Bypassing Endpoint
Security for $20 or
Less

Philip A. Polstra, Sr.
@ppolstra

ppolstra.blogspot.com

Roadmap

* Why this talk?

 Who is this dude talking at me?
« Brief history of USB

 How does USB work?

» |t's all descriptors and endpoints

« Bulk-only mass storage devices

« Bypassing endpoint security
« Microcontrollers are fun (and cheap)

* Food for thought

« Many organizations have begun to use endpoint

security programs to restrict use of portable
media

Why this talk?

« Many software tools do the USB equivalent of
MAC filtering — only allow authorized VID/PID

* For $18-30 can easily construct device to allow
any mass storage device to impersonate
authorized device

 Allows Injection/extraction

Who am | anyway?

« Teach computer security at a private university
« Like to hack hardware
« Have been known to fly and build airplanes

« Been known to play with USB devices

Brief History or USB

* Non-universal serial, PS/2 ports, & LPT
* 1996 USB 1.0 (1.5 or 12 Mbps)

« 1998 USB 1.1

« 2000 USB 2.0 (1.5, 12, or 480 Mbps)

* Long pause

« 2008 USB 3.0 (up to 5 Gbps)

2 B
~

HOW DOES USB WORK?

Hardware

e Simple 4-wire connection (power, ground, 2 data wires)
« Cabling prevents improper connections

« Hot pluggable

« Differential voltages provide greater immunity to noise

e Cable lengths up to 16 feet are possible

1 2
Pin Name Cable color Description 5 7 1 4_3
Type A Type B
1 VBUS Red +5V
2 D- White Data - 54321 54321
3 D+ Green Data + B e
4 GND Black Ground
L 54321 o 54321 ,

Micro-2 Micro-B

http://en.wikipedia.org/wiki/Ground_(electricity)

Software

Automatic configuration

No settable jumpers

Enumeration

Standard device classes with corresponding drivers
— HID

— Printer

— Audio

— Mass Storage

Connecting a Device

Device is connected

Hub detects

Host (PC) is informed of new device

Hub determines device speed capability as indicated by location of pull-up resistors
Hub resets the device

Host determines if device is capable of high speed (using chirps)

Hub establishes a signal path

Host requests descriptor from device to determine max packet size

Host assigns an address

Host learns devices capabilities

Host assigns and loads an appropriate device driver (INF file)

Device driver selects a configuration

IT’S ALL DESCRIPTORS AND
ENDPOINTS 2y

Endpoints

» The virtual wire for USB communications

« All endpoints are one way (direction relative to host)

« Packet fragmentation, handshaking, etc. done by hardware (usually)
« High bit of address tells direction 1=in O=out

« Types of endpoints
— Control
— Bulk transport
— Interrupt

— Isochronous

Control Endpoints

* Primary mechanism for most devices to communicate
with host

* Every device must have at least one in and out control
endpoint EPO

* Device must respond to standard requests

— Get/set address, descriptors, power, and status
* Device may respond to class specific requests

* Device may respond to vendor specific requests

Control Endpoints (continued)

 May have up to 3 transport stages: Setup, Data, Status

* Setup stage
— Host sends Setup token then data packet containing setup request
— If device receives a valid setup packet, an ACK is returned

— Setup request is 8 bytes

« 15t byte is bitmap telling type of request & recipient (device, interface,
endpoint)

* Remaining bytes are parameters for request and response

« Data stage (optional) — requested info transmitted

« Status stage — zero length data packet sent as ACK on succe§£7

b y

Interrupt & Isochronous Endpoints

* Interrupt endpoints
— Used to avoid polling and busy waits
— Keyboards are a good example

— Usually low speed (allows for longer cables, etc.)
 |sochronous endpoints

— Guaranteed bandwidth

— Used primarily for time-critical apps such as streamlng
media i

Bulk Endpoints

No latency guarantees

Good performance on an idle bus
Superseded by all other transport types

Full (8-64 byte packets) & high speed (512 byte packets)
only

Used extensively in USB flash drives (and external hard
drives)

Transactions consist of a token packet, O or more data
packets, and an ACK handshake packet (if successfglb
r.

