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Memory corruption, 0-days, shellcodes… 



Why should anyone care about 
shellcodes in 2012? 

CONS: 
• Old exploitation technique, too 

old for Web-2.0-and-Clouds-
Everywhere-World (some would 
say…) 

• According to Microsoft’s 2011 
stats*, user unawareness is #1 
reason for malware propagaion, 
and 0-days are less than 1% 

• Endpoint security products deal 
with known malware quite well, 
why should we care about 
unkown?.. 

PROS: 
• Memory corruption is still there ;-) 

• Hey, Microsoft, we’re all excited 
with MS12-020 

• Tools like Metasploit are widely 
used by pentesters and blackhat 
community 

• Targeted attacks of critical 
infrastructure - what about early 
detection? 

• Endpoint security is mostly 
signature-based, and does not 
help with 0-days 

• It’s fun! ;) 

* http://download.microsoft.com/download/0/3/3/0331766E-3FC4-44E5-B1CA-
2BDEB58211B8/Microsoft_Security_Intelligence_Report_volume_11_Zeroing_in_on_Malware_
Propagation_Methods_English.pdf1 



CTF Madness 
• Teams write 0-days from 

scratch  

• Game traffic is full of exploits 
all the time 

• Detection of shellcode allows 
to get hints about your vulns 
and ways of exploitation… 
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Another POV: Privacy and Trust in 
Digital Era 

We share almost all aspects of our lives 
with digital devices (laptops, cellphones 
and so on) and Internet: 

• Bank accounts 

• Health records 

• Personal information 

 

 

 

 

Recent privacy issues with social 
networks and cloud providers: 

• LinkedIn passwords hashes leak 

• Foursquare vulns 

• What’s next?.. 

 

 

 

 



Maybe the risk of 0-days will fade 
away? 

• Modern software market for mobile and social applications is 
too competitive for developers to invest in security 

• Programmers work under pressure of time limitation; managers 
who prefer quantity and no quality, etc. 

Despite the fact of significant efforts to improve code quality, the 
number of vulnerabily disclosures continues to grow every year…  



Shellcode detection: what do we have 

Static analysis Dynamic analysis 

Hybrid analysis 
• Signature matching 

• Content-dependent 
• Behavioral 
(Hamsa[1], Polygraph[2]) 

• CFG\IFG analysis (SigFree[3]) 

• NOP-sled detection 
(RaceWalk[4] ) 

• APE [5] 

• Emulation ([6], [7]) 

• Automata analysis 
(IGPSA[8]) 

The problem: if we simply try to run all methods for each portion of 
data, it would be extremely slow 

Classifier1 

Classifier2 

Classifier3 

([9], PonyUnpack[10]) 



Virtues and shortcomings 

Static methods Dynamic methods 

⁺ Complete code coverage (theoretically) 
⁺ In most cases work faster than dynamic 

⁺ More resistant to obfuscation techniques 

— The problem of metamorphic shellcode 
detection is undecidable 

— The problem of polymorphic shellcode 
detection is NP-complete 

— Require some overheads 
— Can consider only few control flow paths 
— There are still anti-dynamic analysis 

techniques 

And more: 
• Methods with low computation complexity have high FP rate 
• Methods with low FP have high computation complexity 
• They are also have problems with detection of new types of 0-day 

exploits 

None of them is applicable for real network 
channels in real-time 





Why shellcode detection is feasible at 
all 

As opposed to feature-rich 
viruses, shellcode has certain 
limitations in terms of size 
and structure 

Activator Decryptor Payload RA 



Proposed approach 

• Given the set of shellcode detection 
algorithms, why don’t we try to construct 
optimal data flow graph, so that: 

– the execution time and FP rate are optimized,  

– and the FN rate is not more than some given 
threshold 



Shellcode features 
Generic features Specific features 

St
at

ic
  

Correct disassembly into chain at least K 
instruction 

Correct disassembly from each and every offset. (NOP) 

Number of push-call patterns exceeds 
threshold 

Conditional jumps to the lower address offset. 
(Encrypted shellcode) 

