

Hardware Backdooring is practical

Jonathan Brossard (Toucan System)

DISCLAIMER

 We are not « terrorists ». We won't release our
PoC backdoor.

 The x86 architecture is plagued by legacy.
Governments know. The rest of the industry :
not so much.

 There is a need to discuss the problems in
order to find solutions...

 This is belived to be order of
magnitudes better over existing
backdoors/malware

Agenda

 Motivation : state level backdooring ?
 Coreboot & x86 architecture
 State of the art in rootkitting, romkitting
 Introducing Rakshasa
 Epic evil remote carnal pwnage (of death)
 Why cryptography (Truecrypt/Bitlocker/TPM)

won't save us...
 Backdooring like a state

Could a state (eg : China) backdoor
all new computers on earth ?

A bit of x86 architecture

State of the art, previous work

Previous work
 Early 80s : Brain virus, targets the MBR
 80s, 90s : thousands of such viruses
 2007, John Heasman (NGS Software) Blackhat US:

backdoor EFI bootloader
 2009, Anibal Saco and Alfredo Ortega (Core security),

CanSecWest : patch/flash a Pheonix-Award Bios
 2009, Kleissner, Blackhat US : Stoned bootkit. Bootkit

Windows, Truecrypt. Load arbitrary unsigned kernel
module.

 2010, Kumar and Kumar (HITB Malaysia) : vbootkit
bootkitting of Windows 7.

 Piotr Bania, Konboot : bootkit any Windows (32/64b)
 2012 : Snare (Syscan) : EFI rootkitting

DEMO : Bootkitting Windows

Introducing Rakshasa

Goals : create the perfect backdoor

 Persistant
 Stealth (virtually undetectable)
 Portable (OS independant)
 Remote access, remote updates
 State level quality : plausible deniability, non

attribution
 Cross network perimeters (firewalls...)
 Redundancy

Rakshasa : design

 Core components :

Coreboot
SeaBios
iPXE
payloads

Built on top of free software : portability, non
attribution, cheap dev (~4 weeks of work),
really hard to detect (without false positives).

 Payload : Reverse Engineered/Refactored
konboot payload (2 days of work).

Rakshasa

 Flash the BIOS (Coreboot + PCI roms such as
iPXE)

 Flash the network card or any other PCI device
(redundancy)

 Boot a payload over the network (bootkit)
 Boot a payload over wifi/wimax (breach the

network perimeter, bypasses network detection,
I(P|D)S)

 Remotely reflash the BIOS/network card if
necessary

Rakshasa : embedded features

 Remove NX bit (from BIOS or PCI)
→ executable heap/stack.

 Remove CPU updates (microcodes)
 Remove anti-SMM protections (=>local root)

 → Permantent lowering of the security level on
any OS. Welcome back to the security level of
1999.
→ Persistant, even if HD is remove/restored.

Optionally : Disable ASLR (bootkitting) by
patching the seed in kernel land on the fly on
Windows.

Rakshasa : remote payload

 Bootkit future OSes
 Update/remove/reflash firmwares (PCI, BIOS)
 Currently capable of Bootkitting any version of

Windows (32b/64b)
 Use a minimal linux initrd in case we want to

mount/modify the filesystem (/etc/shadow on
any UNIX like, add new account with ADMIN
privileges on Windows, enable remote desktop
– possibly enable dual remote desktop on
Windows XP Pro by patching 2 dlls...)

Rakshasa : stealthness

 We don't touch the disk. 0 evidence on the
filesystem.

 We can remotely boot from an alternate
payload or even OS : fake Truecrypt/Bitlocker
prompt !

 Optionally boot from a WIFI/WMAX stack : 0
network evidence on the LAN.

 Fake BIOS menus if necessary. We use an
embedded CMOS image. We can use the real
CMOS nvram to store encryption
keys/backdoor states between reboots.

Rakshasa : why using
Coreboot/SeaBios/iPXE is the good

approach

 Portability : benefit from all the gory reverse
engineering work already done !

 Awesome modularity : embbed existing
payloads (as floppy or cdrom images) and PCI
roms directly in the main Coreboot rom !
Eg : bruteforce bootloaders (Brossard, H2HC
2010), bootkits without modification.

 Network stack : ip/udp/tcp, dns, http(s), tftp,
ftp... make your own (tcp over dns? Over ntp ?)

PCI rom from scratch (asm)
section .text

;--------------------------

; Bios expension ROM header

;--------------------------

 db 0x55 ; Signature

 db 0xaa ; Signature

 db 17 ; number of sectors

_start:

DEMO : Evil remote carnal pwnage
(of death)

I can write blogs too... Muhahahaha...

DEMO : Evil remote carnal pwnage
(of death)

I can write blogs too... Muhahahaha...

How to properly build a botnet ?

 HTTPS + assymetric cryptography (client side
certificates, signed updates)

 Fastflux and/or precomputed IP addresses

If Microsoft can do secure remote updates, so
can a malware !



Avoid DNS take overs by law enforcement
agencies by directing the C&C rotatively on
innocent web sites (are you gonna shut down
Google.com?), use assymetric crypto to push
updates.

 So you own my C&C for 1hour ? You can't do
anything with it !!

=> CAN'T BE SHUT DOWN.

Why crypto won't save you...

Why crypto won't save you...

 We can fake the bootking/password prompt by
booting a remote OS (Truecrypt/Bitlocker)

 Once we know the password, the BIOS
backdoor can emulate keyboard typing in 16b
real mode by programming the
keyboard/motherboard PIC microcontrolers
(Brossard, Defcon 2008)

 If necessary, patch back original
BIOS/firmwares remotely.

DEMOS

How about Avs ??

 Putting an AV on a server to protect against
unknown threats is purely cosmetic.

 You may as well put lipstick on your servers...

Example : 3 years old bootkit

Example : 3 years old bootkit (+
simple packer)

Realistic attack scenarii

Realistic attack scenarii

 Physical access :

Anybody in the supply chain can backdoor your
hardware. Period.
Flash from a bootable USB stick (< 3mins).

 Remote root compromise :
If (OS == Linux) {

flash_bios;

 } else {
Pivot_over_the_MBR ;

}

Realistic attack scenarii

 Purchase pre-backdoored hardware

BONUS : Backdooring the
datacenter

Remediation

Remediation (leads)

 Flash any firmware uppon reception of new hardware with
open source software

 Perform checksums of all firmwares by physically
extracting them (FPGA..) : costly !

 Verify the integrity of all firmwares from time to time
 Update forensics best practices :

1) Include firmwares in SoW
2) Throw away your computer in case of intrusion

Even then... not entirely satisfying : the backdoor can flash
the original firmwares back remotely.

Side note on remote flashing

 BIOS flashing isn't a problem : the flasher
(Linux based) is universal.

 PCI roms flashing is (a bit of) a problem :
vendor dependant...

Detecting network card
manufacturer from the remote C&C

 IPXE allows scripting. Eg : sending the MAC
address as an URL parameter.

 From the MAC, get the OUI number serverside.
 From the OUI number, deduce manufacturer
 Send the proper flashing tool as an embedded

OS to the backdoor...

Backdooring like NSA China

Backdooring like a state

Rule #1 : non attribution
- you didn't write the free software in first place.
- add a few misleading strings, eg : in mandarin ;)

Rule #2 : plausible deniability
- use a bootstrap known remote vulnerability in a

network card firmware
(eg : Duflot's CVE-2010-0104)
 → « honest mistake » if discovered.

- remotely flash the BIOS.
- do your evil thing.
- restore the BIOS remotely.

Questions ?