[" "y
TN Al - "l'
) | N

bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize
idVendor
idProduct
bcdDevice
iManufacturer
iProduct

iSerialNumber

bNumConfigurations

Number
Constant
BCD
Class
SubClass
Protocol
Number
ID

ID

BCD
Index
Index
Index

Integer

18 bytes

Device Descriptor (0x01)
0x200

Class Code

Subclass Code

Protocol Code

Maxi Packet Size EPO
Vendor ID

Product ID

Device Release Number
Index of Manu Descriptor
Index of Prod Descriptor
Index of SN Descriptor

Num Configurations

bLength Number Size in Bytes
bDescriptorType Constant 0x02

wTotalLength Number Total data returned
bNumIinterfaces Number Num Interfaces

bConfigurationValue Number Con number

iIConfiguration Index String Descriptor

bmAttributes Bitmap b7 Reserved, set to
1. b6 Self Powered
b5 Remote
Wakeup
b4..0 Reserved 0.

bMaxPower Max Power in mA/2

Field
bLength
bDescriptorType

binterfaceNumber

bAlternateSetting

bNumEndpoints

binterfaceClass
binterfaceSubClass
binterfaceProtocol

iInterface

Value
Number
Constant

Number

Number

Number

Class
SubClass
Protocol

Index

Description
9 Bytes
0x04

Number of
Interface

Alternative setting

Number of
Endpoints used

Class Code
Subclass Code
Protocol Code

Index of String
Descriptor

Offset

Field

bLength
bDescriptorType
bEndpointAddress

bmAttributes

wMaxPacketSize

binterval

Size

Value
Number
Constant

Endpoint

Bitmap

Number

Number

Description

Size of Descriptor (7 bytes)

Endpoint Descriptor (0x05)

b0..3 Endpoint Number.
b4..6 Reserved. Set to Zero
b7 Direction O = Out, 1 = In

b0..1 Transfer Type 10 = Bulk
b2..7 are reserved. |

Maximum Packet Size

Interval for polling endpoint data

Offset |Field Size |Value Description

bLength Number Size of Descriptor in Bytes

bDescriptorType 1 Constant String Descriptor (0x03)
bString n Unicode Unicode Encoded String

Now that we have learned a little about general devices, without
further delay...

BULK-ONLY MASS STORAGE
DEVICES

USB Flash Drives

 Hardware

« Software

* Filesystems

» Talk to a flash drive

ZAIY-ZEORId -
f OA-

—SHHk

Hardware (continued)

« Typically utilize NAND flash memory

« Memory degrades after 10,000 write cycles

« Most chips not even close to high-speed USB speed (480 Mbps)
« Can only be written in blocks (usually 512, 2048, or 4096 bytes)

« Chips are somewhat easily removed from damaged drives for
forensic recovery

« Some controllers have JTAG capability which can be used for
memory access

« Some controller chips steal some flash memory for themselves

v
‘

77

b y

SNy e

Hardware (continued)

Nearly all flash drives present themselves as SCSI hard drives
« “Hard drive” sectors are typically 512, 2048, or 4096 bytes
« SCSI transparent command set is used
« Most drives are formatted as one partition or logical unit
— Additional logical units can hide info from Windows machines
* Reported size may not match actual media size
— Info can be hidden in higher sectors

— Some cheap drives are out there that grossly over report size

— Atypical 512 byte sector needs 16 bytes for error correction

Software

« Usually implemented in firmware within specialized controller chips

e Must;
— Detect communication directed at drive

— Respond to standard requests

— Check for errors
— Manage power

— Exchange data

Talking to a Flash Drive

« Bulk-Only Mass Storage (aka BBB) protocol used

All communications use bulk endpoints
Three phases: CBW, data-transport (optional), CSW

Commands sent to drive using a Command Block Wrapper
(CBW)

CBW contains Command Block (CB) with actual command
Nearly all drives use a (reduced) SCSI command set

Commands requiring data transport will send/receive on bulk
endpoints

All transactions are terminated by a Command Status Wrapper
(CSW)

r

777

Command Block Wrapper

typedef struct _ USB_MSI _CBW {
unsigned long dCBWSignature; //0x43425355 “USBC”
unsigned long dCBWTag; // associates CBW with CSW response
unsigned long dCBWDataTransferLength; // bytes to send or receive
unsigned char bCBWFlags; // bit 7 0=0OUT, 1=IN all others zero
unsigned char bCBWLUN; // logical unit number (usually zero)
unsigned char bCBWCBLength; // 3 hi bits zero, rest bytes in CB

unsigned char bCBWCB[16]; // the actual command block (>=6
bytes)