Overall shellcode size does not exceed 
threshold 

Ret address lies within certain range of values. (non-
ASLR systems) 

Operands of self-modifying and indirect jmp 
are initialized 

MEL exceeds threshold. (NOP) 

Cleared IFG contains chain with more than 
N instructions 

Presence of GetPC. (Encrypted shellcode) 

Last instruction in the chain ends with branch instruction 
with immediate or absolute addressing targeting lib call 
or valid interruption. (non-ASLR systems) 

D
yn

am
ic

 

Number of near reads within payload 
exceed threshold R 

Control at least once transferred from executed payload 
to previously written address. (non-self-contained 
shellcode) 

Number of unique writes to different 
memory location exceeds threshold W 

Execution of wx-instruction exceeds threshold X (non-
self-contained shellcode) 



Shellcode classes 

SH=  {𝑚1, … , 𝑚𝑛𝑠
 }- set of shellcode features, 𝐵𝐸𝑁 =  {𝑙1, … , 𝑙𝑛𝑏

}  - set of 

benign code features. 

Shellcode space S is splitted for K classes with respect to identified 
shellcode features.  

Shellcode class 𝐾1 Shellcode class 𝐾2 Shellcode class 𝐾𝑁 

𝑚1 𝑚2 𝑚𝑛𝑠
 

𝑙1 𝑙2 𝑙𝑛𝑏
 

… 

… 



Shellcode classes. Example 

 
𝑲𝑵𝑶𝑷𝟑

  

(contains multi-byte NOP-
equivalent sled) 

 
 
 

𝑲𝑺𝑪 
(self-ciphered) 

• Correct disassembly from each and every 
byte offset 

• Multi-byte instructions 

Specific 
features 

• Correct disassembly into chain of at least 
K instructions 

• Overall size does not exceed certain 
threshold 

• … 

Common 
features 

• Conditional jmps to the lower address 
offsets 

• … 

Specific 
features 

NOTE: none of existing shellcode detection metods provides complete 
coverage of identified classes 

•  Totally we identified 19 classes  



Demorpheus: shellcode detection 
library and tool 

disassembling 

Reconstruction of CFG 

Reconstruction of IFG 

whatever else 

Disassembled flow 

CFG structure 

IFG structure 

… 

Detector of feature #1 

Detector of feature #N 

… 

Common basic steps Elementary classifiers 



Hybrid shellcode detector 

Topology example 
Example of flow reducing 



Building hybrid classifier 

G G G 

DMM 

G G 
Resulting graph: 

Round 1 Round 2 … Round N 



Evaluation: base line 

One of the important goals  - minimization of false positives rate 

Hybrid topology 

𝜇1 𝐾1, 𝐾2  𝜇2 𝐾4  𝜇3 𝐾4  𝜇4 𝐾2  

𝜇5 𝐾4, 𝐾5  𝜇6 𝐾3, 𝐾5  𝜇7 𝐾3  𝜇8 𝐾5  

Decision-making module 

Data flow 

Linear topology 

• Minimum false positives rate 
• No flow reducing 



Experimental results: numbers 

Data set Linear Hybrid 

FN, *100% FP,  *100% Throughput, 
Mb\sec 

FN, *100% FP,  *100% Throughput, 
Mb\sec 

Exploits 0.2 n/a 0.069 0.2 n/a 0.11 

Benign 
binaries 

n/a 0.0064 0.15 n/a 0.019 2.36 

Random 
data 

n/a 0 0.11 n/a 0 3.7 

Multimedia n/a 0.005 0.08 n/a 0.04 3.62 



Experimental results: plots 



A couple of use-cases for hybrid 
classifier 

• 0-days exploits detection and filtering at network level 

• CTF participation experience: 

– could help to increase defense level of team 

– could help to gather ideas from other teams  



Demonstration here  



Conclusion 

• Good news everyone! 

• Shellcodes may be now detected up to 45 
times faster than before 

• You could download the Demorpheus source 
code from 
git@gitorious.org:demorpheus/demorpheus.git and 
integrate it with your own tool 

mailto:git@gitorious.org:demorpheus/demorpheus.git
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