 0622 7663 A642 FA98

References

- 1. Zhichun Li, Manan Sanghi, Yan Chen, Ming yang Kao, and Brian Chavez. *Hamsa: fast signature generation for zero-day polymorphic worms with provable attack resilience.* In S&P06: Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 32-47. IEEE Computer Society, 2006.
- 2. James Newsome. *Polygraph: Automatically generating signatures for polymorphic worms.* In Proceedings of the IEEE Symposium on Security and Privacy, pages 226-241, 2005.
- 3. Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu. *Sigfree: A signature-free buffer overflow attack blocker*. IEEE Transactions On Dependable And Secure Computing, 7(1):65-79, 2010.
- Dennis Gamayunov, Nguyen Thoi Minh Quan, Fedor Sakharov, and Edward Toroshchin. *Racewalk: Fast instruction frequency analysis and classiffication for shellcode detection in network flow*. In Proceedings of the 2009 European Conference on Computer Network Defense, EC2ND '09, pages 4-12, Washington, DC, USA, 2009. IEEE Computer Society.
- 5. Thomas Toth and Christopher Kruegel. Accurate buffer overflow detection via abstract payload execution. In In RAID, pages 274-291, 2002.
- 6. Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. *Network-level polymorphic shellcode detection using emulation*. In In Proceedings of the GI/IEEE SIG SIDAR Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), pages 54-73, 2006.
- 7. Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. *Emulation-based detection of non-selfcontained polymorphic shellcode.*
- 8. Lanjia Wang, Hai-Xin Duan, and Xing Li. *Dynamic emulation based modeling and detection of polymorphic shellcode at the network level*. Science in China Series F: Information Sciences, 51(11):1883-1897, 2008.
- 9. Qinghua Zhang, Douglas S. Reeves, Peng Ning, and S. Purushothaman. *Analyzing network traffic to detect self-decrypting exploit code.* In In Proceedings of the ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2007.
- 10. Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. Polyunpack: *Automating the hidden-code extraction of unpack-executing malware*. In Proceedings of the 22nd Annual Computer Security Applications Conference, pages 289-300, Washington, DC, USA, 2006. IEEE Computer Society.