- ,7" -
} USB_MSI_CBW:; v2em

Command Block

* 6-16 bytes depending on command
« Command is first byte

* Format Unit Example:

typedef struct CB_FORMAT_UNIT {
unsigned char OperationCode; //must be 0x04
unsigned char LUN:3; // logical unit number (usually zero)
unsigned char FmtData:1; // if 1, extra parameters follow command
unsigned char CmpLst:1; // if O, partial list of defects, 1, complete
unsigned char DefectListFormat:3; //000 = 32-bit LBAsS
unsigned char VendorSpecific; //lvendor specific code
unsigned short Interleave; //0x0000 = use vendor default
unsigned char Control;

} CB_FORMAT_UNIT;

Command Block (continued)

 Read (10) Example:
typedef struct CB_READ10 {
unsigned char OperationCode; //must be 0x28
unsigned char RelativeAddress:1; // normally O
unsigned char Resv:2;
unsigned char FUA:1; // 1=force unit access, don't use cache
unsigned char DPO:1; // 1=disable page out
unsigned char LUN:3; //logical unit number
unsigned long LBA,; //logical block address (sector number)
unsigned char Reserved,;
unsigned short TransferLength;
unsigned char Control;
} CB_READ10;

Command Block (continued)

Some Common SCSI
Commands:

FORMAT _UNIT=0x4, //required
INQUIRY=0x12, //required
MODE_SELECT6=0x15,
MODE_SELECT10=0x55,
MODE_SENSE6=0x1A,
MODE_SENSE10=0x5A,
READ6=0x08, //required
READ10=0x28, //required
READ12=0xAS8,

READ_ CAPACITY10=0x25, //required

READ_FORMAT_CAPACITIES=0x23,
REPORT_LUNS=0xAOQ, //required
REQUEST_ SENSE=0x03, //required
SEND_DIAGNOSTIC=0x1D, //required
START_STOP_UNIT=0x1B,
SYNCHRONIZE_CACHE10=0x35,
TEST_UNIT_READ=0x00, //required
VERIFY10=0x2F,

WRITE6=0x0A, //required
WRITE10=0x2A,
WRITE12=0xAA 7

']-

Command Status Wrapper

« Read Sense command can be used for details on failed operations
typedef struct _ USB_MSI_CSW {

unsigned long dCSWSignature; //0x53425355 “USBS”

unsigned long dCSWTag; // associate CBW with CSW response

unsigned long dCSWDataResidue; // difference between requested
data and actual

unsigned char bCSWStatus; //00=pass, 01=fail, 02=phase error, reset
} USB_MSI_CSW;

Now that we know how bulk-only mass storage devices work..

HOW DO | BYPASS ENDPOINT
SECURITY?

Impersonating another device

Social engineering USB style

Providing an authorized VID/PID allows device
connection

— Backdoors and other useful items can be injected
— Information can be extracted to portable media

Device design allows optional write blocking

Enough background. Let the fun begin...

MICROCONTROLLERS ARE
FUN (AND CHEAP)

Fun with Microcontrollers

* Chip Choice
* A Microcontroller-Based Impersonator

Chip Choice Options

 AVR (as found in Arduino family)
— Cheap
— Well understood
— Loads of code out there

— Too underpowered to do USB without external components (<20MHZz)

« PIC family
— Relatively cheap
— Programming somewhat more involved than AVR
— Newer chips SMD only, not easy DIP package

— Some USB device code, but not host code out there

Chip Choice Winner

 None of the above
« FTDI Vinculum Il

— Relatively new chip
— Alittle faster than AVRs (48 MHz)
— Real-time multi-threaded OS
— Libraries for several standard USB classes
« BOMS is one — but we can’t use it for this project, unfortunately
— Unlike AVR, different pin packages differ only with GPIO lines available

« Same flash memory

« Same RAM

Chip Choice

« FTDI Vinculum Il dual USB host/slave controller
— 2 full-speed USB 2.0 interfaces (host or slave capable)
— 256 KB E-flash memory
— 16 KB RAM
— 2 SPI slave and 1 SPI master interfaces
— Easy-to-use IDE
— Simultaneous multiple file access on BOMS devices
« Several development modules available
— Convenient for prototyping (only SMD chips available)
— Cheap enough to embed in final device

— One format is Arduino clone (Vinco)

VINCULUM
BINDING USB TECHNOLOGIES

[Intemal Clocks and Timers

e The TabbedToolbar
:

PN
xS - o Yot
ot

by
ioch.tuf in bees _ . [———

The Watchlist “_1095) INDarY, cuart_ “ywpiacy &
window s Aned, ot : St v

: » Mte
sart_lech. loctl code = YOI _JOCTL UAST SEY DATA AITH:
SART_Laah BEt_An . parer = UART BATA RITH N
wos_dev ioctl (hWUazt, busrt lock):
dazc_iock.ioctl code = 1 _SeY

Wb Wl _LA pates * SRIT_ATCH RMITE L

soctd INDATT, suart_ioow
gity
15081 _code = YOI _IDCYL UARY 8
Bl ip.pazesr = TRAT mRaITY

1 g :

Package || 48P0 Package | ¢4-pin ackage |

Designtion | opusie |

Currentsignal | usTT0 |

Default Signal
FIFO Data0

GPIOPOrt AQ Template Options

(1) (5] s
GPIO Port B 4

GPIO Port C O Code Generation Options

GPIO Port C 4 [7] Inchude Package Type Declarations
GPIOPort DO

GPIOPort D 4 [inchade Comments

GPIO Port E 0 Output File Path:

B

[V] Generate Code for 32-Pin Package
[V] Generate Code for 48-Pin Package
[V] Generate Coda for 64-Pin Package

Microcontroller-Based Impersonator

 Enumerate an attached mass storage drive

 When PC attempts to connect drive try to provide
an authorized VID/PID

* If unsuccessful try another VID/PID till it works

Impersonator High-Level Design

One thread associated with slave port to appear as a BOMS device
— One thread watches control endpoint and services requests from host
One thread associated with the host port for talking to flash drive

— Thread enumerates the device and gets endpoints. Then periodically checks
to see if the drive is still there

Main thread bridges slave and host
— Non-CBW packets (data packets) are passed through to host port
— Whitelisted CBWs are also passed on to host port (if write blocking)
Timer thread
— When enumeration starts timer is set
— If drive is not connected another VID/PID is tried

Button thread 77w

— Reads buttons and adjusts status accordingly Va

The Main Thread

« Waits for CBW packets to arrive on Bulk Out endpoint
« Calls appropriate handler function based on command

— Whitelisted commands:
 Forward CBW to drive
« Perform Data phase (if any) with drive and forward to PC

* Received CSW from device and forward to PC

— Non-whitelisted commands (when write blocking):
- ACK CBW
« Fake Data phase (if any)
* Return CSW to PC

— Some commands return success because Windows is unhappy with failures, /

v

Main Loop

usbSlaveBoms_readCbw(cbw, slaveBomsCtx);

switch (cbw->cb.formated.command)

{

case BOMS_INQUIRY:
handle_inquiry(cbw);

break:

Example Handler

void handle_inquiry(boms_cbw_t *cbw)

{ B
unsigned char buffer[64];

unsigned short responseSize;
boms_csw_t csw;

if (forward_cbw_to_device(cbw))

{
if (responseSize = receive_data_from_device(&buffer[0], 36))
{
forward_data to_slave(&buffer[0], responseSize);
if (receive_csw_from_device(&csw))
{
forward_csw_to_slave(&csw);
}
}
}

Timer Thread

 When device descriptor requested start 1 second timer
 When the enumeration complete reset timer
« |f timer expires try the next VID/PID from list

At end of list could resort to brute force

Complications %ﬁ
* Windows & Linux treat drives differently %
— Windows will try to look for and autoplay media

— Windows doesn'’t appear to see other than first LUN

— Early prototype experience (with writeblocker this is based on)
« Worked fine under Linux

« Caused BSoD on Windows (exploit?)
— Linux seems to pull in a lot of data up front

— Windows misbehaves if you correctly fail some commands such as Write

IT’S DEMO TIME! 27,

Food for thought {@)

« Speed up process by searching registry for previously mounted ©,
devices

— USBDevwView or something similar might be helpful

« Use larger device to divine authorized device then use a collection of
smaller devices preprogrammed to appropriate VID/PID

« Like all devices this may be thwarted
— Device operates at full speed only

— Endpoint software could use proprietary drivers

» Security through obscurity?

References

USB Complete: The Developers Guide (4 ed.) by Jan Axelson

USB Mass Storage: Designing and Programming Devices and
Embedded Hosts by Jan Axelson

http://www.usb.orqg

http://www.ftdichip.com for more on VNC2

http://seagate.com for SCSI references

Embedded USB Design by Example by John Hyde

My 44Con USB Flash Drive Forensics Video
http://www.youtube.com/watch?v=CIVGzGOW-DM

Schematics and source code are available
— Git hub usb-impersonator
— Email ppolstra@agmail.com

— Twitter @ppolstra

http://www.usb.org/
http://www.ftdichip.com/
http://seagate.com/
mailto:ppolstra@gmail.com

